Continuous Symmetries in Physics

This course is a monographic series of lectures discussing examples of continuous symmetries in

physics as opposed to discrete symmetries. The course will consist of one hour
lectures in English with accompanying notes. The level will be appropriate to fifth year and graduate
students and will assume a prior course in quantum mechanics. Among the subjects to be covered will

be:-

. Symmetries of the classical one-dimensional harmonic

oscillator.

. Second quantisation representation of the Lie groups

SO(3) and SO(2,1).

. Application to the calculation of the energy levels of

hydrogenic atoms and harmonic oscillators.

4. Solutions for other potential forms. (eg. Morse, Davidson potentials etc.)

. Non-compact groups and the n-dimensional harmonic

oscillator.

. SO(4) models of doubly excited states of atoms.

I anticipate a maximum of eight students in which case the classes will take place in my office.

The time of the initial meeting will be posted and will be subject to change if required to avoid clashes
with other lectures. If you are interested in this course please see me in my office (Room 485) for further

details.

B. G. Wybourne
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It has been rumoured that the “group pest” is gradually being
cut out of quantum physics
—H. Weyl The Theory of Groups and Quantum Mechanics,
1930

We wish finally to make a few remarks concerning the place of
the theory of groups in the study of the quantum mechanics
of atomic spectra. The reader will have heard that this math-
ematical discipline is of great importance for the subject. We
manage to get along without it.

— E. U. Condon and G. H. Shortley Theory of Atomic Spectra,
1935

Disclaimer

These notes are intended only as a guide and a summary of class discussions. They reflect my
view that lectures should outline a path but that ultimately the student’s main task is to learn to teach
themselves and to become independent of the teacher. References are given to encourage independent
study.

Symmetries of the Classical One-Dimensional Harmonic Oscillator

Introduction

These notes largely follow Wulfman and Wybourne! and references therein. The classical har-
monic oscillator in one-dimension is a feature of most elementary physics courses. The motion is governed
by one of the simplest differential equations encountered in physics courses. In appropriate units the New-
tonian of Lagrange equation of motion is

2
%—1—1‘:0, or ¥+ax=0 (1)

Such a simple equation hides many symmetries associated with the one-dimensional harmonic
oscillator(HO). If T translate the HO in time I find the form of the equation of motion is unchanged even
though (z,t) have changed. View the HO though a magnifying glass and the period of the motion is
unchanged, likewise make a movie of the HO filming on an appropriate curved surface and again the form
of the motion 1s unchanged.

Clearly we need some procedure that will expose all the possible symmetries that leave the
equation of motion form invariant. To that end we seek those infinitesimal transformations of the
variables x,t that leave the equation of motion form invariant and hence interconvert its solutions.
A general method was developed by Sophus Lie over a century ago’? and takes us into the theory of
group transformations. The key concept is that of nfinitesimal transformations and in particular point
transformations.

Infinitesimal Transformations

Here we are interested in transformations that carry a point (#,t) into a point (z’,#') such that
' = ®(z,t,a0 + éa) t' = W(x,t,ag+ ba) (2)

The quantity a is a parameter such that for the identity transformation # = ®(z,¢, ag) and t = ¥(z, 1, ag).
An infinitesimal transformation corresponds to a transformation that is infinitesimally close to to the
identity. Thus the infinitesimal change in # and ¢ due to an infinitesimal change §a in the parameter a
is given by

bx = ESa 6t =nba (3)



where
0P o
e=cen=(5)  w=wmn=(5) @
If f(#,t) is an analytic function of #,¢ then under an infinitesimal transformation
5f =Ufba (5)

where

0 0
sza—x-i-ﬂa (6)

The particular differential equation of interest, Eq.(1), is of second order and it is necessary to consider

the second extension of the point transformation of Eq.(2). The infinitesimal operator U" of the second
extended transformation has been given by Lie? as

0 0
"o_ r Y n Y
U'=U+€ oo+ (7)
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Equations (7) to (9) look somewhat formidable, particularly as we are looking at one of the simplest of
differential equations. This has lead to the development of many algebraic programmes for studying more

complex differential equations®.

Invariance of the Equation of Motion

The equation of motion (1) will be form invariant if and only if
Ut +2)=0 whenever P+ax=0 (10)

which leads to the condition

a%¢ o€ on 9% 9%y on\ . a%¢ ’n\ ., I\ .5
“W—(a—x—?a)“(anat—Wwa—x)“(w—?axm)x _<a_) =0 (n

Our conditional equation must be satisfied for all values of the variables. This means that the following
four equations must be satisfied:-

9%n
9% 9%n B
o2 Zozor 0 (126)
2 2
0% 05,00y (12¢)

Jeot  Ot? dx

e P800 ) 0y (124)

The above four equations can be integrated to give

8
U=> bX; (13)
i=1



where the b; are integration constants and the X; are a set of eight operators which we may take as

.0 0
X;=(1+ xz)smt— — xrcost—

dx ot
Xy =(1- xz)sint% + xcost%
X3=(1+ xz)cost% + xsint%
Xy=(1- xz)costaa—x - xsint%
vomel
X7 = xcos Qt% + sin Qt%
Xg = —sin 2t§—x + cos Qt%

(14)

Note that the above operators may be replaced by any linearly independent linear combination of them.
We can exploit this freedom to choose a linear combination leading to a set of 8 operators that close

under commutation to form a particular Lie algebra which we shall shortly identify.

The Commutators [X;, X;]

The eight infinitesimal operators close under commutation and thus should be associated with

some Lie algebra. We have
[(Xi, Xj]=cjXe i5k=1,...,8
k.

i
Commutation relations of the Infinitesimal Operators X;

where the ¢, are known as the structure constants of the algebra.

X; X;
X1 Xo X3 X4 X5
X1 0 X7—3Xs X5 Xs —X3
Xa —X7+3Xs 0 —Xg —X5 —X4
X3 —X5 Xs 0 —X7—3Xs X3
X4 —Xg X5 X7+3Xe 0 Xa
X5 X3 Xy X —-X> 0
Xs —X5 —-X4 — X4 —X3 0
X7 Xo X1 —X4 —X3 —2Xg
Xs X4 X3 Xo X1 2X7

X
X
Xy
X4

X3

X7
—-X,
X
X4
X3

2Xg

2X5

(15)

Xs
— Xq
X4
X,
—X,
—2X7
0
—2Xg

0
(16)

Inspection of the above table of commutators shows that there is a non-trivial subalgebra involv-
ing the three infinitesimal operators {X;, X3, X5}. Commutation relations of the Three-paramter



subalgebra

X; X,
X, X3 X5

X4 0 X5 —X3

X3 —X5 0 X4

Xs Xs -X 0 (17)

Identification of the Lie Algebra

Let us define a metric tensor®®

gij = i (18)
Using the structure constants given in Eq.(16) we find that g¢;; is diagonal with

+12 i=2,4,7,8
~12 i=1,35

Note that the metric tensor is indefinite allowing us to conclude that the Lie algebra is that of a Lie
group that is non-compact®. Furthermore det g;j f) and hence the algebra satisfies Cartan’s requirement
for a Lie algebra to be semisimple. To identify the algebra more closely we may cast the algebra into
standard Cartan-Weyl form*~% by forming appropriate linear combinations of the X; leading to the eight
operators:-

Hi= (i/2)& Hy= /322

B, = e %t (i% + xaa—x) E_, =e% (i% — x%)

Eg= e (ng’—x + ix%) E_g= 6”68_17

E,= £ E_y=¢t (222 —iznl) (20)

The two {Hy, Ho} form a maximal self-commuting set known as the Cartan subalgebra and verifies that
the Lie algebra is of rank 2. The six shift operators are indexed by the roots o, 3, &+ which are
respectively

(11,0),(%,%@),(%,;%@) (21)

This is precisely the root structure expected for the non-compact real form of Cartan’s A, algebra. In
terms of Lie groups this gives two possible non-compact candidates, SU(2,1) or SL(3, R). Of these only
SL(3, R) contains the compact subgroup SO(3).

The three operators { X7, X5, X5} form a compact subalgebra with a negative definite metric
gij = _26ij(i,j = 1, 3, 5) (22)
which indeed may be identified with the Lie group SO(3). Note that the complete identification requires
consideration of the relevant parameter space !.
Exercise
Evaluate the commutators [H;, Ey,] and [Ey,, By] and verify Eq.(21).
Finite Transformations

Different linear combinations of the generators X; are generators of different infinitesimal and
finite transformations. The effect of a finite transformation may be determined either by exponentiation
of the infinitesimal operaotrs or by integration of the system of differential equations

dz’ dt’
= =da (23)
RENGRTEND




Thus we readily obtain for X5

==z t=t+a (24)
allowing us to interpret X5 as involving the invariance of the equation of motion, Eq.(1), with respect to
time translations. This implies that if f(¢) is any solution of the equation of motion then

ft =) = fit + ) (25)
for any choice of . The motionis cyclic with a period 27 and as far as the oscillator is concerned t+27 = ¢
which is why oscillators are used as clocks!

Likewise for Xg we find for a finite transformation

' = ze? =t (26)

involving the invariance of the equation of motion, Eq.(1), with respect to a change of spatial scale.

The remaining six operators lead to rather more obscure symmetries and we refer to' for details.
Concluding Remarks

Differential equations of many different forms occur in physics, such as in Maxwell’s equations,
Schrodinger’s equation, Dirac’s equation etc. It can be important to develop systematic methods for
fully exploiting their symmetries. Here we have given a relatively simple example. Within the literature
you should be able to find many other examples. The basic ideas are to first determine systematically
the infinitesimal operators and then to investigate their commutation relations. Note that while in our
example the number of operators was finite this need not always be the case. We next endeavour to cast

the operators into a standard Cartan-Weyl form and identify the Lie algebra. We can then start to study
the effects of finite transformations identifying possible Lie groups and bounds of the group parameters.

there are ”far better prizes than taking away other people’s
provinces or lands, or grinding them down in exploitation.
The empires of the future are the Empires of the Mind”

— Part of an address by Winston Churchill to Harvard Univer-
sity (1943)
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You have heard it said no doubt about extremes resembling
one another, certainly the North Pole and the South Pole are
very far apart. But if you woke up to-morrow morning at one
or the other you would not know which it was. There might
be more penguins at one end of the world, and more polar
bears at the other. But all around you would be ice and snow
and the blast of freezing winds over vast dreary spaces.

—Winston Churchill UNITED FUROPE May 9, 1948 Open-

air Meeting in the Square, Amsterdam

The Three-Parameter Lie Groups
Introduction
The three-parameter Lie groups and their associated Lie algebras are of considerable interest
in physical application and form the prototype of more general Lie groups and algebras. The three-
parameter group SO(3) is well-known in the quantum theory of angular momentum, the covering group
SU(2) is of importance in discussing spin while the little Lorentz group SO(2,1) is an example of an
important class of non-compact Lie groups.

The Casimir Operator of SO(3)
The Lie algebra associated with SO(3) involves the familiar three infinitesimal angular momen-
tum operators {Jy, Ja, Js} which satisfies the commutation relations

[J1,J2) = i3, [Jo,Ja] =iJ1, [J3,J1] =iJ2 (1)

In terms of the traditional ladder operators we write

Jy = %(J1 +iJs) (2)

to yield the standard commutation relations
[J4,J-]=Js and [J3,Je]=2J1 (3)

Note our ladder operators J1 differ by a normalisation factor from the usual ladder operators of standard
quantum theory of angular momentum. This has been done to cast the commutation relations in the
standard Cartan-Weyl form.

The operator
V=J+ I+ =T+ I+ J; (4)
commutes with all the operators {Ji, J3} and is known as the Casimir operator for the group SO(3).
Our task now is to determine the eigenvalues of the operators {J?, J3}. Let us label the representations
of SO(3) by the eigenvalues X of the Casimir operator J?. The eigenvectors |Xa) will be chosen to
be simultaneous eigenvectors of {J2, J3} and will span the space of a particular representation. The
eigenvalue pair {X, a} label a particular eigenvector with a being referred to as its weight.

