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Symmetric Functions and the Symmetric Group 6
B. G. Wybourne

This is why I value that little phrase ”I don’t know” so highly. It’s small, but it flies on mighty wings. It expands
our lives to include the spaces within us as well as those outer expanses in which our tiny Earth hangs suspended. If Isaac
Newton had never said to himself ”I don’t know,” the apples in his little orchard might have dropped to the ground like
hailstones and at best he would have stooped to pick them up and gobble them with gusto. Had my compatriot Marie
Sklodowska-Curie never said to herself ”I don’t know”, she probably would have wound up teaching chemistry at some
private high school for young ladies from good families, and would have ended her days performing this otherwise perfectly
respectable job. But she kept on saying ”I don’t know,” and these words led her, not just once but twice, to Stockholm,
where restless, questing spirits are occasionally rewarded with the Nobel Prize.

WISLAWA SZYMBORSKA ( Nobel Lecture 1996)

6.1 Plethysm of S−functions

The plethysm of S−functions is a property that has many important applications in symmetry
aspects of many-body problems in physics and grew out of the mathematical theory of invariants though
nowadays forms an integral part of combinatorial mathematics. There is a close connection between the
plethysm of S−functions and branching rules.

Let Λn = Λn(x1, . . . , xN ) denote the space of homogeneous symmetric polynomials of degree
n.Then given symmetric polynomials with integer coefficients

P ∈ Λn and Q ∈ Λm

then
P[Q] is a symmetric polynomial in Λmn (6.1)

In this sense a plethysm can be seen as a substitution process. As a simple example consider the power
sum symmetric functions

pn =
∑

i

xn
i and pm =

∑

i

xm
i

then
pn[pm] = pm[pn] = pmn (6.2)

Likewise
pn[em] = em[pn] = mm

n (6.3)

and
pn[mµ] = mµ[pn] = mµ·n (6.4)

where µ · n signifies that each part of µ is multiplied by the integer n.

The above examples are all commutative which is not the general case. In general the S−function
content of sλ[sµ] is not the same as that of sµ[sλ].

As an example of S−function plethysm consider the evaluation of s2[s12 ](x1, . . . , x4). We express
s12(x1, . . . , x4) as a sum of monomials,

s12(x1, . . . , x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 (6.5)

Now regard s2 as a function in as many monomials as in (6.5) i.e.

s2[s12 ](x1, . . . , x4) = s2(x1x2, x1x3, x1x4, x2x3, x2x4, x3x4) (6.6)

Very tediously, the right-hand-side of (6.6) may be expanded as a sum of monomials which in turn may
be expressed in terms of S−functions to yield, finally

s2[s12 ](x) = s22(x) + s4(x) (6.7)

Noting that

s2(x1, . . . , x4) = x2
1 + x2

2 + x2
3 + x2

4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 (6.8)
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We have

s12 [s2](x1, . . . , x4) = s12(x2
1 + x2

2 + x2
3 + x2

4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4) (6.9)

which may be expanded as a sum of monomials and then into S−functions to give

s12 [s2](x) = s31(x) (6.10)

which is different from (6.7).

While the above examples have involved just four variables the results actually hold for any
number of variables n ≥ 4.

Exercise

1. Show that s12 [s12 ](x) = s212(x)

6.2 Plethysm Notation

The plethysm of S−functions was introduced by D E Littlewood in terms of invariant matrices
and who used the notation {λ}⊗{µ}. This notation is used almost universally by physicists whereas the
corresponding plethysm viewed as an S−function substitution is almost universally written by combina-
torists as sµ[sλ] the corrspondence between the two notations being

{λ} ⊗ {µ} ≡ sµ[sλ] (6.11)

It much that follows we shall use the physicists notation.

