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And yet the mystery of mysteries is to view machines
making machines; a spectacle that fills the mind
with curious, and even awful, speculation.

— Benjamin Disraeli: Coningsby (1844)



What are S—functions?

Suppose () = (p1, 42, .., ) is a partition of an
integer into integer parts u; then we can associate with it a
monomial

xt = xltah? . xhe (1)
Example:- x30120 = 2328212328 = 2zlaial

Consider a tableau T' of shape A\ then define

x! = H rr, = x" (2)

(4,5) €A
Example:- if
3 3 1 2
T'=5 1 1
2
then
XT::c‘i’:cgazg%

A tableau T' of shape A is semi-standard if the integers appear-
ing in rows are weakly increasing and strongly increasing down
columns. The Schur-function (S—function) is defined by

sa(x) = ZXT (3)



Example:- associated with so1(x1, 2, z3) are the eight tableaux

1 1 1 1 2 2 1 3 2 3 1 2

2 3 3 3 3 T2
1 3 1 2
2 3

and hence

2 2 2 2
sx(x) = xize + zizs + x523 + 175

+ o3 + 125 + 232073 (4)

Placing no limits on the number of variables x we can write

$91(Xx) = inflfj + QZZCZ'ZC]'ZCT (5)
(2%} 1,7.T

where the summations are carried out over all distinct permuta-

tions of the indices. Frequently we will designate an .S—function

sx(x) by enclosing the partition (A) in curly brackets {A} and

leave the number of variables unspecified.

S—functions are symmetric functions, thus their products and
powers may be resolved into sums of S—functions.



What can you do with S—functions?
1. Outer Products

{uy-{vr =) e dn (1)

where the cfzy are non-negative integers known as the

Littlewood-Richardson coefficients and the weights, w,
are constrained by wy = w, +w,

2. Skews

My = N (2)

The weights, w,,, are constrained by w, = wy — w,
3. Plethysms

(M ef{u)=>) g, (3)

where the g§ , are non-negative integers and the weights,
wy, are constrained by w, = w) X w,



4. Inner Products

{h={ry =) i (4)

where the cf; , are non-negative integers and the weights

of the partitions are constrained by w, = w, = w) = n.

5. Inner Plethysms

{hofvy =) e ir (5)

where the cf; , are non-negative integers and the weights

of the partitions are constrained by w, = wy = n and
w, > 0.



Examples with SCHUR
SFN>
021,32
{53} + {621} + {4"2 } + 2{431}
+ {4272 } + {42172 } + {372 2} + {372 172 }
+ {3272 1}
SFN>
sk321,21
{3} + 2{21} + {1°3 }
SFN>
pl21,3
{63} + {531} + {6272 } + {52172 }
+ {472 1} + {432} + {431°2 } + 2{42"2 1}
+ {421°3 } + {41°5 } + {3°3 } + {372 21}
+ {372 1°3 } + {3273 } + {3272 172 }
SFN>
132,2111
{32} + {3172 } + {272 1} + {21°3 }
SFN>
i_pl21
<21> + <2> + <172 > + <1>
SFN>



Some infinite series of S—functions

L= (=" M= {m)

P=> (-)™{m} @=> {1}

m=0

B=Y{s} D=3 1)
3 5

where the m are integers, the partitions () are all partitions
having only even parts while the partitions (3) are conjugates
of the (8). L and M are inverses of one another as are P and
Q.

SCHUR can compute these series, and many others, up to a
user determined limit.

Examples:-
SFN>
ser6,b
{372} + {272 172 } + {272 } + {176 }
+ {174 } + {172 } + {0}
SFN>
ser6,d
{6} + {42} + {4} + {2°3 } + {272}
+ {2} + {0}

SEFN>



New S—function identities

Infinite S—function series play a key role in practical calcula-
tions for both compact and non-compact Lie groups. SCHUR
gave evidence leading to a number of conjectures involving
plethysms of certain infinite S—functions.