Since J? is a sum of positive-definite Hermitian operators, it must itself be a positive-definite
Hermitean operator. Thus for a unitary representation the eigenvalues of J? must be real and positive.
Thus

J?Xa) = X|Xa) (X >0,X€ER) (5)
J3|Xa) = a|Xa) (a€R) (6)



Noting Eq.(4) and Eq.(5) we can write

2010 =3 J3(Js—1) and 2J_Jy =3 = J5(Js+ 1) (7)

and hence
2J4J-|Xa) =[X —ala+1)]|Xa) (8)
2J_Jy|Xa) =[X —a(a—1)]|Xa) (9)

For a unitary representation we must have
JL =1 (10)

and hence the eigenvalues of J.J_ or J_.J; must be positive definite and hence from (8) and (9) we must
have for a unitary representation

X—alax1)>0 (11)
The commutation relations in (3) then lead to
(X |lJs, T4 )| Xa) = (@' - a)(Xd |4 |Xa) = (Xa'|J4 | Xa) (12)

and hence successive eigenvalues a of J3 must differ by unity, that is
a—a=1 (13)

We now determine the range of a. Eq.(11) will only be satisfied with real values of X and a if
a has an upper positive bound a4 and a lower negative bound a_, with a4 — a_ an integer. Solving for
at and a_ in Eq. (11) gives

1 1
ai:_§ZF§V1+4X (14)
and hence
X =ay(ayx +1) and a- =—ay —1 (15)
Since a4 and a_ differ by an integer, 2a; must be a positive integer, and hence a4 is limited to the field
of non-negative integers or half odd integers.
To establish contact with the usual angular momentum notation let us put j = a4 and replace
a by m and label our eigenvectors as |jm) where
m=jj—1,...,—j+1,—j (16)

The range of m is bounded from above and below and hence the unitary representations of SO(3) are of
finite dimension (25 + 1). Then

F|jm) = j(j + D]jm) (17a)
Js|jm) = m|jm) (176)
Jeljm) = %m' 1) —m(m £ D]jm 1) (17¢)

Note that the arbitrary phase factor in (17¢) has been chosen to be positive. The representations with
integer j are the commonly termed the true or ordinary representations of SO(3) while those involving
half odd integer values of j are termed spin representations.

The non-compact Lie group SO(2,1)
By changing just the sign of one of the commutators in Eq. (1) we obtain a dramatic change in
the properties of the Lie algebra. Thus we write
[J1,Ja] = =J5, [J2, Js] = iJ1, [Js,J1] =iJ2 (18)
and again write

T = %(J1 Lid) (19)

to yield
[J4,J-]=Js and [J3,Je]=2J1 (20)



which is precisely the form of Eq. (3). However, the Casimir operator is now
Y =Ji4Ji—Ji=—JyJ_—J_Jy—J] (21)
Note that the Casimir operator is no longer a sum of positive definite Hermitian operators and hence its
eigenvalues X may range over the domain of real positive and negative numbers. Again we write
J?Xa) = X|Xa) (X >0,X€ER) (5)
J3|Xa) = a|Xa) (a€R) (22)
where |Xa) is a simultaneous eigenvector of J? and J3. Since for unitary representations of SO(2,1) we
must have
Jl=-J (23)
it follows that the eigenvalues of JyJ_ and J_J; must be real and negative definite it follows from (22)

that necessarily

X+alax1)>0 (24)

A complete classification of the unitary representations of SO(2,1) follows from a determination of the
real values of X and a that satisfy (24). The representations may be divided into two distinct series, a
continuous series C' associated with continuous eigenvalues of J? and a discrete series D associated with
discrete eigenvalues of J%. The SO(2) content of these representations follows directly from consideration

of (24) to yield:-
The Continuous Series
(a) 0 < X < co. Here we have X + a(a=+ 1) > 0 for all

a=0,%£1,42 ... (25a)

and the representations C'§ are unbounded from above and below.
(b) % < X < co. Here we have X + (a(a+ 1) > 0 for all

1 3 5
=4, k-, k- ... 25b
o=y 5.4, (250)
and the representations C')%( are unbounded from above and below.
Discrete Series
In these cases the eigenvalues of X may all be written in the form k(1 — k) where & is a positive
integer or half odd integer. Eq. (24) then shows that a has either an upper bound with no lower bound
or a lower bound with no upper bound. Thus we have the following two cases:-

(1) Dif. Here X = k(1 — k) with

k= 1,1,§,.
2772
and
a=kk+1,k+2,... (26b)
(2) Dy . Again X = k(1 — k) with
k= 1,1,§,.
2772
but now
a=—k,—(k+1),—(k+2),... (26b)

Note that whereas for SO(3) every unitary irreducible representation is uniquely labelled by an
eigenvalue of the Casimir operator, in the case of SO(2, 1) different unitary irreducible representations may
have the same Casimir operator eigenvalue. These representations are distinguished by their different J3
eigenvalue spectrum. Whereas the unitary irreducible representations of SO(3) are all of finite dimension
those of SO(2,1) are all of infinite dimension. In the preceding we chose to diagonalise the compact
operator Js which generates an SO(2) subgroup. Had we chosen to diagonalise one of the non-compact
generators Jy or Jy that correspond to the non-compact group SO(1,1) we would be led to a continuous,
rather than discrete, basis.
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The discrete series can be regarded as forming infinite towers of states with each tower being
characterised by either a lower bound and no upper bound, the positive discrete series, or an upper bound
and no lower bound, the negative discrete series. The complete set of states of a given discrete series or
tower is associated with a single Casimir operator eigenvalue whereas the eigenvalues of the generator Js
change in steps of unity. The ladder operators allow us to move up or down a tower in steps of unity,
either terminating with the upper or lower bound or advancing along the series without limit.

In the next lecture we shall apply our knowledge of the eigenvalues of the Casimir operator and
the spectrum of the generators of the locally isomorphic su(1,1) ~ so(2,1) ~ sp(2, R) Lie algebras to
solve the energy eigenvalues of a number of traditional problems in quantum physics.

References
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Some Applications of SO(2,1) ~ SU(1,1)

To do research you don’t have to know everything
All you have to know is one thing that is not known

_ Art Schawlow Nobel Laureate

Introduction

The Lie algebras associated with the non-compact groups give a simple method for generating
the energy eigenvalues associated with a number of solvable problems in quantum mechanics. Here we
outline some of the ideas of spectrum generating algebras for second-order differential equations. This 1s
closely related to the shift operator method of Infeld and Hull®.

su(1,1) and Second-Order Differential Equations
Many of the textbook problems in courses in quantum physics can be cast as a second-order
differential equation
d*Y
dy?
where Y = Y (y). The key idea is to try to represent the equation in terms of the generators of a Lie

group and then to determine the spectrum associated with the equation in terms of the known spectrum
of the group generators.

+ f(y)Y =0 (1)

The Lie algebra associated with the non-compact locally isomorphic Lie groups SO(2,1) ~
SU(1,1) is characterised by the commutator relations

[, Iy] = —il's; [['9, T3] =il'y;  [Ts, ] =4Iy (2)

We may obtain a realisation of the Lie algebra in terms of a single variable y by writing

2

I = w + Cl1(y)
a =i [k +ax(0)|
s = Ll + az(y) (3)

Equation (2) will be satisfied if we choose

o« (B —y)?
“EGor T 16
.3
=71

__a (8 -y)?
a3_(6_y)2_ n +7v

Py

where «, 3 and v are constants of integration.
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The requirement that the Casimir invariant of su(1,1)

[*=r;-TI7-T3 (5)
must commute with {T'y, 'y, T3} forces ¥ = 0 leading to the Casimir eigenvalues
a3
rr=---=-
4 16 (6)

If we choose § = 0, we obtain the standard form for the generators of su(1,1) in terms of the single
variable y as

0? a oy
=424
! Oy? + y? + 16
] 0 1
Py= oy g =
’ 2 (y v 2)
a2 a oy
3= —+—=-= 7
3 Oy? + yz 16 (7)
Let us choose to consider those second-order differential equations with
a
fly) = y—2+by2 +e (8)
Now we can write Eq. (1) in terms of the su(1,1) generators as
a2 a 1 1
— 4+ — +by’ +e=(=+80)[1 + (= — 8T 9
o Pty te (5 + 80 + (5 s+ ¢ 9)
Let us put
a:—4I‘2—Z:a (10)
Now Eq.(1) is, in terms of su(1,1) generators,
1 1

Recall that I'y is a non-compact generator whereas I's is a compact generator. We can choose to diag-
onalise one or the other of these two generators by performing a rotation through a #ilting angle 8 such
that

e~ 2T, 92 — T ¢osh @ + T'5sinh @

e~ 2T 92 — T ginh 6 4+ T'5 cosh @ (12)
to give

1

{ [(% + 8b) cosh 0 + (% — 8b)sinh 9] I+ [( + 8b)sinh 6 + (% — 8b) cosh 9] s+ c} Y =0 (13)

[\]

where R '
Y = ey (14)

The Discrete Eigenvalue Spectrum

To diagonalise the compact generator I's we put

L8
tanhf = —2 + (15)
5 —8b
leading to
C ~

[3Y = ——VY 16
Y == (16)
The eigenvector Y must be a simultaneous eigenvector of I'2 and I's and span one of the infinite-

dimensional discrete representations, say Dt (®) or D~ (®) of su(1,1). Note that SU(1, 1) is the covering
group of SO(2,1) {cf.SU(2)andSO(3)}.
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We can now rewrite Eq. (16) as

C

Iyt = —d +x —
3¢,x ( )¢>,x 4\/—_b

Vi (2=0,1,2,..) (17)

with
DY) =o(@+ )Y, (2<0) (18)
Thus the existence of a discrete eigenvalue spectrum associated with the second-order differential
equation

d? a 2 Yo
g Tt ) YL =0 (19)
requires that
2
4(—P+2z)= — 20
(04 0= = (20)
But from Eq. (6)
e 3
<I>(<I>—|—1)_—Z—E (21)
and hence
1 1 1
- - - S _a)>
P 2(1—1— 1 oz) (4 a) >0 (22)

where since ® < 0 we have kept only the negative root. Thus returning to Eq. (20) we have the key

result
le4 24/ —a)= —& (23)
x — — ) =
4 v —b

The Continuous Eigenvalue Spectrum

To obtain the continuous eigenvalue spectrum one must diagonalise the non-compact generator
I';. This may be done by choosing the tilting angle such that

1
= —8b
tanh§ = —2 (24)
5 —8b
and thus Eq. (13) becomes
NyY=—2°2yY (25)

4/=b

The eigenvectors Y form a continuous basis. The eigenvalue spectrum is characterised by a continuous

spectrum A, where
—c
A= —— 26
WA (26)
NB. The continuous part of the spectrum will exist only where tanh & exists.
Example:- The Three-Dimensional Isotropic Harmonic Oscillator

For the three-dimensional isotropic harmonic oscillator we have the radial differential equation

( > L +1)

dr? r?

—r? 4 QE) R(r)=0 (27)

We can put this differential equation into the standard form of Eq. (19) by putting
a=—ll+1), b=—-1 andc=2F (28)

4x+2+,/i_a>:%__b (23)

E:Qm—l—ﬁ—i—% (z=0,1,2,..) (29)

in Eq.(23)

gives
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Putting
n=2zx4+/¢ (30)

gives (in atomic units)

En:(n—l—%) (n=0,1,2,..) (31)

Degeneracy

The quantum number n defined in Eq. (31) depends on the values of the integer z and the orbital
angular momentum ¢. The rotational invariance of the isotropic harmonic oscillator ensures that for a
given { there will be 2¢ 4+ 1-eigenfunctions yielding the same energy eigenvalue. However, the degeneracy
will often be higher than 2¢ + 1 since several values of (z,£) may correspond to the same value of n and
hence to the same energy eigenvalue E,, as seen in the table below:-

n x L 20+ 1 n(n+1)/2 E,
0 0 0 1 1 3
1 0 1 3 3 3
2 1 0 1 6 z
0 2 5
3 1 1 3 10 5
7
4 2 0 1 15 g
1 2
0 4 9

In general the total degeneracy D, associated with a given value of n is
(n+1)(n+2)
2
These numbers are in fact just the dimensions of the irreducible representations {n} of the degeneracy
group SU(3).
Note that the parity of the degenerate states for a given value of n are all even or odd as n is
even or odd. Furthermore, the spacings between consecutive energy eigenvalues are equal.

A Perturbing form ¢/r? with ¢ > 0

If we add a perturbing form ¢/r? with ¢ > 0 our differential equation becomes

D, = (32)

>+ +e
leading to
1
E=2z+1+ (€—|—§)2—|—€ (34)

Note that adding the perturbing term has partially lifted the degeneracy of the unperturbed
oscillator. The (2¢ 4+ 1)-fold rotational degeneracy remains.

