
Discrete quasi-gradient features weighting

algorithm

Norbert Jankowski

Department of Informatics, Nicholas Copernicus University
ul. Grudziadzka 5, 87-100 Toruń, Poland, http://www.phys.uni.torun.pl/˜norbert

Abstract. A new method of feature weighting, useful also for feature extraction
has been described. It is quite efficient and gives quite accurate results. Weighting
algorithm may be used with any kind of learning algorithm. The weighting algo-
rithm with k-nearest neighbors model was used to estimate the best feature base
for a given distance measure. Results obtained with this algorithm clearly show its
superior performance in several benchmark tests.

1 Introduction

It is well known [1,2] that initial feature set of data sets/databases used for
classification or approximation is not the optimal information source and
the feature analysis may be very helpful in further processing of data. Sev-
eral methods which use different strategy of feature extraction and weighting
were already presented in books and articles [3,4,1,5]. Some of them measure
amount of information belonging to a given attribute (or a subset1) using
information theory or statistics. Other methods use learning models to ob-
serve accuracy changes what help to estimate weights in the next phase of
feature weighting (or extraction) process [6,7,4]. Such type of feature weight-
ing may be used with several learning models types. Algorithm presented in
this article belongs to the second type of feature weighting/extracting algo-
rithms, and will be presented in conjunction with k-nearest neighbors model
[8], although algorithm itself may be used with any learning model.

2 Feature weighting algorithm

General idea of a Discrete quasi-gradient algorithm is based on looking for

optimal vector of weight changes in given state of weighting procedure. The
process is repeated as long as any improvement of accuracy may be done.
In parallel some control parameters change to stimulate quasi-gradient direc-
tions of weights changes. Another goal of this algorithm was to create stable
feature weighting algorithm. It means that new (weighted) set of features
should never significantly decrease accuracy of the final model. Of course it
is impossible to expect any progres if original feature set is optimal. Next,

1 But if subset become bigger the complexity grow exponentially.

2 Norbert Jankowski

repeating the whole procedure of weighting a few distinguishable solutions
may be found. This is not an error, it is nature of some databases. Such
information may be important in propagation of this information (separate
weighted sets of features) to other models and it may help to obtain different
final models.

The main loop of the algorithm consists of cross-validation (CV) as a
learning technic. This means that a whole data set is divided in n equal
(if possible) parts (commonly called folds) Si, i = 1, . . . , n. In each CV–
iteration procedure FindWeights is called. FindWeights use two sets Ŝi

(Ŝi =
⋃

k=1,...,n, k 6=i Sk) as a learning set, and Si as a validation set. As
a result procedure FindWeights returns vector of feature weights wi. Lets
define:

wi = FindWeights(Ŝi,Si) (1)

Each weight of wi is in [0, 1] interval. Details of procedure FindWeights will
be presented later. Vectors wi consist of weights for each feature k = 1, . . . , d,
where d is the dimension of data set S. Now the sum of weights vectors is
calculated and the final weights vector is obtained through normalization:

w̃ = w/ max
k=1,...,d

wk w =
∑n

i=1
w̃i (2)

where w = [w1, . . . , wd]. The above part of CV learning is really simple: if all
CV iterations are completed, the final model is estimated as a consequence of
intermediate models. Now the FindWeights as the heart of whole algorithm
will be described.

Procedure FindWeights. First, the initial values are assigned to weights:
wk = 1, k = 1, . . . , d. In this case the algorithm starts from full feature set.
It may be useful sometimes to start from wk = 0, what mean that algorithm
starts from an empty feature set and tries to add feature by feature — this
strategy may be more efficient, computationally, if working with highly di-
mensional data sets. The main loop (one of three) is repeated as long as any
progress in the maximization of accuracy on validation set may be done. The
contents of that loop is called main phase. The goal of the main phase is to
observe changes, determining which features may help to improve the accu-
racy by changing current weights by ∆, and next to apply positive/progresive
changes and simultaneously coordinating the change of ∆. In the inner loop
for each feature two quantities v+

i and v−i are computed:

v+

i = validate(w+, i) v−i = validate(w−, i) (3)

where w± = [w1, . . . , wi−1, wi ± ∆, wi+1, . . . , wd]. validate(w) is a function
which compute the accuracy on validation set S (see eq. 1) for the learning
model M which is trained on a data set Ŝ. To obtain results presented in
section 3 the k-nearest neighbor model was used as M.

