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Symmetric Functions and the Symmetric Group 5

B. G. Wybourne

To do research you don’t have to know everything
All you have to know is one thing that is not known
–Art Schawlow Nobel Laureate

5.1 S−function series

Infinite series of S−functions play an important role in determining branching rules and furthermore lead
to concise symbolic methods well adapted to computer implementation. Consider the infinite series

L =

∞
∏

i=1

(1 − xi)

= 1 −
∑

x1 +
∑

x1x2 − . . . (5.1)

where the summations are over all distinct terms. e.g.
∑

x1x2 = x1x2 + x1x3 + . . . + x2x3 + x2x4 + . . . (5.2)

Recalling the definition of elementary symmetric funvctions we see that Eq.(5.2) is simply a signed sum
over an infinite set of elementary symmetric functions en with

en = m1n = s1n = {1n} (5.3)

and hence Eq.(5.2) may be written as an infinite sum of S−functions such that

L = 1 − {1} + {12} − {13} + . . .

=

∞
∑

m=0

(−1)m{1m} (5.4)

We may define a further infinite series of S−functions by taking the inverse of Eq.(5.2) to get

M =

∞
∏

i=1

(1 − xi)
−1

= 1 + {1} + {2} + . . .

=

∞
∑

m=0

{m} (5.5)

Clearly
LM = 1 (5.6)

a result that is by no means obvious by simply looking at the product of the two series.

In practice large numbers of infinite series and their associated generating functions may be constructed.
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We list a few of them below:

A =
∑

α(−1)wα{α} B =
∑

β{β}

C =
∑

γ(−1)wγ/2{γ} D =
∑

δ{δ}

E =
∑

ǫ(−1)(wǫ+r)/2{ǫ} F =
∑

ζ{ζ}

G =
∑

ǫ(−1)(wǫ−r)/2{ǫ} H =
∑

ζ(−1)wζ{ζ}
L =

∑

m(−1)m{1m} M =
∑

m{m}
P =

∑

m(−1)m{m} Q =
∑

m{1m}
(5.7)

where (α) and (γ) are mutually conjugate partitions, which in the Frobenius notation take the
form

(α) =

(

a1 a2 . . . ar

a1 + 1 a2 + 1 . . . ar + 1

)

(5.8a)

and

(γ) =

(

a1 + 1 a2 + 1 . . . ar + 1
a1 a2 . . . ar

)

(5.8b)

(δ) is a partition into even parts only and (β) is conjugate to (δ). (ζ) is any partition and (ǫ) is any
self-conjugate partition. r is the Frobenius rank of (α), (γ) and (ǫ).

These series occur in mutually inverse pairs:

AB = CD = EF = GH = LM = PQ = {0} = 1 (5.9)

Furthermore,

LA = PC = E MB = QD = F

MC = AQ = G LD = PB = H (5.10)

We also note the series

R = {0} − 2
∑

a,b

(−1)a+b+1

(

a
b

)

S = {0} + 2
∑

a,b

(

a
b

)

(5.11)

where we have again used the Frobenius notation, and

V =
∑

ω

(−1)q{ω̃} W =
∑

ω

(−1)q{ω}

X =
∑

ω

{ω̃} Y =
∑

ω

{ω} (5.12)

where (ω) is a partition of an even number into at most two parts, the second of which is q, and ω̃ is the
conjugate of ω. We have the further relations

RS = V W = {0} = 1 (5.13)

and

PM = AD = W LQ = BC = V

MQ = FG = S LP = HE = R (5.14)

5.2 Symbolic manipulation

The above relations lead to a method of describing many of the properties of groups via symbolic manip-
ulation of infinite series of S−functions. Thus if {λ} is an S−function then we may symbolically write,
for example,

{λ/M} =
∑

m

{λ/m} (5.15)

We can construct quite remarkable identities such as:

BD =
∑

ζ

{ζ} · {ζ} (5.16)
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or for an arbitrary S−function {ǫ}

BD · {ǫ} =
∑

ζ

{ζ} · {ζ/ǫ} (5.17)