There is no continuous spectrum for the harmonic oscillator since putting b6 = —1 in Eqn. (24)
leads to a tilting angle that falls outside of the allowed limits of tanh 8.

The Kepler Problem
Consider the differential equation

> 2d t u
<—+— +—+r—2+v)R(r):0 (35)

dr2 " rdr oy
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We can transform it into standard form by putting

r=y* and R(r)= y_%R(y) (36)
to give
d? 4y — % 9
(W + " + vy + 4t) R(y) =0 (37)

Using Eqns. (10) and (23) gives for the discrete spectrum

i
2 1++v1—4u=
r+ 1+ =

For a non-relativistic hydrogen atom we have t = =27, u = —{({+1) and v = 2F which yields the bound
state spectrum as

(x=0,1,2,..) (38)

By =— (39)

2n?
withn=z++1.
Adding an inverse-cube potential to the Hamiltonian puts « = —£(£+4 1) —e€ to yield the discrete spectrum

—7?
F = (x:0,1,2,...) (40)

2
2o+ i+ /(0417 +2]

which lifts the degeneracy of the H-atom in a manner similar to the normal fine structure.
Klein-Gordon H-atom
The case of the Klein-Gordon equation for an H-atom leads to t = —2Za?FE, u = Z%a? — {(£ + 1), and

_ (a*EB?*-1)
=

v in Eqn. (35) to yield the spectrum

1
R O — (41)
R
where n = z + % +4/(¢+ %)2 — 7242 and « is the fine structure constant.

The Morse Potential
The differential equation

d2
(E + pexp?™ +qexp™ —|—7°) R(z)=0 (42)
arises in certain physical problems and may be transformed into the standard form by putting

Ry
NG

z=Iny* and R(z)=

to give
d? 16r+72 4p , A4q
ST I X — 4
(dy2 * 4r2y? r2Y + 72 Riy) =0 (43)

Morse has considered the energy eigenvalue spectrum associated with the differential equation

d2
(F —2Dexp™?* +4Dexp™"* +2E) R(r)=0 (44)
.

Noting Eqns. (42) and (43) we obtain the standard form

& 32B+7 8D , 16D

— L = 4
(dy2 47292 Y 72 )j(y) 0 (45)

Use of Eqn. (23) leads to
2
= 2D 1
E:TT(f —(x+§)) (x=0,1,2,... Tmas) (46)
T
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where

1 V2D
mar o - 4
r + 5 < - ( 7)

Concluding Remark

In this lecture we have seen a few examples of the application of a non-compact Lie algebra to solving
differential equations in physics. This is just a beginning. The subject of Lie symmetries and the
differential equations of physics has developed into an important research area in theoretical physics. We
have looked so far at just the three-parameter Lie groups. However, there is a vast range of possible Lie
groups, their associated Lie algebras and their applications as will be discussed in subsequent lectures.
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T’is a common proof,
That lowliness is young ambition’s ladder,
Whereto the climber-upward turns his face;
But when he once attains the upmost 1 round,
He then unto the ladder turns his back,
Looks in the clouds, scorning the base degrees

By which he did ascend.

_ William Shakespeare. Julius Caesar.
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A mass enormous! which in modern days
No two of earth’s degenerate sons could raise.

—Alexander Pope. 1688-1744

The Degeneracy Group of the Isotropic Harmonic Oscillator
Introduction

I the next few lectures I want to introduce the non-compact Lie group Sp(2n, R) as a dynamical
group for many particles in an isotropic harmonic oscillator potential. This group crops up in many
physical situations such as in nuclear models!, quantum optics? and quantum dots®. In this lecture we
identify the degeneracy group of the isotropic harmonic oscillator in three dimensions.

Notes on Lie Algebras

Formally we may define a Lie algebra as follows: Let A be a r-dimensional vector space over a
field K in which the law of composition for vectors is such that to each pair of vectors X and Y there
corresponds a vector Z = [X,Y] in such a way that

[aX + BY, Z] = o[X, Z] + ALY, Z] (8.26)
[X, Y]+ [Y,X]=0 (1)
(X, [V 2]+ IV, [Z, XTI+ [Z, [X, Y]] =0 (2)

for all a,3,...,€ K and all XY, 7, ..., € A. A vector space satisfying the above relationships is said
to constitute a Lie algebra. A given Lie algebra is said to be real if K is the field of real numbers and
complex if K 1s the field of complex numbers.

Structure Constants

The formation of a Lie algebra requires that the r elements of the Lie algebra, X, satisfy the
closure condition

[Xp, Xo] = ¢)0 X5 (3)

T, are known as the structure constants of the Lie algebra.

ap
The Killing Form

We may form a symmetrical tensor from the structure constants by writing

T j—
where the ¢}, = —c

Jox = Gxo = C;pcf\T (4)

which is known as the metric tensoror Killing form. Every Lie algebra may be associated with a particular
metric tensor. A Lie algebra A is said to be semistmple if and only if A can be written as a sum of simple
Lie algebras. A Lie algebra A will be semisimple if and only if

det|gox| # 0 (5)
As an example consider the Lie algebra of so(3)
(X1, Xo] = X5, [Xo, X5l = X1, [X3Xi]=X (6)

We have from Eqn. (3)

g11 = €] €, = clacis + eigedy = (1)(=1) + (=1)(1) = =2
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Continuing we find

Jox = =264
and hence so(3) is semisimple and its metric tensor is negative definite
Lie Algebra of the Euclidean Plane

The Euclidean group of the plane, Fa, relates a point (#,y) to a point (z’,y') in a plane by the
transformation

' =z cosf —ysinf + a

Yy =zsin@+ycosf+b (7)
where § is an angle of rotation in the plane about the origin and a and b are the # and y components of
a translation in the plane. Each point (#,y) in the plane may be associated with a vector (z,y, 1) which
is transformed into (#/,y', 1) by the matrix

cosl —sinf a
sin@ cos® b (8)
0 0 1

From that we may obtain three infinitesmal operators

0 -1 0 0 0 1 0 0 0
Xe=|1 0 0 Xe=10 0 0 Xp==10 0 1 (9)
0 0 0 0 0 0 0 0 0
which satisfy the commutation relations
[XGaXa] :Xba [XQ,X[]] = _Xaa [XaaXb] :0 (10)
The metric tensor 1s now found to be
-2 0 0
Jox = 0 0 O (11)
0 0 O

which is obviously singular and hence Fs is not semisimple. The two elements X, X form a non-trivial
Abelian subalgebra T5. The Lie algebracannot be reduced to a direct sum of simple Lie algebras but is
rather a semidirect sum

Ey =Ty @, Xo (12)

Exercise

1 Show that the Euclidean group in three dimensions, E3, is not associated with a semisimple Lie
algebra and that it may be written as a semidirect sum of an Abelian Lie algebra associated with
the group of translations T5 and of the Lie algebra so(3).

Antisymmetric Tensors

Let us define a new tensor

Couv = ga)\cf;y (13)
Recalling Eqn. (3) we have
A A
Copy = c;pcf\TcW = c;pcwcf\T (14)

Use of the Jacobi identity, Eqn. (6), we have

_ T A P T A P
Cour = —CopChrCun = CopCrulay
R D N < T A P
- cpacyrcu)\ + cpacTuc)\y (15)

The right-hand-side is invariant under any cyclic permutation of the indices. Since g, is a symmetric

tensor and cf;,, is antisymmetric in g and v it follows that c,,, is a totally antisymmetric tensor under

any interchange of its indices.
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The Casimir Operators
Let X, stand for an element of a Lie algebra A and define

C=g"X,X, (16)
The operator C' is known as the Casimir operator and has the very important property of commuting
with all the elements of a semisimple Lie algebra.
Back to the harmonic oscillator

The Hamiltonian H of a normalised isotropic harmonic oscillator (i.e. with m =k =w = 1) in
three-dimensions may be written as

1= 57+ 17) (1)

From Heisenberg’s quantisation postulate the coordinates ¢; and momenta p; satisfy the commutation
relations

Now introduce boson annihilation and creation operators (a and a' respectively)
1 1
_ . T .
a=—(r+1p), al = —(r—1 19

which satisfy the bosonic commutation relation

[ai, a;r] = 62’]’ (20)
The Hamiltonian can now be written as 3
H=al-a + 3 (21)
Use of Eqn. (20) then leads to
[H,all=al,  [Ha]=-q (22)

Thus we deduce that al creates and a; annihilates a quantum in the j direction. We recognise al - aas
being the number operator with eigenvalues of

n=mni+ns+n3 (23)
and hence the energy eigenvalues of H are
En:n—l—% (n=0,1,2,..) (24)
(the same result as obtained in Lecture IIT) with normalised state vectors
3 tn
[ninang) = H \/Zn—i!|000> (25)
with |000) being the vacuum state with
a;]000) = 0 (26)

Noting that a =a* we have

3 n;
a.
<77,177,277,3| = <000|H L (27)
i=1

= v nl'
with

(000]al =0 (28)
To proceed further we need some remarks about the general linear group GL(n) and the unitary group
U(n).
The Full Linear Group GL(n)

Consider a vector space V,, and linear transformations of contravariant vectors with components
b ... " such that

=t = ozj»xj (29)
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The coefficients o are complex numbers and we assume the Einstein summation convention over repeated
upper and lower indices. We restrict ourselves to transformations which have an inverse and hence to
non-singular matrices [a}]. The set of all such transformations in V;, form the full linear group G'L(n)

The set of matrix transformations of G L(n) involving unitary matrices of rank n form the elements
of the unitary group U(n). Transformations with the property

det[a}] = +1 (30)

are called unimodular; the special unitary group, SU(n), is the subgroup of unimodular transformations

in U(3).

We can define covariant vectors with components x1, ..., z, which undergo linear transformations
I J
such that
i )
rx't =z

implying that

i 1k k
Restricting transformations to those of U(n) the relationship between covariant and contravariant trans-
formations is that of complex conjugation.

Note on Tensors
Tensors with covariant and contravariant indices are defined by their transformation properties:-

Ty — abyal, . T BB (33)
A tensor with m upper suffixes and n lower indices is said to be of order m + n. The upper and lower
indices of a tensor may be separately symmetrised and antisymmetrised; in general an irreducible tensor
must be such that on separate permutation of its upper and lower indices it transforms according to an

irreducible representation of the group of permutations on the indices concerned. In addition it must be
separated into its irreducible parts by successive contractions of upper and lower indices.

Irreducible representations of the Unitary group U(n)

There is a close relation between the properties of tensors as bases for the irreducible represen-
tations of G'L(n) and as bases for the irreducible representations of the groups of permutations acting
on their indices. For the moment let us restrict our attention to tensors that are purely covariant or
contravariant. For GL(n) (or U(n)) the irreducible tensors may be described by partitions A - m where
m is the order of the tensor (i.e. the number of upper (or lower) indices) and

M > >, (34)

A symmetric tensor of rank three would correspond to the partition (3) while an antisymmetric tensor
of rank 3 would correspond to the partition (1%). Likewise, there is an irreducible representation of
the group U(n) for every partition into not more than n parts. Note that there is an infinite number of
irreducible representations for a given U(n). For example, in the case of U(3) {100}, {210}, {321},... all
label distinct irreducible representations of U(3).

Irreducible representations of the Special Unitary group SU(n)

Under the restriction from U(n) — SU(n) the representations
{Al,/\z,...,/\n}E{/\1—|—l‘,/\2—|—l‘,...,/\n—|—l‘} (35)

become equivalent for x a positive or negative integer. We can always choose x to give A,, = 0 and hence
it suffices for SU(n) to label inequivalent irreducible representations of SU(n) by partitions into at most

n — 1 non-zero parts. Thus under U(3) — SU(3) we have {321} — {21}.
Characters of U(n)

The character of an irreducible representation {A} may be shown to be the S—function sy(eq,...,€)
where the €1, ..., ¢, are the eigenvalues of the unitary transformation matrices. Note that the characters
satisfy

{A1+$,A2+$,...,An+l‘}2 (61...€n)x{A1,A2,...,An} (36)
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Degeneracy Group of the Isotropic Harmonic Oscillator

Let us introduce nine operators

Z] - {azaa]} (Zaj = 1a2a3) (37)
where {a,b} = ab+ ba. Using the basic boson commutation relations of Eqn. (20) we find
[E],T ] — 6jrﬂs - 6isT7'j (38)

Thus the nine operators T;; close under commutation and generate a Lie algebra. Putting H; = T;; (do
not confuse this with the Hamiltonian) we find the three H; form a self-commuting set and

[Hi, Tjr] = (635 = 8ir )T (39)
all the roots are of the form e; — e; where the e are mutually orthogonal unit vectors.