6.3 The algebra of plethysms

The algebra of plethysms is governed by the rules

A ⊗ (B ± C) = A ⊗ B ± A ⊗ C (6.12a)

A ⊗ (BC) = (A ⊗ B)(A ⊗ C) (6.12b)

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C (6.12c)

(A + B) ⊗ {µ} =
∑

ζ

(A ⊗ {µ/ζ})(B ⊗ {ζ}) (6.12d)

(A − B) ⊗ {µ} =
∑

ζ

(−1)wζ (A ⊗ {mu/ζ})(B ⊗ {ζ̃}) (6.12e)

(AB) ⊗ {µ} =
∑

ρ

(A ⊗ {ρ})(B ⊗ {µ ◦ ρ}) (6.12f)

Note that (6.12c) shows the associativity of the plethysm operation and that in (6.12f) the ◦ signifies an
inner product of S−functions so that {µ} ◦ {ρ} is the Kronecker product of irreducible representations of
Sm labelled µ and ρ which are both partitions of m. In (6.12e) wζ is the weight of the partition (ζ) and

the partition (ζ̃) is conjugate to (ζ).

6.4 Plethysm and S−function series

Later we shall show that plethysm gives a powerful tool for developing symbolic representations
of branching rules for going from the representation of a group G to those of a subgroup H. However, we
must first consider plethysm and S−function series. The basic ideas are developed in

1. M Yang and B G Wybourne, New S−function series and non-compact Lie groups J Phys
A:Math.Gen. 19 3513 (1986)

2. R C King, B G Wybourne and M Yang, Slinkies and the S−function content of certain generating

functions J Phys A:Math.Gen. 22 4519 (1989)

Consider the infinite S−function series

L(x) =
∞
∏

i=1

(1 − xi) (6.13a)

=

∞
∑

m=0

(−1)m{1m} (6.13b)
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The inverse L−1 is

L−1 =

(

∞
∏

i=1

(1 − xi)

)

−1

=

∞
∏

m=0

{m} = M (6.14)

Let us define the adjoint series L† as the conjugate (̃) inverse or the inverse conjugate of L:

L† = (L̃)−1 = L̃−1 (6.15)

leading to

L† =

∞
∏

i=1

(1 + xi) =

∞
∑

m=0

{1m} = Q (6.16)

Note that taking the adjoint (†) is equivalent to the substitution

xi → −xi (6.17)

in L(xi), which can be viewed as a plethysm:

L† = L(−xi) = (−{1})⊗ L (6.18)

The conjugate of L is also the inverse of L† and hence

L̃ = (L†)−1 =

(

∞
∏

i=1

(1 + xi)

)

−1

=

∞
∏

m=0

(−1)m{m} = P (6.19)

We thus have four infinite S−function series L, M, P, Q related by the four properties, identity (I),
conjugation (̃), inverse (−1) and adjoint (†) which form a discrete four-element group with the Cayley
table

I ˜ −1 †

I I ˜ −1 †
˜ ˜ I † −1

−1 −1 † I ˜
† † −1 ˜ I

Having obtained the four L type series we can obtain further series by simple substitution into
the L series. Thus under the substitution

xi → xixj (i < j) (6.20)

we obtain

L(xixj) =

∞
∏

(i<j)

(1 − xixj) (6.21a)

= {12} ⊗ L (6.21b)

=
∑

α

(−1)wα{α} = A (6.21c)

where in the Frobenius notation

(α) =

(

α1 α2 . . . αr

α1 + 1 α2 + 1 . . . αr + 1

)

(6.22)

Continuing we could construct four series A, A−1, Ã, A†.

The substitution

xi → x2
i (6.23)
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leads to

L(x2
i ) =

∞
∏

i=1

(1 − x2
i ) (6.24a)

= ({2} − {12}) ⊗ L (6.24b)

=

∞
∑

p,q=0

(−1)p{p + 2q, p} = V (6.24c)

6.5 Why are infinite S−function series important?

We noted earlier that S−functions can be related to the characters of the unitary groups U(n)
and the S−function multiplication via the Littlewood-Richardson rule corresponds to the resolution
of Kronecker products of irreducible representations in U(n). We also noted that a given irreducible
representation of U(n), say {λ} becomes reducible under the group-subgroup restriction U(n) → U(n−1)
such that

{λ} → {λ/M} (6.25)

where M is the infinite S−function series

M =

∞
∑

m=0

{m} (6.26)

The number of terms is rendered finite by the occurrence of the M series as a S−function skew. The
irreducible representations of U(n) are all finite dimensional so the occurrence of the S−function series
as skews is to be expected. However, there are, so-called non-compact groups whose non-trivial unitary
representations are infinite-dimensional. In those cases the characters may be represented in terms
of infinite S−function series and upon restriction to compact subgroups the branching rules involving
an infinite number of representations of the compact subgroup and the S−function series appear in the
numerator rather than as skews. Likewise whereas for compact groups, like U(n), the Kronecker products
involve a finite number of terms for the noncompact groups a Kronecker product of a pair of infinite-
dimensional irreducible representations will usually involve an infinite number of infinite dimensional
unitary irreducible representations. We shall not explore non-compact groups in any detail here. The
interested reader may explore some of the references below.