Equally remarkably we can find identities such as

{σ · τ}/Z = {σ/Z} · {τ/Z} for Z = L, M, P, Q, R, S, V, W (5.18a)

{σ · τ}/Z =
∑

ζ

{σ/ζZ} · {τ/ζZ} for Z = B, D, F, H (5.18b)

{σ · τ}/Z =
∑

ζ

(−1)wζ{σ/ζZ} · {τ/ζ̃Z} for Z = A, C, E, G (5.18c)

These various identities can lead to a symbolic method of treating properties of groups particularly
amenable to computer implementation.
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5.3 The Un → Un−1 branching rule

As an illustration of the preceding remarks we apply the properties of S−functions to the determination
of the Un → Un−1 branching rules. The vector irrep {1} of Un can be taken as decomposing under
Un → Un−1 as

{1} → {1} + {0} (5.19)

that is into a vector {1} and scalar {0} of Un−1. In general, the spaces corresponding to tensors for which
a particular number of indices, say m, take on the value n, define invariant subspaces. Such indices must
be mutually symmetrised. The irreducible representations specified by the quotient {λ/m} are those
corresponding to tensors obtained by contracting the indices of the tensor corresponding to {λ} with an
m−th rank symmetric tensor. Thus we may symbolically write the general branching rule as simply

{λ} → {λ/M} (5.20)

Thus for example under U3 → U2 we have

{21} → {21/M}

→ {21/0}+ {21/1}+ {21/2}

→ {21} + {2} + {11}+ {1} (5.21)

5.4 The Gel’fand states and the betweenness condition

The so-called Gel’fand states play an important role in the Unitary Group Approach (UGA) to many-
electron theory. This comes about from considering the canonical chain of groups

Un ⊃ Un−1 ⊃ . . . U2 ⊃ U1 (5.22)

The states of such a chain follow directly from consideration of Eq.(5.20). Each state may be represented
by a triangular array having n rows. There are n entries mi,n with i = 1, 2, . . . , n corresponding to the
usual partition (λ) padded out with zeroes to fill the row if need be. The second row contains n − 1
entries mi,n−1 placed below the first row so that the entry m1,n−1 occurs between the entries m1,n and
m2,n etc. Each successive row contains one less entry with the bottom row containing just one entry
m1,1. The number of such states is just the dimension of the irrep {λ} of Un.
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Consider the irrep of U3 labelled as {21}. We find the eight Gel’fand states




2 1 0
2 1

2









2 1 0
2 1

1









2 1 0
2 0

2









2 1 0
2 0

1









2 1 0
2 0

0









2 1 0
1 1

1









2 1 0
1 0

1









2 1 0
1 0

0





5.5 The Murnaghan-Nakayama rule for S(N) characters

It is not my intention to give anymore than hints at methods of calculating the characters of S(N) a
subject well covered in the books of James and Kerber, Littlewood, Murnaghan, Macdonald, Robinson
and Sagan but rather to indicate those specialisations that are of immediate application in quantum
chemistry. The Murnaghan-Nakayama rule is of particular value in starting practical calculations. The
key concept is that of the removal of rim hooks or continuous boundary strips from a Young frame. A rim
hook is a continuous strip of cells along the boundary of the Young frame which when removed leaves a
standard Young frame. The length of the strip is the total number of cells in the rim hook. We associate
a sign with a given rim hook. If the rim hook involves v cells in the vertical direction then the sign of
the rim hook is

sgn = (−1)v−1 (5.23)

As an example consider the Young frame associated with the partition (543321)

Let us now mark the three permissible continuous boundary hooks of length 6 as below

•
• •

• •
•

• •
•

• •
•

• •
• •
•
•

In each case the 6-hook involves four rows and hence the number of vertical cells is v = 4 and hence the
sign is sgn = −1.

The Murnaghan-Nakayama Algorithm The characteristic χ
{λ}
(ρ) for S(N), where {λ} is the irrep and

(ρ) the class may be determined by

1. Draw the Young frame for the partition λ.

2. Set i = 1. Set sgn = +1.

3. While ρi <> 0 do begin

4. Remove a rim hook of length ρi in all possible ways that leave a standard Young frame. If this

is not possible for any of the Young frames then χ
{λ}
(ρ) = 0 and the algorithm is terminated.