Vectors v+ and v− contain information about weight changes by step ∆
that may help to improve results. If any v±i indicate that given change may

Discrete features weighting algorithm 3

help the new set of weights is defined according to:

w′
i = wi − θ∆ if v−i > v (4)

w′
i = wi + θ∆ if v+

i > v ∧ v−i <= v (5)

where θ defines the speed (I like θ = 1 – really fast!), and v = validate(w).
The above equation says that all features which may help if they are

changed, are indeed changed. If for new weights vnew = validate(w′) is
smaller than v = validate(w) the procedure goes back to weights w, else
w′ become the new weight vector.

As long as the current parameter ∆ leads to a better accuracy, weight
changes are made and the inner loop is continued. Usually the starting ∆ is
equal to 1. The step ∆ is decreased if no progress in maximization of accuracy
on validation set is done: ∆ = ∆/2. After that if ∆ is still bigger (or equal
to) than ∆min, the second loop is repeated again. If ∆ is smaller than ∆min

(for example 0.01) loop is broken and weights are normalized:

w̃ = w/ max
k=1,...,d

wk (6)

The main phase loop is repeated (with initial ∆ = 1) as long as the
weighting algorithm gives with better accuracy on a validation test. Since
the main phase loop is repeated the algorithm is able to jump out from
local minima keeping the best solution found so far. Without that loop the
performance of the algorithm was average or even worst.

Outline of this algorithm may be found at my WWW page.

3 Results

The performance on several databases was checked to test the stability of the
algorithm and to test whether feature weighting helps or may destroy the
generalization ability. All test were performed on databases from Machine
Learning Database Repository at the UCI [9] using 10-fold CV test, except
that data sets which have original testing sets. All results were averaged from
10 runs. Standardization of most database was performed before the learning
phase. Each table with results have four parts. First presents results which
were obtained with feature weighting algorithm for kNN, second without
feature weighting, and third show default accuracy – percentage of most
majority class. Fourth shows results obtained by other models. This part
contains only the best models for a given database2. Note that k-weight [10]
and GIBL [7] are algorithms which estimate feature influence. It is common
that some models have really good accuracy for one benchmark giving much
worst results for other data sets. In tables with results the notation is used:

2 If you want to browse more results see WWW pages of my LAB:
http://www.phys.uni.torun.pl/kmk/projects/datasets.html.

4 Norbert Jankowski

kNN [CVx] [M]. k defines the number of neighbors. CV x if exists means that
weighting algorithm was used, and x defines the number of folds in CV. If
M occurs non-Euclidian metric was used, such as the Manhattan, Minkovsky
or Canberra3. For some data set significant improvement of accuracy on test
sets is observed, and for others data sets the accuracy is not (essentially)
changed while for others the classification model decreases its accuracy.

Thyroid disease is one of the best known benchmark data sets, as well
one really nontrivial for classification. The training set has 3772 cases, and
testing set has 3428 cases. There are 3 classes, and the most frequent has
92.71% of all cases. Number of attributes is 21 (15 binary, 6 continuous).
The accuracy on test set of plain 1NN (kNN with 1 neighbor) is really poor,
just 93.14% (see tab. 1). For 3NN with Manhattan distance the accuracy is
94.4%, but using weighted features 98.36%. The best results were obtained
for 3NN with the Canberra metric – 98.56%. This very good results were
obtained only because irrelevant features were removed – see figure 1.

