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B. G. Wybourne

"Fred!” cried Mr Swiveller, tapping his nose, ’a word to the wise is sufficient for them - we may
be good and happy without riches, Fred.’
Charles Dickens Old Curiosity Shop (1841).
m 4.1 The Littlewood-Richardson rule
The product of two S—functions can be written as a sum of S—functions, viz.

8.8, = Zcﬁys,\ (4.1)

A
The Littlewood-Richardson coefficients ¢, in Egs. (3.44) for skew S—function and (4.1) are identical,
though the summations are of course different. In both cases |u| + |v| = |A|. A rule for evaluating

the coefficients cf;u was given by Littlewood and Richardson in 1934 and has played a major role in all
subsequent developments. The rule may be stated in various ways. We shall state it first in terms of
semistandard tableaux and then also give the rule for evaluating the product given in Eq.(4.1) which is
commonly referred to as the outer multiplication of S—functions. In each statement the concepts of a
row-word and of a lattice permutation is used.
m 4.2 Definition 1 A word
Let T be a tableau. From T we derive a row-word or sequence w(T) by reading the symbols in
T from right to left (i.e. as in Arabic or Hebrew) in successive rows starting at the top row and
proceeding to the bottom row
Thus for the tableau
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O[> N |~
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we have the word w(T) = 322113322446578 and for the skew tableau
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[1]2

we have the word w(T) = 11122121.
m 4.3 Definition 2 A lattice permutation
A word w = ajas...an in the symbols 1,2,....n is said to be a lattice permutation if for
1<r<Nand1l <i<n-—1, the number of occurrences of the symbol i in ajas...a, is not less
than the number of occurrences of i + 1.
Thus the word w(T") = 322113322446578 is clearly not a lattice permutation whereas the word
w(T) = 11122121 is a lattice permutation. The word w(T") = 12122111 is not a lattice permutation since
the sub-word 12122 has more twos than ones.
m Theorem 1 The value of the coefficient cﬁu s equal to the number of semistandard tableaux T of shape
FME and content v such that w(T) is a lattice permutation.
By content v we mean that each tableau T' contains 1 ones, v5 twos, etc.



m  Example

E’éﬁ{m}. We first draw the frame F1542/21}

Let us evaluate the coefficient ¢

Into this frame we must inject the content of {431} i.e. 4 ones, 3 twos and 1 three in such a way that we
have a lattice permutation. We find two such numberings

1]1]1] 1]1]1]
1122 21212
[2]3 [1]3
and hence Cﬁéﬁ (21} = 2. Note that in the evaluation we had a choice, we could have, and indeed more

simply, evaluated cgﬁ{ 131} In that case we would have drawn the frame F{542/431} to get

Note that in this case the three boxes are disjoint. This skew frame is to be numbered with two ones and
one 2 leading to the two tableaux
1] 1]

verifying the previous result. Theorem 1 gives a direct method for evaluating the Littlewood-Richardson
coefficients. These coefficients can be used to evaluate both skews and products. It is sometimes useful
to state a procedure for directly evaluating products.

B Theorem 2 to evaluate the S—function product {u}.{v}

1. Draw the frame F* and place v, ones in the first row, ve twos in the second row etc until the
frame is filled with integers.

2. Draw the frame F" and inject positive integers to form a semistandard tableau such that the
word formed by reading from right to left starting at the top row of the first frame and moving
downwards along successive rows to the bottom row and then continuing through the second frame
s a lattice permutation.

3. Repeat the above process until no further words can be constructed.

4. Each word corresponds to an S—function {\} where A1 is the number of ones, Ay the number of
twos etc.

As an example consider the S—function product {21} -{21}.
Step 1 gives the tableau

1]1]

Steps 2 and 3 lead to the eight numbered frames

171] [1]1] [a]2] [1]2] [1]3] [1]3] [2]3]
2 3] 12] 13 ] 2 4 3

Step 4 then lead to the eight words

3]

NS

112112 112113 112212 112213
112312 112314 112323 112324

from which we conclude that

{21}.{21} = {42} + {417} + {37} + 2{321} + {31°} + {2°} + {2°1°}



I have made only one mon-mathematical discovery in my life, the discovery of the exclusion
principle; and that was what I was given the Nobel prize for! (Wolfgang Pauli, 1956)

Dear Professor,

I must have a serious word with you today. Are you acquainted with a certain Mr. Schrédinger,
who in the year 1922 (Zeits. fur Phys.,12) described a ’bemerkenswerte Eigenschaft der Quan-
tebahnen’? Are you acquainted with this man? What! You affirm that you know him very well,
that you were even present when he did this work and that you were his accomplice in it? That
is absolutely unheard of. ......

With hearty greetings, I am

Yours very faithfully

Fritz London

m 4.4 Relationship to the unitary group

We have explored various symmetric functions indexed by partitions and defined on sets of
variables. The variables can admit many interpretations. In some instances we may choose a set of
variables 1,q,¢2,...,q" (cf. Farmer, King and Wybourne, J. Phys. A: Math. Gen. 21, 3979 (1988).) or
we could even use a set of matrices. The link between S—functions and the character theory of groups
is such that, if X is a partition with £(\) < N and the eigenvalues of a group element, g, of the unitary
group Uy are given by z; = exp(i¢;) for j =1,2,..., N then the S—function

{A} ={MA2... An} = sa(2)
= sx(exp(ig1) exp(iga) . .. exp(idn)) (4.2)
is nothing other than the character of g in the irreducible representation of Uy conventionally designated
by {A}.
The Littlewood-Richardson rule gives the resolution of the Kronecker product {u} x {v} of Un

xy= Y il (4.3)

IA=[pl+1v]

as

where the cgﬁ (v} are the usual Littlewood-Richardson coefficients. Equation (4.3) must be modified for

partitions A involving more than N parts. Here the modification rule is very simple. We simply discard
all partitions involving more than /N parts. We shall return to the unitary groups later.