1. D. J. Rowe, B. G. Wybourne and P. H. Butler, Unitary Representations, Branching Rules and

Matrix Elements for the Non-Compact Symplectic Groups, J Phys A:Math.Gen. 18, 939-953
(1985)

2. R. C. King and B. G. Wybourne, Holomorphic Discrete Series and Harmonic Series Unitary

Irreducible Representations of Non-Compact Lie Groups: Sp(2n,ℜ), U(p, q) and SO∗(2n), J
Phys A:Math.Gen. 18, 3113-3139 (1985)

3. B. G. Wybourne, The representation space of the nuclear symplectic Sp(6,ℜ) shell model J Phys
A:Math.Gen. 25, 4389-4398 (1992)

4. K. Grudzinski and B. G. Wybourne, Plethysm for the noncompact group Sp(2n,ℜ) and new

S−function identities J Phys A:Math.Gen. 29, 6631-6641 (1996).

5. Jean-Yves Thibon, Frederic Toumazet and Brian G Wybourne, Products and plethysms for the

fundamental harmonic series representations of U(p, q), J Phys A:Math.Gen. 30, 4851-6 (1997)

6. Jean-Yves Thibon, Frederic Toumazet and Brian G Wybourne, Symmetrised squares and cubes

of the fundamental unirreps of Sp(2n,ℜ), J Phys A:Math.Gen. 31, 1073-86 (1998)

7. R C King and B G Wybourne, Products and symmetrised powers of irreducible representations
of Sp(2n,ℜ) and their associates, 31,6669-6689 (1998)

8. R C King, F. Toumazet and B G Wybourne, Products and symmetrised powers of irreducible

representations of SO∗(2n), J Phys A:Math.Gen. 31, 6691-6705 (1998)

9. R C King and B G Wybourne, Analogies between finite-dimensional irreps of SO(2n) and infinite-

dimensional irreps of Sp(2n,ℜ) Part I: Characters and products , J.Math.Phys. 41, 5002-19
(2000)
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10. R C King and B G Wybourne, Analogies between finite-dimensional irreps of SO(2n) and infinite-

dimensional irreps of Sp(2n,ℜ) Part II:Plethysms, J.Math.Phys. 41,5656-90 (2000)

6.7 Regular matrix groups

Consider square n × n matrices A such that

1. The unit element is the n × n identity matrix,

I =















1 0
1

·
·

·
0 1















(27)

2. The existence of an inverse element, A−1, is assured by restriction to non-singular matrices such
that

det |A| 6= 0 (6.28)

3. The laws of matrix multiplication are such that the associative law of multiplication is satisfied.

4. The set of matrices is such that closure is assured.

If the above four properties are satisfied then the set of matrices will form a group. Groups
involving regular matrices may be finite or infinite, be discrete or continuous, and have real (ℜ) or
complex (C) elements. The variables in the real space ℜn will be designated x ≡ (x1, . . . , xn) and in
the complex space Cn as z ≡ (z1, . . . , zn). A regular matrix of degree n acting in (ℜn) or in Cn will
produce transformations x → x′ or z → z′. In problems in physics we are frewquently interested classes
of transformations that leave invariant some functional form of x or z.

6.8 Continuous matrix groups

Consider a group whose elements comprise all regular nonsingular real matrices of degree 2,
(

a11 a12

a21 a22

)

(6.29)

Apart from the constraint
a11a22 6= a12a21 (6.30)

that follows from (6.28), the range of the elements of the matrix is unrestricted and we can parameterise
the matrix elements aij as

aij = δij + αij (6.31)

If all αij = 0 we simply obtain the identity matrix

I =

(

1 0
0 1

)

(6.32)

We can treat the αij as real independent parameters and generate all the elements of the group by a
continuous variation of the αij . The range of the parameters is unbounded and limited only to the extent
demanded by (6.30). Any element of the group can be designated by giving its associated values of the
parameters αij .