Flags classification problem have 193 vectors, 28 attributes, and each
vector may be assigned to one of 8 classes. Feature weighting for this data
set was very efficient (see tab. 2). For 1NN CV3 with Manhattan metric
accuracy in test was 62.04% and without weighting 50.91%. For 3NN with
weighting 61.51% and 48.07% without. The best non-weighted kNN have
accuracy 52.56% and this is nearly 10% less than for the best plain kNN.

Glass data contains 214 vectors, each vector has 9 attributes and may
be classified to one of the 6 classes. For this benchmark weighting looks very
important, and the improvement may be really large (see tab. 3). The best
results were obtained for 1NN CV3 with Manhattan metric giving 80.81%
accuracy, and the plain version finished with just 73.50%. For 3 neighbors
(3NN CV3 Manh) weighted version has 78.04%, and non-weighted 72.06%.

The number of ∆ changes change from 25 to 40 for glass data set and
from 25 to 50 for flags data set (it is around 1 minute on Pentium 4).

For the following data sets results of feature weighting were not significant
(around 0.3-2%): australian credit, appendicitis, cleveland heart, wine.

4 Conclusions

Discrete quasi-gradient weighting algorithm presented in this paper is re-
ally efficient and results have good accuracy on several tests. Sometimes the
improvement was around 10% of accuracy. This algorithm may be used as
feature extraction tool. The starting feature set may be full or empty, and
because of that it may be useful for huge dimensional data sets. Also alterna-
tive weighting sets may be obtained, what may be very important in further
analysis. Using this feature weighting algorithm the kNN model was placed at
the top of ranking of the best methods for presented data sets. Sometimes the

3 Canberra metric: canb(x,y) =
P

d

i=1
|xi − yi|/|xi + yi|.

Discrete features weighting algorithm 5

Model test train

3NN CV3 Camberra 98.56 99.37
3NN CV2 Manh 98.36 99.28
1NN CV2 Manh 98.26 100.00
3NN CV2 98.28 99.24
1NN CV2 98.26 100.00
2NN CV2 98.36 99.28

3NN Camberra 96.30 98.49
3NN Manh 94.40 96.58
1NN Manh 93.76 100.00
1NN 93.14 100.00

default 92.71 -

C-MLP2LN+ASA [11] 99.36 99.90
CART [12] 99.36 99.80
PVM [12] 99.36 99.80
SSV [13] 99.36 99.76
IncNet [14] 99.24 99.68
MLP a,b opt. [11] 99.36 99.90
MLP2LN [11] 99.00 99.70
Cascade correlation [15] 98.50 100.00
BP+genetic [15] 98.40 99.40
Quickprop [15] 98.30 99.60
kNN+weights [10] 98.22 98.89
RProp [15] 98.00 99.60
kNN+weights [10] 97.96 98.89. . .

Table 1. Accuracy for thyroid data
set.

1 0,02
2 0
3 0,344
4 0
5 0
6 0
7 0
8 0,426
9 0

10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 1
18 0
19 0,125
20 0,116
21 0,191

Weights

2015105

1

0

1 0
2 0,003
3 0,552
4 0
5 0
6 0
7 0
8 0,367
9 0,005

10 0
11 0,249
12 0,014
13 0
14 0
15 0
16 0,003
17 1
18 0
19 0,092
20 0
21 0,18

Weights

2015105

1

0

Fig. 1. Feature weights for thyroid
data set.

Model test train

1NN CV3 Manh 62.04 100.0
3NN CV3 Manh 61.51 76.07
7NN CV3 Manh 58.30 68.28
27NN CV3 Manh 56.19 59.78

27NN Manh 52.56 56.53
7NN Manh 52.03 63.57
1NN Manh 50.91 100.00
17NN Manh 50.25 57.97
3NN Manh 48.07 72.53
27NN 46.76 51.75
1NN 48,52 100,00

default 31.09 -

CART [16] 62.40 -
IB1 [16] 56.60 -
C 4.5 [16] 56.20 -
GIBL [7] 55.11 -
IBL [7] 48.29 - . . .