4.5 Reduced notation for the symmetric group

The irreps of the symmetric group S(N) are uniquely labelled by the partitions A+ N,
there being as many irreps of S(IN) as there are partitions of N. Consider the following
Kronecker products in S(N)

{21} o {21} = {3} + {21} + {1°}
{31} o {31} = {4} + {31} + {2°} + {217}
{41} o {41} = {5} + {41} + {32} + {317}
It is apparent that the result stabilises at N =4 and in general we could write
{N—1,1}o{N - 1,1} = {N,0} + {N = 1,1} + {N — 2,2} + {N — 2,1} (4.4)

The above result would hold for all N provided we apply the modification rules to any
non-standard S—functions. Thus

{21} o {21} = {3} + {21} + {12} + {1°}
= {3} + {21} + {1%}
since {12} = —{12} =0.
Equation (4.4) could be rewritten as

(1) o (1) = (0) + (1) + (2) + (1) (4.5)



The above equation is an example of the use of reduced notation (cf. Scharf, Thibon
and Wybourne, J. Phys. A: Math. Gen. 26, 7461 (1993) (STW), Butler and King, J. Math.
Phys. 14, 1176 (1973)(BK) and references therein.) which makes use of the fact that the
symmetric group is a subgroup of the general linear group GI(N). In the reduced notation
the irrep label {A} = {\1,\2,..., Ay} in S(N) is replaced by (\) = (A\2,...,\,). Given any irrep
(1) in reduced notation it can be converted back into a standard irrep of S(N) by prefixing
it with a part N — |u|. For example, an irrep (21) in reduced notation corresponds in S(6)
t0 {321} or {921} in S(12). If N — |u| > p; then the irrep {N — |u|, #} is assuredly a standard
irrep of S(N). However, if N —|u|(11 then the resulting irrep {N — |u|, 1} is non-standard and
must be converted into standard form.

m 4.5 Reduced Kronecker products for S(N)
BK have, following Littlewood, given the reduced Kronecker product as

N o) = (/A8 - Hud/{aHy)) - ({8Y o {71) (4.6)

a,B,y
where the - signifies ordinary Littlewood-Richardson multiplication of the relevant S—function.
m 4.6 Exercises
4.1 Show that (21) o (31) evaluates as

(6) + (52) + (512) + 4(51) + 3(5) + (43)

+ 2(421) + 6(42) + (413) + 6(41%) + 10(41) + 5(4)

+ (321) + 3(3%) + (322) + (3212) + 8(321) + 11(32)

+ 4(313) + 12(312%) + 13(31) + 5(3) + 2(23) + 3(221%)
(221) + 8(22) + (21%) + 6(213) + 11(21?) + 9(21)
(2) + (15) + 3(1%) + 4(13) + 3(12) + (1)

4.2 Use the above result to deduce that for S(5) {221} o {221} evaluates as
{5} + {41} + {32} + {31%} + {221} + {213}

4.3 Show that in S(8) {521} o {431} evaluates as

{71} + 3{62} + 3{61%} + 4{53} + 9{521} + 4{51%}
+ 2{4?} + 9{431} + 7{42%} + 10{421?} + 3{41%} + 5{3%2}
+ 6{3%1%} + 7{32%1} + 5{321%} + {315} + {21} + 2{231%}
+ {2%1%}

m 4.7 Kronecker products for two-row partitions

In quantum chemistry the Pauli exclusion principle restricts interest to irreps of
S(N) indexed by partitions into at most two parts. In terms of reduced notation two-row
shapes become one-row shapes via the equivalence

{N —k,k} o {N — 1,0} = (k) o () (4.7
From Eq. (4.7) we are led directly to

(k) o () = Z<{k pt-{t-p}-{p—a})
=> N (4.8)

The possible shapes for )\ are severely constrained. The number of rows cannot exceed
three. The multiplicity to be associated with a given shape )\ can be readily determined by
drawing the shape and then filling the cells, in accordance with the Littlewood-Richardson
rule, with say k — p circles o, / — p stars o and p — ¢ diamonds ¢, where

k+0—p+qg=2X+Ao,... (4.9)



Repeated cells will be marked with dots - . Consider the shape characterised by the one-row
(m), the only case relevant to quantum chemistry. A typical filling is shown below:

[ofo[-[-T-Tolofo[-[--Tolefe[-[-]-]0]

From which we can deduced that CEZ;)(@ is the number of partitions of £+ /¢ —m into two parts
(p,q) with p > ¢ and ¢ > p leading to

m 1

cék>><e> = 5(@ —k4+m+2) for k>m (4.9a)
m 1

c§k>><é> = §(k: +4—m+2) for m>k (4.9b)

and the coefficient symmetry
(m) _  (2k—m)

Cliyey = k@) (4.10)
Exercises
Show that

(4) o (6) =(10) + (9) + 2(8) + 2(7) + 3(6) + 2(5)

+2(4) + (3) + (2)

and hence for S(12)
{84} 0 {62} = {10 2} + {84} + {67}

Check that the above result is dimensionally correct.