5. A sign sgn = sgn ∗ newsign is to be associated with each new Young frame created in 3. with
newsign being the sign of the rim hook being removed.
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6. Set i = i + 1

7. End

8. The characteristic χ
{λ}
(ρ) is equal to the sum of the signed units at the termination of the loop.

NB. The result is independent of the order of the removal of the rim hooks.

Example of χ
{543321}
(864)

First remove a rim hook of length 8 from the Young frame as shown below

• •
•

• •
• •
•

• •
• •
•

• •
•

In each case the sign of the 8−hook is positive.

Now remove the 6−hook from each of the above two frames to give

⋄ ⋄ ⋄ ⋄
⋄ • •
⋄ •
• •

• •
•

• •
⋄ • •

⋄ ⋄ •
⋄ • •
⋄ •
⋄

Again each 6−hook has a positive sign. Now remove a 4−hook from each frame to give

· ⋄ ⋄ ⋄ ⋄
· ⋄ • •
· ⋄ •
· • •
• •
•

· · · • •
· ⋄ • •
⋄ ⋄ •
⋄ • •
⋄ •
⋄

The sign of each 6−hook is negative and hence each of the frames yields an overall negative sign and
hence

χ
{543321}
(864) = −2

5.6 The characteristics χ
{λ}
(N)

The characteristics χ
{λ}
(N) constitute an important special case. By the Murnaghan-Nakayama rule there

is just a single rim-hook of length N to be removed. The only possibility for a non-zero characteristic is
if the frame of the partition λ is a single hook of the form (a1b) with N = a + b. The characteristic is
thus either null or ±1. Precisely

χ
{λ}
(N) =

{

(−1)b if λ = (a + 1, 1b)
0 otherwise

(5.24)

5.7 The power sum symmetric functions and S(N) characters

The character table of S(N) is the transition matrix M(p, s) that expresses power sum symmetric func-
tions pρ as a linear combination of S−functions sλ with |ρ| = |λ| = N . Thus

pρ =
∑

λ

χλ
ρsλ (5.25)

We have the important special case

pn =
n−1
∑

a,b=0

a+b+1=n

(−1)bsa+1,1b (5.26)
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Recalling that the power sum symmetric functions are multiplicative we can use Eq. (5.26) to
compute all the characteristics associated with a given class by simple application of the Littlewood-
Richardson rule. As an example consider the characteristics for the class (31) of S(4). From Eq. (5.26)
we have

p3 = {3} − {21}+ {13}

p1 = {1}

and hence

p31 = ({3} − {21}+ {13}) · ({1})

= {4} − {22} + {14}

showing immediately that the only non-zero characteristics associated with the class (31) are

χ4
31 = +1, χ22

31 = −1, χ14

31 = +1

Exercises

1. Generalize the power sum symmetric function to

pn(q; t) =

n−1
∑

a,b=0

a+b+1=n

(−1)qqasa+1,1b(x) (27)

and show that

p31(q; x) = q2{4} + (q2 − 1){31} − q{22} − (q − 1){212} + {14}

and for q = 1 the S(4) result is recovered. This takes one into Hecke algebras. ([KW1]King and
Wybourne, J. Phys. A: Math. Gen. 23, L1193(1990); [KW2]J. Math, Phys. 33, 4 (1992).).

2. Construct a q−dependent character table for N = 3 and compare it with the corresponding table
for S(3). See [KW1].

”It did, Mr Widdershins, until quantum mechanics came along. Now everything’s atoms. Reality

is a fuzzy business, Mr Widdershins. I see with my eyes, which are a collection of whirling

atoms, through the light, which is a collection of whirling atoms. What do I see? I see you

Mr Widdershins, who are also a collection of whirling atoms. And in all this intermingling of

atoms who is to know where anything starts and anything stops. It’s an atomic soup we’re in,

Mr Widdershins. And all these quantum limbo states only collapse into one concrete reality when

there is a human observer”

Pauline Melville, The Girl with the Celestial Limb (1991)