Exercises

1. Show that the transformations produced by the matrices
(

cos θ sin θ
− sin θ cos θ

)

(0 ≤ θ < 2π) (6.33)

acting in ℜ2 leave invariant the form x2
1 + x2

2.

2. Show that the transformations produced by the matrices
(

cosh θ sinh θ
sinh θ cosh θ

)

(6.34)



6

leave invariant the real quadratic form x2
1 − x2

2.

6.9 Matrix groups - Examples

The general linear groups GL(n,C) and GL(n,ℜ)

The complex general linear group GL(n, C) is the group of regular invertible complex matrices of
degree n. A particular matrix is characterised by its n2 elements with each element containg a real and
an imaginary part. The continuous variation of the 2n2 parts (i.e. n2 real and n2 complex parts) will
generate the entire group and hence the group is of dimension 2n2 and may be characterised by 2n2 real
parameters.

If the elements of GL(n, C) are restricted to real values only, then

GL(n, C) ⊃ GL(n,ℜ) (6.35)

The special linear groups SL(n,C) and SL(n,ℜ)

These groups occur as subgroups of GL(n, C) and GL(n,ℜ) respectively when the requirement
that the determinant of their matrices be of determinant +1. Clearly, SL(n, C) becomes a 2(n2 − 1)
parameter group and SL(n,ℜ) a (n2 − 1) parameter group and

GL(n, C) ⊃ SL(n, C) ⊃ SL(n,ℜ) (6.36)

The special linear groups are often referred to as special unimodular groups.

The unitary groups

The unitary matrices A of degree n form the elements of the n2-parameter unitary group U(n)
that leaves invariant the Hermitian form

∑

i = 1nziz
∗

j (6.37)

Since the unitarity of the matrices A requires that

A†A = I (6.38)

the range of matrix elements aij is restricted by the requirement that
∑

t

aita
∗

tj = δij (6.39)

and hence |aij |
2 ≤ 1. In this case the parameter domain is bounded and U(n) is an example of a compact

group.

The special unitary group SU(n)

If we limit our attention to unitary matrices of determinant +1 we obtain the (n2−1)-parameter
special unitary group SU(n).

The orthogonal groups

The group of complex orthogonal matrices of degree n form a n(n−1)- parameter group O(n, C).
Since tAA = I we have |A| = ±1 and thus the group decomposes into two disconnected pieces and we
cannot pass continuously from one piece to the other. The orthogonal matrices of determinant +1 form a
subgroup of O(n, C), the n(n − 1)-parameter special complex orthogonal group SO(n, C) whose matrices
leave invariant the complex quadratic form

n
∑

i=1

z2
i (6.40)

The special real orthogonal groups O(n,ℜ) and SO(n,ℜ)

The set of real orthogonal matrices of degree n forms the n(n− 1)/2- parameter real orthogonal
group O(n,ℜ) while the set of real orthogonal matrices of determinant +1 form the real special orthogonal
group SO(n,ℜ). Again O(n,ℜ) contains two disconnected pieces with SO(n,ℜ) occurring as a subgroup.
The real special orthogonal group holds invariant the real quadratic form

n
∑

i=1

x2
i (6.41)
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The Symplectic groups Sp(n,C) and Sp(n,ℜ)

The symplectic group Sp(n, C) is the 2n(2n + 1)-parameter group of regular complex matrices
which hold invariant the non-degenerate skew-symmetric bilinear form

n
∑

i=1

(xiy
′

i − x′

iyi) (6.42)

of two vectors x ≡ (x1, . . . , xn, x′

i, . . . , x
′

n) and y ≡ (y1, . . . , yn, y′

i, . . . , y
′

n). GL(n, C) ⊃ Sp(2n, C) and the
matrices need not be unitary. Restriction to real matrices gives the n(2n+1)-parameter group Sp(2n,ℜ).

The symplectic group sp(2n) = U(2n) ∪ Sp(2n, C) is known as the unitary symplectic group.
This group, like Sp(2n,ℜ), is a n(2n + 1) -parameter group. The symplectic groups occur only in even-
dimensional spaces and find applications in many areas of physics.