Table 2. Accuracy for flags data set.

Model test train

1NN CV3 Manh 80.81 100.00
3NN CV3 Manh 78.04 87.64
3NN CV3 Mink–0.7 77.97 88.78
3NN CV2 Manh 77.49 87.53
3NN CV2 75.00 85.11

1NN Manh 73.50 100.00
3NN Manh 72.06 84.98
3NN 70.85 83.63
1NN 70.45 100.00

default 35.51 -

GIBL [7] 78.55 -
Bayes [16] 71.80 -
CART 71.40 -
IB1 [16] 71.10 -
ID3 [16] 69.10 -
IBL [7] 70.52 -

Table 3. Accuracy for glass data set.

6 Norbert Jankowski

accuracy on testing and training parts were very similar, which means that
solution found are close to optimum for a given model. It is important that
algorithm may be used not only for kNN, but for several machine learning
models, including artificial neural networks.

References

1. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

2. R. O. Duda, P. E. Hart, and D. G. Stork. Patter Classification and Scene

Analysis. Wiley, 2nd ed. edition, 1997.
3. M. Dash and H. Liu. Feature selection for classification. Intelligent Data

Analysis, 1(3), 1997.
4. M. Fernández and C. Hernández. How to select the inputs for a multilayer

feedforward by using the training set. In 5th International Work Conference

on Artificial an Natural Neural Networks, pages 477–486, Alicante, Spain, 1999.
5. H. Almuallim and T. G. Dietterich. Efficient algorithms for identifying rele-

vant features. In Proceedings of the Ninth Canadian Conference on Artificial

Intelligence, pages 38–45, Vancouver, 1992. Morgan Kaufmann.
6. D. R. Wilson and T. R. Martinez. Instance-based learning with genetically

derived attribute weights. In International Conference on Artificial Intelligence,

Expert Systems and Neural Networks, pages 11–14, 1996.
7. D. R. Wilson. Advances in Instance-Based Learning Algorithms. PhD thesis,

Department of Computer Science Brigham Young University, 1997.
8. T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. Institute

of Electrical and Electronics Engineers Transactions on Information Theory,
13(1):21–27, jan 1967.

9. C. J. Merz and P. M. Murphy. UCI repository of machine learning databases,
1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

10. W. Duch and K. Grudziński. Search and global minimization in similarity-
based methods. In International Joint Conference on Neural Networks, page
742, Washington, 1999.

11. W. Duch, R. Adamczak, and K. Grabczewski. Extraction of logical rules from
backpropagation networks. Neural Processing Letters, 7:1–9, 1998.

12. S.M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition,
neural nets and machine learning classification methods. In J.W. Shavlik and
T.G. Dietterich, editors, Readings in Machine Learning. Morgan Kauffman,
1990.

13. K. Grabczewski and W lodzis law Duch. The separability of split value crite-
rion. In L. Rutkowski and R. Tadeusiewicz, editors, Neural Networks and Soft

Computing, pages 202–208, Zakopane, Poland, June 2000.
14. N. Jankowski. Ontogenic neural networks and their applications to classifica-

tion of medical data. PhD thesis, Department of Computer Methods, Nicholas
Copernicus University, Toruń, Poland, 1999.

15. W. Schiffman, M. Joost, and R. Werner. Comparison of optimized backpropa-
gation algorithms. In Proceedings of ESANN’93, pages 97–104, Brussels, 1993.

16. Frederick Zarndt. A comprehensive case study: An examination of machine
learning and connectionist algorithms. Master’s thesis, Department of Com-
puter Science Brigham Young University, 1995.

http://www.phys.uni.torun.pl/publications/kmk/ps-files/99phd-nj.ps.gz

	Discrete quasi-gradient features weighting algorithm