The set of nine operators T;; may be identified as the generators of the unitary group in three
dimensions, U(3). The Hamiltonian H is related to the H; of Eqn. (39) via

H=H;+ Hy+ Hs (40)
commutes with all 7;;. The three operators
H
H =H; - 3 (41)
taken with the T;; (i # j) can be taken as the generators of the special unitary group SU(3) if we
remember that since Y. H! = 0 the H/ are not linearly independent. For reasons that will become

apparent shortly we refer to U(3) as the degeneracy group of the isotropic harmonic oscillator.
Labelling Representations and Weights

In the case of the angular momentum group SO(3) we label the angular momentum states as |J M) where
M is the eigenvalue of J, with J being the highest weight of M. This idea carries over to Lie groups in
general. We recall that in the case of SO(3) we can write the defining commutation relations as

[ Jo] = £Js [J+,J-]1=J. (42)
with
\/_2 (Jo £ iJy) (43)
For a general semisimple Lie algebra of rank ¢ we have ¢ operators ,H; (i = 1,...,£), that commute
among themselves. The Lie algebra can be cast into the standard Cartan-Weyl form as
[H:, Hj] = (i,j=1,...0
[Hla oz] = o E
(B Egl = NapEatp
[Eo, E_,] = o' H; (44)

where the E, are the analogues of the ladder operators Ji of SOs.

Just as in SO3 where we distinguish the components of a representation by the eigenvalues of
J, for a Lie group we may label the components of a representation by the eigenvalues of the ¢ self-
commuting operators H;. For any compact Lie algebra the highest weight vector 1s unique and hence
can be used to specify the representation. Consider for example, the group U(3) which has three self-
commuting operators H;. Suppose we wish to determine the representation of U(3) whose components
are the annihilation ¢ and creation operators af, we have

[H;, al] = 6”a] and [H;, a;] = —6;;4; (45)

(3] ]

Thus the components of al give rise to the set of weight vectors (100), (010), (001). The highest weight
vector is (100) and hence we can label the representation as {100} of U(3). Likewise, the components of
a give rise to the weight vectors (—100), (0 —10), (00 — 1). We say that a weight vector w is higher than a
weight vector w’ if the first component of their difference w — w’ is positive. Thus the highest weight for
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a is (00 — 1) and the representation of U(3) spanned by the components of a may be labelled as {00 — 1}
which is contragredient to {100}.

Exercises

1 Noting Eqn(38) show that the nine operators T;; are associated with the nine weight vectors

(000), (000), (000), (1-10), (10-1), (01-1), (-110), (-101), (0-11).
2 Determine the highest weight vector in the above set of weight vectors.

3 Repeat the above analysis for a two-dimensional 1sotropic harmonic oscillator and show that the
relevant symmetry group is U(2).

Rotational Symmetry and the Isotropic Harmonic Oscillator

The harmonic oscillator Hamiltonian, Eqn. (17), commutes with all the components of the angular
momentum operator

L=rxp=iaxal (46)

and hence H is rotationally invariant. The components of L form under commutation the Lie algebra
assoclated with the group SO(3). Noting the definition of the operators T;;, Eqns. (37)to (39) we have

Ly = —i(Tos — T32), L= —i(Ts1 —Ti3), Ls=—i(Tia—Th) (47)

We may choose Lz as the generator of the group SO(2) and hence for the three-dimensional isotropic
harmonic oscillator we have the group structure

U(3) D SU(3) D SO(3) D SO(2) (48)
It is convenient to label the oscillator states in a basis [nfm) where n = 0,1,2,.... From Lecture

IT we have
n=2x+/ with 2 =0,1,2,... (49)

and hence the values of £ associated with a given value of n are

£=1,3,5,....n n odd
=0,2,4,....n n even (50)

and thus for a given n there is a set of (”-H)zﬂ—fold degenerate states |nfm). This is precisely the
dimension of the symmetric representation of U(3) designated by the partition {n,0,0} and hence the
statement that the group U(3) is the degeneracy group of the three-dimensional isotropic harmonic oscil-
lator.

n=>5 p, f, h
n=4 s,d, g
n=3 o, f
n=2 s, d
n=1 p
n=20 s

The first six levels of the isotropic harmonic oscillator

In the preceding we have developed the theory for a single particle in a harmonic oscillator potential.
This particle could equally well be a nucleon as in nuclear physics or an electron in a quantum dot. The
degeneracies are exactly the same as is the form of the energy spectrum. To proceed further requires we
develop a many-particle model for particles interacting in a harmonic oscillator potential. To that end
we may seek to develop a dynamical group which is the subject of the next lecture.
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Gods! How the son degenerates from the sire!

—Alexander Pope. 1688-1744
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The Dynamical Group of the Isotropic Harmonic Oscillator

Symmetry denotes that sort of concordance of several parts by
which they integrate into a whole. Beauty is bound up with
symmetry.

— H. Weyl, Symmetry, Princeton University Press 1952

Introduction

Having established the degeneracy group for a three-dimensional isotropic harmonic oscillator we
now seek a larger group that contains the degeneracy group as a subgroup and has among its generators
operators that will ladder between different degeneracy multiplets. Such a group will be said to be
a dynamical group. We shall first remark about quantum dots and then say something further about
degeneracy groups to then lead up to the dynamical group concept.

A Hamiltonian for Quantum Dots

Experimentally the electrons of a quantum dot are contained in a parabolic potential and hence
we expect a close relationship with a many-electron system subject to a harmonic oscillator potential. The
interaction potential V(r;, r;) between particles ¢ and j moving in a two-dimensional confining potential
in the x — y plane is taken to saturate at small particle separations and to decrease quadratically with
increasing separation. In free space we would expect the interaction between two electrons to vary
as |r; — r;|7'. In a quantum dot the form of V(r;,r;) is modified by the presence of image charges.
The wavefunctions of the electrons confined in the quantum dots have a small but finite extent in the
z—direction perpendicular to the & — y plane. This results in a smearing of the electron charges along the
z—direction. As a result the interparticle repulsion tends to saturate at small distances. This suggests
choosing the interaction as

1
Viry,rj) =2Vy — §m*§22|ri - rj|2 (1)

where m™* is the electron effective mass and Vy and €2 are positive parameters.

Consider an N —electron quantum dot each with a charge —e, a g—factor ¢g*, spatial coordinates
r; and spin components s, ; along the z—axis. Suppose there is a magnetic field B along the z—axis. The
spatial part of the Hamiltonian can be written as

1 ed; ? 1 *
Hpe = e 30 [+ 22| o S 3 i+ V) 2

i<

and the spin part as

Hspin = _g*/'LBB Z Sz, (3)
i
where the momentum and vector potential associated with the i — th electron are given by

Pi = (PeisPyi) A= (A5, Ay ) (4)

and pp 1s the Bohr magneton.

The eigenstates of H will involve the product of the spatial and spin eigenstates obtained from
Hpatiar and Hpin. The total spin projection Sz = >, s, ; will be a good quantum number. Choosing a
circular gauge A; = B(—v;/2,2;/2,0) Eqn. (2) becomes
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1 1, T, We
Hspace = %Zp?—k §m wg(B)Z|rl|2+Z |:2V0— §m Qz|7°i,7“]'|2:| +EZLZ’Z (5)
i i i<j i

where w2(B) = w2 + w?/4 and w, = eB/m*c. We shall return to quantum dots later.

Note on Commutators and Second-quantisation
In much that follows we will need to be able to manipulate bosonic annihilation (a;) and creation operators
(a;r). The basic bosonic commutation relations are

[Cli, aj] =0, [aT aT] =0, [aia a;f] = 62” (6)

[y

These can be used to simplify expressions. As an example, consider the anticommutator {a;r,aj} =

Taj + a; a;r and let us evaluate the commutator [{a;r, a;},ax]. Expanding out we have

a;
[ala; + ajal, a] = [ala;, ax] + [a5a], ax] (7)
Expanding out the first commutator we have
[alaj, ai] = alajar — arafa; (8)

To simplify this commutator we want to try to rearrange the first term on the right-hand-side to cancel
the second term. Using the first commutator in Eqno. (6) we can rearrange the first term as

a;rajak — a;raka]' (9)
and hence the right-hand-side of Eqn. (9) becomes

Il Il Il Il
a; ;A — Gpd; a; — A; Gpd; — Gpa; aj;

= [}, aila;

_[ak’a;r]aj

= —biraj

Exercises
1. Show that if )
Tij = 5{6& a;}
then
(T3, Trs) = 6 7 Tis — 6; L5

2. Use the result of the above exercise to show that the degeneracy group of an isotropic harmonic
oscillator in d—dimensions is U(d).

The Degeneracy Group for Mesoscopic Systems

We start to enlarge the concept of a degeneracy group to a dynamical group. The degeneracy group
for the isotropic harmonic oscillator was found to be SU(3). Each irreducible representation {n00}
is spanned by a set of gn—“%”—ﬁz eigenstates of the Hamiltonian and associated with the same energy
eigenvalue F, of the harmonic oscillator. There is one weight vector for every eigenstate. The algebra of
the degeneracy group contains a set of operators that allow us to start from any eigenstate and ladder
through the entire set of degenerate eigenstates associated with a given degenerate eigenvalue. Thus the
angular momentum ladder operators L1 take us from one |« LM) eigenstate to another |w LM =+ 1) but
leaving L fixed. The operators L., Lt that generate the angular momentum group SOs but cannot take
us from states belonging to one irreducible representation of SOz to another. To do that we must use the
operators contained in the degeneracy algebra that lie outside of those of the angular momentum algebra.
In addition the algebra of the degeneracy group contains operators that allow us to ladder between states
of a given SU(3) multiplet changing both L and M quantum numbers but not n. These additional
operators reflect the fact that the isotropic harmonic oscillator has, like the H—atom, symmetry higher
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that just rotational symmetry. We might note here that the Lie algebra A, associated with the Lie group
SU(3) is of rank 2 and hence contains two self-commuting generators {Hy, H>} and hence there exists
two constants of the motion, that is there is a constant of the motion additional to that of the angular
momentum Casimir invariant L.

A Dynamical Group

We seek a dynamical group that contains the degeneracy group as a subgroup and has the energy
eigenstates belonging to a single irreducible representation. Such a group contains among its generators
operators that allow one to ladder between different irreducible representations of the degeneracy group.
The degeneracy group contains an infinite set of finite dimensional unitary irreducible representations and
hence the dynamical group must necessarily be a non-compact group with infinite dimensional unitary
irreducible representations . We now construct the dynamical group for mesoscopic quantum systems.

The Dynamical Group for Mesoscopic Quantum Systems

1. Assume the Hamiltonian of the N —particle system is a function of coordinate and momentum
operators of the individual particles.

2. Designate the coordinates of the r—th particle by #,; with » = 1,..., N and the momentum by
pri With e =1,...,d.

3. The associated operators X,; and P,; obey the usual Heisenberg commutation relations (We
choose units such that A = 1)

[Xriaij] = 0; [Xria Psy] = iérséija [Pria Psy] =0 (10)
4. The (2N d)? bilinear operators
{XriijaXristaPriijaPrist} (11)

close under commutation. However, only
(2Nd + 1)Nd of these operators are independent since

PriXs; = Xsj Pry — 16,5655 (12)
5. Consider the (2Nd + 1)Nd independent operators
Qrisj = %{Xriaij}a Viisj = %{Xn,st},
Kpig5 = %{Pri,st} (13)

They close under commutation on the non-

compact Lie algebra Sp(2Nd, R) which we can take as the dynamical algebra of our mesoscopic
N — electron system having N —electrons in a d—dimensional isotropic harmonic oscillator po-
tential. We now seek possible subalgebras of Sp(2Nd, R).

Subalgebras of the Dynamical Algebra

1. We can construct subalgebras of Sp(2Nd, R by forming subsets of the defining generators that
close under commutation. Thus, for example, the V’s close under commutation forming the

elements of the GL(Nd, R) algebra.

2. Contracting on particle or spatial indices can yield further Lie subalgebras. Thus the two sets of
operators (summing on repeated indices)

Qij = X0 Xyj, Lijj =X Py — X0 Py,
Kij = P Prj

1
T = §(X7‘ZP7‘] + erPri + Prinj + PrjXri) (14)

and
Qrs :XriXsia Lys :XriPsi_XsiPTia
[(rs = PriPsi
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1
T = §(X7‘ZPSZ + Xsi Py + Pry X + Psini) (15)
close under commutation and separately generate the Lie algebras
Sp(2d, R) and Sp(2N, R).