My=)> {2m} M_=> {2m+1}
Ly=) {1} L_=> {17} (1)

Ayr = {12} ® Ly By = {12} & My
Cy = {2} Q@ Ly Dy = {2} Q& M4+ (2)
Let 74 = {Ai,Bi,Ci,Di} then
Zy @ (1% = Z_ 0 {2)
Z, ®{21*} = Z_® {31} (3)

1. M Yang and B G Wybourne, J. Phys. A: Math. Gen.
19 3513 (1986)

2. R C King, B G Wybourne and M Yang, J. Phys. A:
Math. Gen. 22 4519 (1989)

3. K Grudzinski and B G Wybourne, J. Phys. A: Math.
Gen. 29 6631 (1996)



A tensor product in SO(10)

X< [u) = 3 _[MC-m/C]
¢
Example:-

[1°] % [2°] = > [1%/¢-2°/¢]
¢
(1% - 1%] 4+ [12 - 221] 4+ [1 - 21%] + [0 - 17]

[1° - 2°] = [3%] + [3%21] + [32°1%] + [2°17]
(17 - 271] = [3%1] + [32%] 4 [321%] + [2°1] + [2°17]
[1-217] = [31°] + [2°1] + [217]
[0-1°] = [17]
[3221%] =[3221%]4 + [32%1%]_
[2°1°] =[2°1]
2°1°] =[2°1°]4 + [2°1°]_

[13] x [2%] = [3%] + [3%21] + [3%1] + [32%1%]+
+ [32%1%] — +[32%] + [321 ] 4 [317]
+2[2°1] 4 [2°1°] 4 +[2°1°] — +[2%1]
+ [21°] + [1°]
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Calculation by SCHUR

gr sol0
Group is S0(10)
REP>
pl11,222

[373 1 + [372 21] + [372 1] + [3272 172 ]+
+ [3272 172 ]- + [3272 ] + [32172 ] + [3172 ]
+ 2[2°3 1] + [272 173 ]+ + [272 173 ]-
+ [272 1] + [2173 ] + [173 ]
REP>
dim last
dimension=495000

1. Time taken to compute the result by hand < 2 min-
utes.

2. Time taken by SCHUR on a Pentium instantaneous.

3. Time reported in the literature on a VAX4000 5 hours
CPU.

The product [6°] x [9°] is of dimension 92,908,920,088,670,400.
SCHUR resolved the product in 40 minutes on a SUN IPX.
Undoubtedly the Vax4000 programme would take a time that
would dwarf the age of the universe!
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S—function series and branching rules

Un)|U(n-—1)
A HA/M}

U(n) 1O(n)
A/ D]

U(2n) |Sp(2n)
(A} LA/ B)

Sp(2n, R) |U(n)

) et {0 - Drdy N = min(k,n)

SO*(2n) |U(n)
[K(MN)] L - {{\}3F - ByYn N = min(2k,n)



Examples of branching rules with SCHUR
DP>
gr u4d
Group is U(4)
DP>
bri,4gri[321]
Group is 0(4)
[31] + [272 ] + [2]# + [2] + [172 ]
DP>
gr u4d
Group is U(4)
DP>
br2,4gri1[321]
Group is Sp(4)
<31> + <272 > + <2> + <172 >
DP>
gr spr6
Group is Sp(6,R)
DP>
br36,6gri[2;21]
Group is U(3)
{432} + {472 3} + {6372 } + {542} + {54"2 }
+ {672 3} + {632} + 2{643} + {652} + 2{654}
+ {672 3} + {672 5} + {7372 } + {742}
+ {7472 } + 2{753} + {75"2 } + {762} +...
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S—functions and tensor products

Un): {u} x {ry =) O\

O(n) : [u] x ] = > [u/¢-v/(]

¢

Sp(2n) : (u) x (V) => (u/¢-v/C)

¢

Sp(2n, R) (50} x (5()) = (o ({ua}* - ) Dhicr)

SO*(2n) : [k(p)] x [€(v)] = [k + (({us}*" - {vs}*" - B)iten]
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Examples of tensor products with SCHUR
REP>
gr spb6
Group is Sp(6)
REP>
p21,31
<b2> + <5172 > + <b> + <43> + 2<421>
+ 3<41> + <372 1> + <3272 > + 3<32>
+ 3<3172 > + 2<3> + 2<272 1> + 321>
+ <173 > + <1>
REP>
gr so8
Group is S0(8)
REP>
p s;0+,21
[s;21]1+ + [s;2]- + [s;172 1- + [s;1]+
REP>
gr spr6
Group is Sp(6,R)
REP>
pl;0,2;1
<3;(1)> + <3;(173 )> + 2<3;(21)>
+ <3;(272 1)> + <3;(3)> + <3;(3172 )»>
+ 2<3;(32)> + <3;(372 1)> + 2<3;((41)>
+ <3;(421)> + 2<3;(43)> + ...
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Algebraic approaches to the genetic code

Hornos and Hornos! investigated those simple Lie al-

gebras having at least one representation of dimension 64, the
number 64 corresponding to the 4 x 4 X 4 possible codons, each
involving four bases arranged in triplets, to code the 20 amino
acids.