3. The above two algebras do not commute but the subsets {L;;} and {L,,} do separately close
under commutation with

[Lij, Lyt) = i(Lix6j1 — Litbjr + Linbit + Likbit — Ljibix)
[Lrs; Ltu] = i(LM(Ssu - Lru 6st + Lstéru - Lsuért) (16)
and form the generators of the subalgebras O(d) and O(N).

4. Continuing we are led to the following possible Lie subalgebras of

Sp(2Nd, R):-
Sp(2,R) x O(Nd) D Sp(2, R) x O(N) x O(d)
DU(1) x O(N) x O(d)
Sp(2N,R) x O(d) D U(N) x O(d) D U(1) x O(N) x O(d)
Sp(2d) x O(N) D U(d) x O(N) D U(1) x O(d) x O(N)
UNd)DU(N)x U(d) D U(1) x O(N) x O(d)
Note the separation of the spatial and particle dependencies.

Identification of the Sp(2, R) Subgroup

Let us introduce three operators defined by
Q=XpXri, T=X0iPri+ PuiXyy, K=PyPy (21)
and having the non-zero commutation relations
(@, K] =2T, [Q,T]=4iQ, [K,T)=—-4iK (22)

These commutation relations are those of a three element Lie algebra. Let us first decide if the algebra
1s compact or non-compact. This we may do by calculating the metric tensor

9ij = cipchy (23)
where the ¢!, are the structure constants of the Lie algebra. Noting Eqn. (22) we have
ik g g
Cox =20, c3p=4i, cfip=—4 (24)

Recall that the structure constants are antisymmetric. We now find for the diagonal elements of the
metric tensor

9@ = 9xx =0
917 = FocFq + hr ik = —4i x —4i +4i x 4i = —32 (25)
In addition we have the off-diagonal elements
JQK = 9KQ = COrchq + chorchr = 4i x —2i+2i x —4i = 16 (26)

and thus the complete metric tensor is represented by the matrix

Q K T
Q/0 16 0
[g]1= K16 0 0 (27)

T \0 0 =32

We can produce a diagonal metric tensor by putting

As = %(Q LK) (28)
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to give the Lie algebra as

(A1, T] = 4iAg, [Af, A_] = 2T (29)
and the metric tensor as
Ap  A_ T
Ay [ -16 0 0
lg:;] = A- 0 +16 0 (30)

T 0 0 =32

We first note that the metric tensor has det |g;;| 0 and hence we can conclude that the Lie algebra is
semisimple. Furthermore the metric tensor is indefinite as required for the algebra to correspond to be
non-compact. and hence our Lie algebra is necessarily

SO(2,1) ~ Sp(2, R) (31)

The Quantum Dot Hamiltonian (again)

We can express terms in the Hamiltonian of an isotropic harmonic oscillator

1 mw?
H, = %PM’PM’ —+ TXMXM (32)
in terms of the group generators of Sp(2, R) by noting that
1 [
o Pribri = 5K (33)
and mw? mw?
TXTiXTi =3 Q (34)
to give
Hy= L™ (35)
2m 2

Now consider our earlier Hamiltonian
space = sz + m Wo Z |7Qz|2 + Z |:2V0 - _m QZ|7°Za 7°]|2:| il ZLz,i (5)
i<y i

We can write the electron-electron interaction term for an N —electron quantum dot as

m?
leading to
1 mQ eB

Hs ace:_/r 0 _1V _— rs 36
. 5 (N 0 -|- Z Q (36)

with B
QZ — 2 € 2 NQZ 37
F-w + (—ch) (37)

The significance of these results is that the first three terms in Eqno. (37) have been expressed in terms
of the generators of Sp(2, R) (K,Q) and O(d) (L12) and the last term in terms of generators of the
group Sp(2N, R). A practical calculation then involves the evaluation of matrix elements of the group
generators in a harmonic oscillator basis.

Concluding Remarks
We have now established an extensive group-subgroup structure and must next explore some of

its structure. To do that we will need to determine the relevant irreducible representations | branching
rules etc.

The perfection of mathematical beauty is such that whatever
is most beautiful and regular is also found to be most useful
and excellent.
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— D’Arcy W. Thompson, “On Growth and Form”, Cambridge
1917
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I prefer the open landscape under a clear sky with its depth
of perspective, where the wealth of sharply defined nearby
details gradually fades away towards the horizon.

— H. Weyl, Classical Groups 1938

The SO(4) Symmetry of Hydrogenic Atoms
Introduction

In this lecture we establish the rotation group in four spatial dimensions, SO(4) as the degeneracy
group for hydrogen-like atoms.
SO(4) and Hydrogen-like Atoms

The Hamiltonian for a non-relativistic spinless hydogenic-like atom of atomic number Z may be
written as

2
P k
H=——-- 1
2m r (1)
where k = Ze?.
Clearly,
[H,L]=0 and [H,L,]=0 (2)

showing that the energy levels are degenerate with respect to My for a given L and hence we expect a
degeneracy of 2L + 1 for each value of L and yet we know from Bohr’s result that, in atomic units,

Z2
with the actual degeneracy being n?.
In 1926 Pauli showed that the classical Runge-Lenz vector

A/_pXL ﬁ

(4)

which occurs as a constant of motion in the Kepler problem can be written as a Hermitian quantum
operator as

m r

1 kr
=5 (PxL-Lxp)—— (5)

We then find the commuation relationships
[H, 1] = [, 4] = 0
[Li, Lj] = ieiji Lk, [Li, Af] = ieijn AY

1"

21
AV AN = — e L H 6
[ 1 ]] mE Jktk ( )
Let us put (for bound states with F < 0)
—-m
2F
and introduce two more vector operators
1

M=_(L+A)  and N:%(L—A) (8)
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to yield
[MZ',M]'] = iEZ']'kMk [NZ',N]'] = iEZ']'ka [MZ',N]'] =0 (9)

Note the two vector operators each separately generate the Lie algebra of a rotation group SO(3).
Furthermore the components of the two vector operators commute and hence they generate the direct
product group SO(3) x SO(3) ~ SU(2) x SU(2) which is locally isomorphic to the rotation group SO(4).
Thus it appears that the symmetry of a hydrogenic atom is higher than that of SO(3) . Indeed the
degeneracy group is SO(4).

The Sophisticate’s derivation of Bohr’s Formula

The operators M? and N? are the Casimir operators of the two commuting SO(3) groups with
eigenvalues

M?=j(j+1) and N°=j'(j'+1) with (j,j =0, % 1,..) (10)
The group SO(4) is of rank 2 and we may form two Casimir operators
F=M"+N?= %(L2+A2) (11)
and
G=L -A=M>-N (12)

For a hydrogenic atom, BUT not for a many-electron atom, we have L - A = 0 which forces the equality
j = 7' and hence G = 0 for a hydrogenic atom. Thus for a hydrogenic atom

. . 1
F=2j+1)  (G=0,51,.) (13)
But from (7) and (11) we have
1 1 VAR
F=_(L*— —A")=-" - (14)
2 2K 4F 2
leading to the familiar Bohr result
72 .
En:—ﬁ (n=2j+1=0,1,2,... (15)

The Degeneracy Group SO(4) ~ SO(3) x SO(3)

The representations of SO(3) x SO(3) are of degree (2j+1) x (25’4 1) and since for a hydrogenic
atom j = j/ we conclude that the levels are n?—fold degenerate with an additional factor of 2 required to
accommodate the two-fold spin degeneracy of the levels. Thus the degeneracy group of the hydrogen-like
atoms is SO(4) ~ SO(3) x SO(3).

Infinitesimal Operators and Spherical Tensor Operators for SO(4)

The group SO(4) may be generated by six infinitesimal rotation operators that leave invariant
the quadratic form 27 + 22 + 23 + z3 and may be written as

. 0 0
JANIZ<$N%—IA%) (A#ﬂ—1,2,3,4) (16)

where Jy, = —Jua

We may write the six infinitesimal rotation operators as components of two spherical rank-one
tensor operators L(1) and A(M) by putting

1
:E—(ng + le) (17&)

1 1
L) =t LY NG
1

Aél) = J41 AE|:11) = :l: (J42 Zl: J43) (17b)

S

2
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to yield the commutation algebra
(L, L] = ey Ly = (A1), A0
(L4, AM] =~y ALY (18)

Labelling Irreducible representations of SO(4)

The six components of LY and A1) may be divided into two sets. The first set contains
two operators H; and Hs that commute with one another and are constructed from suitable linear

combinations of Lél) and Aél). The second set comprises the operators FE, which are simultaneous
eigenfunctions of Hy and Ho,

[Hl, Ea] = OzlEa and [Hz, Ea] = OzzEa (19)

obtained from linear combinations of L(ill) and A(ill) The eigenvalues a1 and a4 define a two-dimensional
weight space. In defining the weight space we are faced with two rather obvious choices:

(1)

qH =1  and  Hy= A (20q)
with
Ef =Ly + AL and  BE = L4 - AY (200)
(2) X
o, = §(L31> +AMY  and  Hy= %@gw — A (21a)
with
Bp= o0+ AY)  and B = (1] - AY) (210)

We may choose either Eqn.(20) or (21) to establish a systematic labelling of the irreducible
representations of SO(4). Use of Eqn.(21) leads to labelling the irreducible representations in terms of
a pair of integers or half-integers [pq] which at the same time label the irreducible representations plr]
and DI of SO(3) contained in the direct product representation DIl Dl of SO(3) x SO(3). Note that
in this scheme [pq] and [¢p] (p # ¢) are distinct irreducible representations but under SO(4) — SO(3)
they decompose in the same manner.

pdl = lp+al+p+a—1+...+[lp—qll (22)

The choice of Eqn.(20) leads to labels [pg] where p and ¢ are both integers or half-integers with
p > q and although p is necessarily positive, ¢ may be positive or negative. In that case

[pg] = [p]+[p— 1+ ... +lg]] (23)

Henceforth T will use this scheme for labelling the irreducible representations of SO(4) and write

[p, 4] = [pa]+ (24)

S0O(4) Coupled States and Coupling Coefficients
The group chain
SO(4) D SO(3) D SO(2) (25)

may be used to label symmetrised basis states in the form

|[pglim) (26)

where j labels the SO(3) representations obtained from Eqn.(23) amd m labels the SO(2) representations
arising from SO(3) — SO(2). These basis states can be related to those of the SO(3) x SO(3) scheme
|jimy, jama) by writing

Ipalim) = |1 + d2, 51 — jolim) = > (mams|jm)|jimajama) (27)

mi,ma
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where the (myma|jm) are the usual SO(3) jm coefficients.

The Kronecker product [p1¢1] X [p2¢z2] may be resolved by noting Eqn.(26) to give

[Plfh]><[szJz]:ZZ[P1+P2—Q—5,Q1+Q2—Q+5] (28)

a=0 =0
where t is the lesser of p; + ¢ and ps + g2 while u is the lesser of p; — ¢ and ps — ¢o.
[31] x [21]= = [62]= + [6] + [43]= + [41]+ + 2[41]— + [32]+ + [32]— + 2[3] + 2[21]+ + [21]- + [1]

The SO(4) coupling coefficients may be defined as the coefficients
([p191][p292]; [Pr2q12) J12M12|[p1g1]jima [pagqe]jams) that effect the unitary transformation

|lPrg1liima [page]jama) = Z (Ip1a1llp292]; IP12q12] J1a Mas|[p1gi]jima [pagaljama)

[P12g12]T12 M 12
% |lpra1llp2qz]; [p12g12]J12 Mio) (29)

This coupling coefficient may be expressed in terms of the 3nj—symbols of SO(3) angular momentum
theory by first making use of Eqn. (27) to yield

{[p1qa)dima [p2go)iamel[p1ai][p2g2); [P12g12] J12Mi2)
=251+ D(2j2+ D)(2J12+ D(p12+ q12+ 1)(p12 — @12 + 1)]%

_ ] J J2
« (—1) 12— M1z J1 12 )
(=1) (ml —Mis ms

%(Zh +q1) %(Pz +q2) %(Plz + q12)
x %(Pl —q1) %(Pz —q2) %(Pu — q12) (30)
Jn J2 Jio

This result essentially consists of two factors, the first equivalent to a Clebsch-Gordan coefficient
(j1majama|jije; J12Mi2) and the second to a coupling coefficient working at the SO(4) D SO(3) level.
Thus the coupling coefficient defined in Eqn. (30) can be factorised as
([p1q1]jima[pagalizmalp1q1][page]; [P12q12] J12 My 2)
= (Jimujamaljije; JiaMi2)([p1qi]ii[pagalizl[P1a1][pagal; [P12g12] J12) (31)

with
([pr91)d1[p2q2]i2|[P1a1][p292]; [P12912] J12)

=241+ )(2j2 + D(p12+ q12 + 1)(p12 — 12 + 1)]

%(M +q1) %(Pz +q2) l(1012 + q12)
x 9 5(pr—q1) 3(p2—q2) s5(p12—qu2) (32)
J1 J2 J12

1
2

The Wigner-Eckart Theorem for SO(4)
Eqn.(30) allows us to construct a basis defined through the group chain SO(4) > SO(3) D SO(2)

and to construct tensor operators TPIE exhibit well-defined transformation properties with respect to
the same chain of groups. It then follows from the Wigner-Eckart theorem that

(Oé1[P1Q1]J1M1|Tq[;pq]K|0é2[P2Q2]J2M2>
— (_1\J1—M Jl K J2 [pqlK
=0 (e ) e AT ool ) (53)

where we have factored off the dependence of the matrix element on the SO(2) representations leaving
the reduced matrix element

(a1[praa] J1[| TR || o [paga) o)
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%(pl +q1) %(szer) %(P-FQ)
s(m—a) 3 3
Ji o K

x (aa[praa][| TP |aa[paga]) (34)

where a factor [(p1 +¢1 + 1)(p1 — 1 + 1)]% has been absorbed in our definition of the reduced matrix
element on the right-hand-side. Thus Eqn. (34) allows us to completely encase the dependence of the
matrix elements on the quantum numbers associated with the subgroups SO(3) D SO(2) in familiar
3nj—symbols that may be readily computed.

= [(2K + 1)(2J1 + 1)(2J5 + 1)]?

We can use the above tensor operator results to compute the matrix elements of the generators
of SO(4).
Eigenvalues of the Casimir Operators of SO(4)

Recall

F=M"+N?= %(L2+A2) (11)
and
G=L -A=M>-N (12)
Acting on an SO(4) symmetrised ket and recalling from Eqn.(27) that
Ilpglim) = |[j1 + j2, J1 — Jalim) (35)

We readily find the eigenvalues for the two SO(4) Casimir operators as

FlalpdLAT) = L (5% + 20+ ¢*)lalpa] LM) (36a)
Glalpal L) = 4(p + Dlalpa] LAM) (361)

Recall that for a hydrogenic-like atom the eigenvalues of G are null and the relevant SO(4) irreducible
representations necessarily have ¢ = 0. Furthermore, from Eqn.(22) under SO(4) — SO(3)

[n—1,00—=[n=1]+[n—=2]+...[0] (37)
and hence the states of a hydrogen-like atom may be described by the basis states
[[n—1,0]¢m) £=0,1,...,.n—1 (38)

The SO(4) irreducible representation [n — 1,0] is of dimension n? and we may identify n with the usual
principal quantum number.
Two-electron SO(4) Symmetrised States

Let us now do a worked example and construct the SO(4) symmetrised states for two electrons
in n = 2 orbitals, that is for the three 2-electron configurations 2s?, 2s2p and 2p?. First we note that
for a single electron in a n = 2 orbital the complete set of the four orbital states span the 4-dimensional
SO(4) irreducible representation [1,0] (for convenience T will henceforth omit the comma and just write
[10] etc.). Thus we have the four states

|[10]2s0), |[10]2p0), [[10]2p1), |[10]2p—1) (39)

Starting with these four orbitals we wish to form a complete set of states for two-electrons in n = 2
orbitals.

We evaluate the Kronecker product [10] x [10] using Eqn.(28) to get
[10] x [10] = [20] + [11]4+ + [11]- + [00] (40)

We then determine the SO(3) content of each SO(4) irreducible representation appearing in the right-
hand-side of Eqn. (40) using Eqn. (23) to give the total orbital quantum number L as

[200SPD, [11]4P, [11]_P,[00]S (41)
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We must also remember that these states will correspond to either spin triplet states with $ = 1 or spin
singlet states with S = 0. The triplets will come from the antisymmetric part of Eqn.(40) ([11]4 4+ [11]-)
and the singlets from the symmetric part ([20] 4 [00]). Thus we could rewrite Eqn.(41) as

[201'SPD, [11]3P, [112P, [00]'S (42)

We note that Eqn. (42) has two 1S states, presumably associated with those of the configurations 2s?
and 2p? so evidently

20]'S) = a|2s® *S) + b[2p* 1) (43a)
I[00]'S) = —b|2s% 1.S) + a|2p? 1S) (43b)

Now our problem is to determine the coefficients of the expansion. This may be done by noting from

Eqn. (32) that

I[p1a1][p2g2]; [P12912)T12)
= Y ([mailir[p2aoliolpra][pgal; [proai2] Tro) o141 51 [p2g2)z)

J1,j2
N %(M +q1) %(Pz + q2) %(Plz + q12)
= Z (251 + D)(2j2 + 1)(pr2 + qr2+ D(piz —qi2 + D]* § 5(p1 —q1) 5(p2 —q2)  5(P12 — q12)
J1,j2 Ji J2 Jio
x |[p1q1]71[p2g2lia) (44)
Thus
L1
1)1 1 1
o01's) = ST 126 + nee+1Fd LT o b oo s) (45)
£1,82 El Ez 0
The only permissible values of {¢, £3} are {4 = £5 = 0, 1. Evaluation of the 9j—symbols leads immediately
to
1 3
|[00]'S) = 5|252 LS) + §|2p2 LS) (46)
One may likewise determine the expansion coefficients for the other SO(4) symmetrised states to give

1
V2
|[20]' D) = |2p* ' D)

I[20]'P) = —|252p ' P)

[11]EP) = —=(12p" °P > %[252p °P))

201) = L 1os? 1) — L 1)
[00)'5) = 5257 1) + ?W Ls) (47)

Note that the states |[11]1P) involve linear combinations of odd and even parity states. States of the
same parity can be formed from linear combinations

1

[plgllSL)* = 75 lpalSL) £ [lp, —g]SL)) (48)
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The sagacious reader who is capable of reading between
these lines what does not stand written in them, but is
nevertheless implied, will be able to form some conception.

— Goethe

The Dynamical Group of the Hydrogen Atom
Introduction

We have found the degeneracy group of the H-atom to be SO(4) ~ SO(3) x SO(3) ~ SU(2) x SU(2)
and now seek a dynamical group for the H-atom. We first give a description of SO(4) in terms of bosonic
creation and annihilation operators and then obtain a realisation of the dynamical group also in terms of
bosonic operators.

Boson Operators and SO(4)

Let us introduce the two-component boson spin operators a;, a;r

(¢, = 1,2) where
[a;, al] = & (1)
Using the Pauli spin matrices

=(00) (1) e )

we can write the generators of SU(2) as

with
ay
aI(az) al = (ol ) (4)
The creation operators al acting on the vacuum state |0) can be used to create an arbitrary
SU(2) ket |jm),
(al) ¥ (ad)y =
[(G+m)!i(G—m)]]

Since the group SO(4) is locally isomorphic to SU(2) x SU(2) we may obtain a realisation of the
generators of SO(4) by putting

10) ()

ljm) =

[SIC

1 1
J; = §aTUia andJ] = §bTO'Z'b (6)

where
la;,al] = 6;;  [bi,b]] =6y (7)
and the components of al and a commute with those of bT and b. The SO(4) kets then become

i

(Y (ab) (Bl (b
[+ m)G = m)!(G" + m)IG —m')]

ljm, j'm’) = 10) (8)

1
2
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The ladder operators in this basis then become

J_|_ :a{az J_/I_IbJ{bQ

J_=alay I =0blb 9)
The operators L and A then become
1
Li=Ji+Ji=3 (alo;a+blob) (10)
1
Ai = Jz - Jz/ = 5 (aTUia— bTO'Z'b) (11)

It is convenient to introduce the antisymmetric tensors

Lij==Lji  (i#]) (12)
where
Ly =1L = % (aTaka — bTakb)
(4,J,k =1,2,3 and cyclic permutations) (13)
and )
—A;=Ljy= —3 (aTUia — bTO'Z'b) (14)

Under commutation we then have
[Lij, Lyt) = i (6ix Lji + 6i1Ly; + 8jxLir + 651 Lix) (15)

The principal quantum number of the H—Atom

So far we have found the degeneracy group as SO(4) and the energy spectrum generating group
as SO(2,1). The dynamical group must contain these two groups as subgroups of some larger non-
compact group. Traditionally the states of an H—atom are labelled by the quantum numbers |[ném).
In constructing the dynamical group we want to include operators that will ladder n and ¢ but first we
construct an operator Lsg whose eigenvalues are the principal quantum number n.

Consider the operator
1
To = Lss = 5 (a’la—Db'b +2) (16)
which commutes with all the generators of SO(4) and has the form of a number operator. If we apply

Lse to both sides of Eqn.(8), use the commutation properties of the annihilation and creation operators
and remember that

a;|0) (17)
and
[ai, a;rx] = xa;rx_l (18)
then
Lseljm, j'm’) = (j + " + 1)|jm, j'm’) (19)
But for a hydrogen atom j = j' and 2j + 1 = n and hence
Lsg|ném) = n|ntm) (19)

and the eigenvalues of Lsg are just the principal quantum number n.

The operator Lsze taken with the generators of SO(4) generate the compact direct product group
SO(2) x SO(4) which should be a subgroup of our non-compact dynamical group.

The Dynamical Group Obtained

Let us consider two further scalar operators,

1
T = L45 = 5 (aTasz - aO'zb) (20)
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and )
S = L46 = 5 (aTasz + aO'zb) (21)
Under commutation,
[Las, Lag] = iLss (22)
Now consider
Nt = Las FilLas (23)
or
Ny =aloobl = —i(alb] — albl) (24a)
N_ = aO'zb = —i(a1b2 — azbl) (24b)
Since
[Lse, Ni&] = £Ny (25)

we anticipate that Ny raises or lowers n by +1.
Consider the ket
[ntl) = 155,33) (26)
which hasn =25+ 1and {=n—1,
iNg|nef) = (albh — alb))\ii. i)
(a{2j+1b12jb; _ a{zf'a;b{”“)

- 2;1 10)

2 2 2 2 2 2 2
—(~1)""n [1 - (-1)”“’] (20 +1)%

n n /
x(% 1 _n£+1)|n+1€'£) (27)

o111t 1. 1. 1. 1.1
nalitgitgitgi-g-litgi-gitgits)

non
2

where we have transformed to the ném basis. Inspection of the 3j—symbol together with the phase factor
(—=1)** shows that ¢ is limited to ¢ = n — 1 = £. Explicit evaluation of the 3j—symbol leads to

iNg|ntly = (=1)"2n/6(2n + 1)|n + 1£6) (28)
where £ =n — 1.
Similarly,
—iN_|n+ 1£¢) = ﬂma) (29)
6(2n+1)
and
[Ny, N_]=—2Ls¢ (30)

The operators L;j, L;s, Las and Lag allow us to ladder from the vacuum state |0) to any ket
|ném). However, this set of operators, together with Lss do not close under commutation, to do that we
need two additional vector operators M and T" with components

M; = Lys = i[Lya, Las] = —% (a'o;Cb' — ac;Cb) (31)
T; = Lig = —i[Lis, Lss] = —% (a'o;Cb! + ac;Cb) (32)

where
C= (_01 (1)) (33)

We now have a set of 15 operators, {L;;, Lia, L5, Las, Lag, Lss} that close under commutation:

[Laba Lcd] = _i(gacLbd + gachb + gbcha + gdeac) (34)
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where g4p is associated with the metric (— — — — + 4). The corresponding Lie algebra formed by the
15 operators is that associated with the non-compact group SO(4, 2) which holds invariant the real form

- Z JabTalp
and is isomorphic to the group SU(2,2) that holds invariant the complex form

* * * *
2121 + Z9%9 — Z3%Z3 — ZaZy

(35)

(36)

Since the operators of SO(4,2) allow us to pass from any ket |ném) to any other ket |n'¢'m’)
we conclude that SO(4,2) contains a single irreducible representation that covers all the states of a

hydrogenic atom and is indeed the dynamical group of a hydrogenic atom.
Casimir Operators of SO(4,2)

The group SO(4,2) is a group of rank 3 and hence has three independent Casimir operators

which we may take as
Coy=La L™ Cs=apeacs LYLLY Cy= LapL" Lo L™

where
Lab = gabLab

Acting on an arbitrary ket [ném) we find the eigenvalues

Cy=6 C3=0 Cy=0

Exercises
1. Show that the set of 15 operators

L=rxp
_1 2 ( )
= 5" —p(r-p)—or
1 1
zirpz—p(rp)—l—ir
'=rp
T=r-p—1:
Lo
Fozi(rp +7)
5= 500" = 1)
= —(rp°—7r
5 | &

give an alternative realisation of the generators of SO(4, 2).