The groups Sp(6) and G(2) were found!-? to be of par-
ticular interest. SCHUR has been able to determine the various
possible group-subgroup decompositions and the eigenvalues of
the Casimir operators used to describe the possible symmetry
breakings.

In addition SCHUR was used to establish the complete
set of 64—dimensional representations for the symmetric and
alternating groups.

The complete set of 64—dimensional irreducible representations
for the groups S(n) and A(n)

S(8) {521} {321°} S(13) {A}
A(8) [521] S(14) [As)
S(65) {64 1} {2163} A(14) (64 1]
A(65) 64 1] A(15) [AL]

1. J E M Hornos and Y M M Hornos, Phys. Rev. Lett.
71 4401 (1993)

2. M Forger, Y M M Hornos and J E M Hornos, Phys.
Rev. E56 7078 (1997)

3. R D Kent, M Schlesinger and B G Wybourne, Can. J.
Phys. (In Press)



Generating functions for stable branching coefficients of

Un)l S,,0n)] S, and O(n—1) | S,

Problems in symplectic models of nuclei, quantum dots and
many-electron states often involve the symmteric group .5,.
Applications require the resolution of symmetrised powers of
tensor representations of .S,,. These are required in determining
branching coefficients. The coefficients involve inner plethysms.
Of particular interest is the representation

{n—1,1}=(1) (1)

and the inner plethysms

(e {A=) din (2)

SCHUR has computed the complete resolution of the
plethysms (1) @ {n} for n = 1,...,20. Applications often re-
quire the value of single coefficients in very large plethysms.
Here generating methods can be used. Thus with MAPLE it
was possible to show that in Sy

39,1} ® {30 4321} D 309,727,790, 880{31 32}
A calculation quite beyond SCHUR.

1. T Scharf, J-Y Thibon and B G Wybourne, J. Phys.
A: Math. Gen. 26 7461 (1993)

2. T Scharf, J-Y Thibon and B G Wybourne, J. Phys.
A: Math. Gen. 30 6963 (1997)
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The Vandermonde determinant and the quantum Hall effect

The Vandermonde alternating function in N variables
is defined as

V(z,..yan) = [[(zi = %) (1)
1<J
Any even power, V2™, is necessarily a symmetric function and

hence expandable into a set of symmetric functions such as the
Schur functions

sx(z1,--,2n) ={A ={A1,.. ., A} (2)
which in this case are indexed by partitions of the integer
n=mN(N —1) (3)

We need the expansion coefficients ¢* for

ym — Z sy (4)

AbFn

where the ¢! are signed integers and are precisely the same
integers that arise in the expansion of the Laughlin wavefunc-
tion, used in the quantum Hall effect, as a linear combination
of Slater determinants.

This is a COMBINATORIALLY EXPLOSIVE problem!

1. T Scharf, J-Y Thibon and B G Wybourne, J. Phys.
A: Math. Gen. 27 4211 (1994).
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N Ntableaux Nfggﬁifﬁred* Ncoeff

1 1 1 1

2 2 2 4

3 D D 28

4 16 16 292

5 59 59 4,102

6 247 247 73,444

7 1,111 1,111 1,605,838
8 5,294 5,302 41,603,200
9 26,310 26,376

*“The above reasoning does not however insure that this is

exactly the total number of tableauz in the expansion of V2™
in characters as some coefficients maight still vanish. However
experience up to N = 5 seems to indicate thatl these accidents

do not happen” P. Di Francesco, M. Gaudin, C. Itzykson and
F. Lesage. (Sph'T/93-125)
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Invariants formed from the Riemann tensor

The master object for enumerating Riemann scalars is

G = i(t2{22}—|—t3{32}—|—t4{42}—|—...—I—tp{p,Q}—l—...)m (1)

m=1

1. There is a Riemann scalar for every S—function {A}
arising in (1) whose partition label A = Ay, Aa, ..., A,
involves only even parts.

2. The evaluation of the Riemann scalars of order n
involves the resolution of all plethysms and outer
S —function products associated with t" where n is
necessarily even.

Order n Number of Riemann Scalars
2 1

4 4

6 17

8 92

10 668

12 6,721

14 89,137

1. S A Fulling, R C King, B G Wybourne and C J Cum-
mins, Class. Quantum Grav. 9 1151 (1992)

2. B G Wybourne and J Meller, J. Phys. A: Math. Gen.
25 5999 (1992)
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Questions?
The only questions worth asking are the
unanswerable ones

— John Ciardi Saturday Review-World (1973)

For every complex question there is a simple answer
— and it’s wrong.

— H. L. Mencken