2. Show that in the above realisation the Casimir invariants and their eigenvalues are

Co=L 4+ A -M? —T?+S5*-T? -T2 =-3

(37)

(38)

(39)

(40)

(41)

C3=10
Cy=0
3. Use the commutation relations of the generators of SO(4,2) to establish the following subgroups
of SO(4,2)

SO(2) x SO(4) (Ls6)(Lij, Lia)
S0(4,1) Lij, Lia, Lis, Las
S0(4,1Y Lij, Lia, Lis, Las
S0(3,2) Lij, Lis, Lis, Lse
S0(3,1) Lij, Lis
S0(3,1Y Lij, Lis
SO(4) Lij, Lia
SO(2,1) x SO(3) (L45, Las, Lse)(Lij)
S0(2,1) x SO(2,1) (VL NIV, N2)

(42)
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where in the last case we define the generators as

1

N} = §(L46 + Las)
1

Ny = §(L45 — L3g)
L1

Nz = §(L56 + L3a)

and
5 1
N = 5([/46 — L3s)
1
N; = §(L45 + L3e)

1
N3 = §(L56 — L3a)

I have yet to see any problem, however complicated, which,
when you looked at it in the right way, did not become still
more complicated

— Poul Anderson

(43)

(44)
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Some Aspects of Two-electron Systems

..his Majesty’s mathematicians, having taken the height of my
body by the help of a quadrant, and finding it to exceed theirs
in the proportion of twelve to one, they concluded from the
similarity of their bodies, that mine must contain at least
1724 of theirs, and consequently would require as much food
as was necessary to support that number of Lilliputans.

—Johnathan Swift Gulliver’s travels (1726)

Introduction

We saw in the previous lectures how one may construct SO(4)—symmetrised states involving
two electrons in orbitals having a given principal quantum number n. This resulted in forming linear
combinations of states involving various two-electron configurations but only those that are degenerate
in the SO(4) scheme. We also found that it was possible to describe the complete set of states of a
hydrogenic-like atom in terms of a single irreducible representation of the dynamical group SO(4,2) ~
SU(2,2). Suppose we were to consider two-electrons. We might consider the states formed from the
direct product of that irreducible representation with itself or better still resolving the direct product
into 1ts symmetric and antisymmetric parts which could be respectively associated with spin singlets and
triplets. In this lecture I want to sketch how one might proceed to construct states symmetrised with
respect to a group chain of the form

U(2,2) D U(2) x U(2) D SU(2) x SU(2) ~ SO(4) D SO(3) D SO(2) (1)

The Hydrogenic Representation

The systematic labelling of the irreducible representations of the non-compact group U(p,¢)
group has been developed by King and Wybourne' and is based upon its maximal compact subgroup
U(q) x U(p). Furthermore they give an algorithm to evaluate the U(p, ¢) — U(q) x U(p) branching rules.
For the hydrogen atom we are interested in the case with p = ¢ = 2 and in particular the irreducible
representation they label as

Hy = {1(0;0)} (2)
and under U(2,2) — U(2) x U(2)

Hy— Y {m} x {m) (3)

Under U(2) x U(2) — SU(2) x SU(2) ~ SO(4)
{m} x {m} — {m} x{m} — [m,0] (4)
Thus the irreducible representation Hy does indeed contain all the discrete states of the H—atom.

More generally we have under U(2) — SU(2) the branching rules
{Ada} = {A = Ao}

{Adz} — {A1 = Ao} (5)
Thus, for example,

{42} — {2}
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{12} — {2}
{m} — {m}

{m} — {m}
Finally, we note that an arbitrary irreducible representation {pu} x {v} of the direct product

group U(2) x U(2) goes irreducibly into an irreducible representation of SO(4) as

_ p1— pot+ri— vy pn— po— v+
R e e

(6)
Thus, for example

{41} x {32} — [2,1]

132} x {41} — [2, 1]

{m} x{m} — [m, 0]

The Two-electron Basis States

The Kronecker product Hy x Hy may be resolved into its symmetric and antisymmetric parts as’

Hy o {2} = S0 {2(TF 28) (7a)
k=0

Ho® {17} = i{2(2k+ 1,2k + 1)} (7b)
k=0

The symmetric terms are associated with spin singlets, S = 0, and the antisymmetric terms with spin
triplets, S = 1.

The next step is to identify the U(2) x U(2) content of each of the infinite dimensional irreducible
representations appearing on the right-hand-side of (7a) and (7b). This requires use of the algorithms
described in ref. (1). We now give a partial table:-

{2(0;0)} — _

{0} x {0} + {1} x {1} + {17} x {17} + {2} x {2}
+ {21} x {21} + {22} x {27} + {3} x {3} + {31} x {31}
+ {32} x {32} + {32} x {3%} + {4} x {4} + {41} x {41}
{2(L 1)} — _ _ _

{1} < {1} + {12} x {2} + {2} x {17} + {2} x {2}
+ {31} x {21} + {20} x {3} + {22} x {31} + {3} « {21}
+ {3} x {3} + {31} x {2%} + {31} x {31} + {31} x {4}
+ {37} x {32} + {32} x {41} + {32} x {42 + {3} x {31}
{2(2;2)} — _ _ _

{2} x {2} + {21} x {3} + {22} x {4} + {3} x {21}
+ {3} x {3} + {31} x {31} + {31} x {4} + {32} x {41}
{2(3;3)} — - o _

{3} x {3} + {31} x {4} + {32} x {5} + {32} x {6}
{2(4,4)} — o _ _

{4} x {4} + {41} x {5} + {42} x {6} + {43} x {7} ®)
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(A more extensive table can be found at my website.)

Recall that at the U(2) x U(2) level the infinite discrete states of an H-atom involve the representations

{030} + {11} + {212} + 33} + {AH{4} + ..

Two-electron states may be formed by taking products of pairs of the above irreducible representations
with each set of states being associated with a pair of principal quantum numbers (n1,n2). When
ny # ns the various orbital states have spins S = 0,1. When n; = ns care must be taken with
antisymmetrisation, this amounts to taking symmetrised products of the pair of identical U(2) x U(2)
irreducible representations . Technically this may be done using the theory of plethysm®*. In particular
we have for the symmetric part of {m} x {m}

m}e{2}=2m}t+{2m—2,2} + 2m —4,4} + ... (9a)
and for the antisymmetric part of the square
meo{1*}={2m—- 1,1} +{2m—3,3} + {2m - 5,5} + ... (9b)
and for {m} x {m}
{myo {2} ={2m} +{2m - 2,2} + 2m — 4,4} + ... (10a)
and for the antisymmetric part of the square
mteo{1*}=02m-1,1}+{2m =33} + {2m—5,5} +... (100)

leading to

({mH{m}) @ {2} = {m} @ {2} - {m} @ {2} + {m} & {1"} - {m} @ {17} (1la)
({mHm}) @ {17} = {m} @ {1°} - {m} @ {2} + {m} @ {2} - {m} © {17} (11b)

Thus, for example,

{IHihe{2t={l}e{2} {1}o {2} + {1} o {17} - {1} & {17}
= {23 {2} + {12H{1*} (12a)

{IHY e {1} ={I} o {17} {1} @ {2} + {1} & {2} {1} & {17}
= {1232} + {2H{1*} (126)
Those in (12a) are symmetrical in the orbital space and hence will belong to spin singlets (S = 0) while
those in (12b) are antisymmetrical in the orbital space and will belong to spin triplets (S = 1). These

we could identify with the two-electron states

(S=0) |25 1S), [2p* 1S), |2p® 1 D), |2s2p' P) (13a)
(S=1) [252p°P), [2p° °P) (13b)

These are just the two-electron states we described in Lecture VI in Eqn. (47).
Description of the two-electron states

There is an infinite set of discrete two-electron states described by an infinite set of infinite-
dimensional irreducible representations of U(2,2). These states may be each described by a set of
quantum numbers associated with the irreducible representation labels arising in the group chain

U(2,2) D U(2) x U(2) D SO(4) 5 SO(3) D SO(2) (14)

The decompositions occurring along every step in the chain are multiplicity free and hence the set of
irreducible representation labels unambiguously defines every two-electron state. The U(2, 2) irreducible
representations are all of the form {2(/m;m)} and hence a general two-electron basis state could be
described as

{20m; m)Hp} < {v}pg] LM) (15)

with [pq] being determined from Eqn.(6) and the values of the I quantum number from

[pg] = [p]+[p— 1+ ... +lg]] (16)



44

A ket symmetrised as in Eqn. (15) can be expanded as a sum of products of one-particle kets such that
{2(m; m) Hu} x {v}pq] LM)
= > ({1000 Hp} x {p}pa0]imas {1(0; 0)}{p} x {p2}[p20]ame | {2(m; m)Hi} x {v}pg] LM)

p1,p2,01,02
{105 0) Hpr} x {p1}p10Jerma) [{1(0;0)H{p2} x {p2}[p20]¢ams) (17)

The first term on the right-hand-side of (17) is a generalised coupling coefficient which may be factorised
to a triple product of coupling coefficients as

{({1(0;0)H{p1} x {pa}p10]€ama; {1(0; 0) }{p2} x {p2}p201€amal{2(m; m) H i} x {v}{pg])

= ({1(0;0)Hp1} x {p1Hpa01; {1(0;0)H{p2} x {p2}p2011{2(m; m) Hi} x {v}[pql)

< ([p10}43; [p20]¢2|[pq] L)

X <£1m1;£2m2|LM> (18)
The third coupling coefficient we recognise as the standard CG-coefficient of angular momentum theory

while the second is the SO(4) D SO(3) coupling coefficient given as Eqn.(44) of Lecture VI. The first
coupling coefficient could be further factorised as

{({1(0; 0)Hp1} x {p1}p10]; {10; 0) Hpz} x {p2}p=0]I{2(m; m)Ht x {v}pa])

= ({1(0;0)Hpa} x {p}; {1(0; 0) Hp2} x {p2}{2(m; m)H i} x {v})

< ({p1} < {p1}p10L; {p2} < {p2}p201{a} x {v}pql) (19)
Neither of these coupling coefficients appear in the literature. The orthognality conditions on isoscalar

factors® are such that the second factor can be, at most, a phase which we shall take as +1 with the first
factor absorbing the phase. This leaves the first factor

{({10; 0) Hp1} x {p1};: {1(0;0) Hpa} x {p2}{20m; m)Ha} x {v}) (20)
to be determined.

Two-electron states and U(2) x U(2) irreducible representations

Any two-electron state transforming under U(2) x U(2) as {P1q1} X {p2¢2} may be associated
with one or more pairs of principal quantum numbers (n1, n). We may determine these pairs as follows:-
Let

my =min(q; +1,¢2+ 1) and me = max(p1 + 1,p2+ 1) (21)
then
(77,1, 77,2) = {(mla mz), (ml + 1a ma — 1)a BRI (ml +x,ma — l‘)} (22)

where  is such that (n2 > ny). Thus, for example,

{3} x 3} e {(1,4), (2,3)}
{53} x {62} € {(4,6), (5,5)}
{61} x {52} € {(3,6), (4,5)}
Note that under U(2,2) — U(2) x U(2) the decomposition of the irreducible representation {2(m;m)}
always yields irreducible representations {fi} x {v} of U(2) x U(2) such that the weights of {fi} and {v}
are the same. i.e.
by =, (23)
Assigning quantum numbers

A determination of the isoscalar factor in Eqn. (20) would immediately allow one to expand any
symmetrised two-electron state as a linear combination of products of one-electron states. Inspection of
the irreducible representations appearing in Eqn. (8) permits some straightforward assignments:-

{2(0;0)}{0} x {0}[00] ~ [1575)
{2(0;0) {1} x {1}[10] ~ |1s2s'S), [1s2p'P)
{2(1; 1) {1} x {1}[10] ~ |1525>S), |1s2p>P)
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12000 1T} 17)[00] ~ ZJ2575) + §|2p215>

{2(1; 1) 12} x {2}[20] ~ {|1s3s3S), |1s3p>P), |1s3d>D)} (24)

A problem arises when one considers the states associated with the {2} x {2} states of U(2) x U(2)
as this irreducible representation occurs with three irreducible representations of U(2,2), namely the
irreducible representations {2(0;0)}, {2(1;1)}, {2(2;2)}. Tt follows from Eqn. (22) that these three sets
of states are associated with the principal quantum number pairs (1,3), (2,2). The S = 1 arising from
(1,3) can only be assigned as in Eqn. (24). There remain two sets of 9 S = 0 states, one set coming from
(1,3) and the other from (2,2). One cannot simply assign these to {2(0;0)}, {2(2;2)} without additional
information which must come either from the solution of Eqn. (8) or from explicit construction of the
states by use of the ladder operators of the dynamical group U(2, 2).

Concluding remarks

We end with two open problems that I am content to leave to the future.
1. Find an explicit form for the isoscalar factors defined in Eqn. (8).

2. Use the ladder operators of U(2,2) to give an explicit expansion of symmetrised two-electron
states in two-electron configuration space.

Note that while for a single electron one has a dynamical group equipped with a complete set of
ladder operators that allow one to move from any discrete state to any other discrete state such is not the
case for a many-electron atom. One can only ladder within a given irreducible representation of U(2,2).

I have no clear idea where this will lead to but without solving such problems one does not
know what new problems may arise, possibly in entirely different fields such as in the theory of special
functions.
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Maybe history repeats itself - but I must have the facts.
— Alamut Ambush xii, A. Price (1971)

SO(4) Symmetry and Doubly Excited States
Introduction
In this lecture we extend lecture VI to an examination of some of the properties of doubly excited
states of two-electron atoms starting with some historical remarks.
A little History
In 1959 Layzer! introduced the concept of an electron configuration complex. A complex consisted
of all those N —electron configurations involving occupation of orbitals characterised by the same principal

quantum number n. Thus a given complex can be specified by simply giving (N, n). Thus the complex
(2,2) consists of the configuration set

2s? 4 2s2p + 2p* (1)
while (3,2) consists of
2522p + 2s2p% + 2p° (2)
and (2, 3) consists of
3s? + 3s3p + 3s3d + 3p” + 3p3d + 3d° (3)

etc.

Note that for the two-electron complexes (2, n) there are n(n + 1)/2 two-electron configurations
and that there are configurations of both parities in a given complex. Layzer asserted that configuration
interaction within a complex was a fundamental feature of atomic spectra. This feature he also associated
with his Z—expansion model for the properties of complexes. It was found that if one diagonalised the
Coulomb repulsion term in the complex (2,2) one obtained for the two 'S states

'Sa) = —0.476[2513) + 0.880]2p*1S) (4a)
1Ss) = —0.880(25%1S) — 0.476]2p*1S) (40)

This strong configuration interaction between 2s? and 2p® had been noted by Condon and Shortley? who
pointed out that the energy ratio
E('S)—-E(D) 3 5
E(S)—-E(RP) 5 (5)
should, in the absence of configuration interaction, be independent of the choice of Slater radial integrals.
The ratio showed strong departures from %
Could one have predicted the coefficients appearing in (4a) and (4b)? To that end Wulfman?®
and Alper and Sinanodglu? introduced a calculation based upon the group SO(4) much as outlined in
lecture VI. Their results were surprisingly close to the values given in (4). Butler and Wybourne® asked
”Is the Group R4 an Approximate Symmetry for Many-Electron Theory 7”7 pointing out that both sets
of authors had made a phase error which when corrected destroyed the agreement (see®? for further
details).

Approximate dynamical symmetry of two-electron atoms

Bendar® discussed some of the properties of hydrogenic electron repulsion integrals in terms of
the O(4,2) group while Butler etal tabulated algebraic expressions for the integrals. Wulfman and
Kumeil? tried to approximate hydrogenic Coulomb integrals in terms of the generators of the O(4,2)
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group. Wulfman'! then realised that one could obtain an alternative realisation for two-electron systems
by requiring that the difference in the Runge-Lenz vectors of the two electrons be minimised rather than
their sum. At first this seems a trivial change as the SO(4) group structure remains, the Kronecker
products, SO(4) — SO(3) branching rules and the commutation relations are unchanged. However, the
two-electron SO(4) basis states are not quite the same as those where the generators are built from the
the sum of the Runge-Lenz vectors of the two electrons. The recoupling analogue of Eq.(45) of Lecture
VI can differ by at most a phase but in this case a critically important phase. Wulfman'! obtained

[y — 1][ne — 1]; [PQILM)

. %(nl — 1) %(nl — 1) El
= SR + DG+ DP+ Q4 D(P-Q+ DI Hna - 1) fma-1) £
£1,82 §(P+ Q) f(P - Q) L
X |[77,1 — 1]£1 [77,2 — 1]£2, LM> (6)
Explicit evaluation then yields
100]°5) = —1[25°15) + %2 |2p*1 ) (Ta)
[20]1S) = _§|25215> — 1|2p*'5) (7b)

which is remarkably close to (4a) and (4b) respectively, and indeed was what was found in the original

incorrect calculations®?.

History is just a collection of footnotes?

— Natterjack Niall Duthie (Faber&Faber 1996)

Why does it Work?

The agreement between (4) and (7) is rather remarkable and demands an explanation. Imagine
you have two electrons in a doubly excited state. Classically you would have said the most likely ar-
rangement of the two electrons would be on the opposite sides of the central nucleus, rather like a XYX
molecule. Recall the generators of SO(4);2 have been chosen to involve the difference in the Runge-
Lenz operators for the pair of electrons. As Wulfman showed!®!! this has the effect of giving a good
approximation to the Coulomb repulsion contribution to the energy of the two-electron states. Note that
the Wulfman and Kumei paper'® plays the key role in the analysis. A point often missed in subsequent
publications.

U(4) — SO(4) Models

There has been much emphasis in the literature on grouping the various SO(4) irreducible rep-
resentations into supermultiplets treating the atom very much like a XYX molecule’?=16. To that end
attempts have been made to embed the group SO(4) into the higher group U(4) very much as done in
vibron models of molecules'™!®. Basically the idea has been to embed the O(4) states of the one-electron
Coulomb problem into a U(4) and then the states of the two-electron problem are embedded in a coupled
U(4)1 x U(4)2 group'® with the two-electron states being classified in terms of the group chain

U(4)1 X U(4)2 D U(4)12 D 0(4)12 D 0(3)12 (8)

The problem with such a model is that it inevitably leads to spurious states and their interpretation is
by no means obvious. Let us sketch an alternative possibility based upon the group SO(5).
Sketch of a SO(5) model for doubly excited states

We first note that under SO(5) — SO(4) we have

n—1]—[n—-1]+[n—-2]4+...4+[0] (9)

and hence we can cover the complete set of orbital states of a hydrogen atom, up to principal quantum
number n, in a single irreducible representation [n — 1] of SO(5). This irreducible representation is of
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degree

n(n+ 1)2(271 +1) (10)

For two-electrons, the complete set of S = 0 states involving principal quantum numbers up to
n span the SO(b) irreps that arise in the SO(5) plethysm [n — 1] ® {2} of degree

n(n+ 1)(n+2)(2n + 1)(2n% — n + 3)

Dim[n — 1] =

Dim[n —1]® {2} = - (11a)
while the S = 1 states come from the plethysm [n — 1,0] @ {1%} of degree
(n — Dn(n+ 1)(2n + 1)(2n? 4 5n + 6)
(11d)
72
One notes that under SO(5) — SO(4) the branching rulet®2° is
[A] = [A/M] (12)

with the understanding that for two-part partitions on the right-hand-side of (12) we have the equivalence
[A1Az] = A Aol + [ArAz]- (13)
where the subscript + signifies that the second part of the partition is +. Thus [21]_ = [2, —1] while
1], = [2,1]
Now consider the case of n = 3. The one-electron states span the [2] irreducible representation
of SO(5) and
2@ {2} = 4]+ [2°] +[2]+[0] S=0 (14a)
2lo{1*} =[B31]+[1] S=1 (14b)
Note that for SO(5) in general the terms in the plethysm [n]® {2} comprise all irreducible representations
of SO(5) involving at most two even parts with with the sum of the two parts < 2n while the terms in
the plethysm [n] ® {12} comprise all irreducible representations of SO(5) involving two odd parts with
with the sum of the two parts < 2n. Thus, for example,
[31® {2} = [6] + [42] + [4] + [2°] + [2] + [0]
[81© {17} = [51] + [3%] + [31] + [17]
Under SO(5) — SO(4) one has, for example,

[4] —[4] + 3] + [2] + [1] + [0]

[27] —[22]4 + [22]- + [21]4 + [21]_ +[2]

(2] —[2] + [1] + [0]

[0] —[0]

[31] —[31]4 + [31]= + [3] + [21]+ + [21]= + [2] + [11]+ + [11] = + [1]

[17] —[11]4 + [11]- +[1] (15)

These are precisely the SO(4) irreducible representations that one expects for the various two-electron
configurations that arise for orbitals involving principal quantum numbers n < 3. These, of course, are
also the SO(4) irreducible representations that arise in the SO(4) plethysms

([2] 4 [1] +[0]) @ {2} = [4] + [3] + [27] — +[27] + +[21] — +[21] + +3[2] + 2[1] + 3[0] (16a)
([2] 4 [1] + [0]) @ {12} = [31] — +[31] + +[3] + [21] — +[21] + +[2] + 2[1%] — +2[1%] 4+ +2[1] (16b)

Note that for two electrons the plethysms in SO(5) are multiplicity free and the quantum numbers
associated with the canonical embedding

SO(5) D SO(4) D SO(3) D SO(2) (17)

are complete. This should have the consequence of permitting a complete algebraic construction of the
symmetrised two-electron states up to a chosen principal quantum number n with all the recoupling
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coefficients algebraic in the same sense as for the SO(4) — SO(3) recoupling coefficients. This problem
I leave to others to complete. An now for a little more history.

History, it is said, repeats itself... Few are but reminded
almost everyday. .. of something that has gone before.

— Marian Rooke ITII H Sedley (1865)

Effective Hamiltonians

The use of effective Hamiltonians is well-known in nuclear physics where the knowledge of the
Hamiltonian is more incomplete than in atomic physics. Nevertheless there has been interest in construct-
ing effective Hamiltonians for complex atomic spectra?!~2* that has allowed one to correlate experimental
data with theoretical calculations in terms of parameterised effective operators. Initially calculations sim-
ply treated the Slater radial Coulomb integrals and the spin-orbit radial integral as parameters. Trees?®
observed that the addition of an effective operator L(L 4 1) led to a considerable reduction in the least-
squares error between experimental and theoretical atomic levels in the 3d—shell. This became known
as the “Trees correction”. Runciman and Wybourne?® showed that the inclusion of such a correction
was significant in the 4 f—shell. At that time the origin of the Trees correction was unknown. In 1963
Rajnak and Wybourne?! showed that the Trees correction, and indeed other corrections, were miming
configuration interaction effects. This led to a whole industry of effective operators which continues to
this day not only in atomic physics but also in extensions of the Judd-Ofelt theory of transitions®”?® in
lanthanide and actinide bearing crystals and solutions.

In constructing effective operators one 1s really trying to set up a minimal basis of invariants, or
technically an integrity basis?®. All other invariants are then polynomials in those of the integrity basis
set of invariants. Thus in the f? —shell the three invariants arising from second-order perturbation theory
can be taken in parameterised form as

al(L +1) 4 fCs(G2) +7C5(507) (18)

where the three operators are just the second-order Casimir invariants of the groups SOs3, G2 and SO+
respectively. Add to those the four Slater Coulomb integrals Fy, Fao(f, f), Fa(f, f) and Fs(f, f) as
parameters and one has seven parameters which is precisely the number of SL terms in the two-electron
configuration f2.

Effective operators have been, largely, the success of the interacting boson model (IBM) of
nuclei(see ref.[30] and references contained therein). In that case one has a chain of groups to describe
the basis states and constructs effective Hamiltonians in terms of invariant operators and endeavours to
fit the observed nuclear level spectra.

Clearly effective operators are our way of hiding our ignorance and lack of success with ab initio
methods.

Back to Electron Complexes

Kellman®® has recently discussed the construction of effective Hamiltonians for two-electron n = 2
complexes starting with the Casimir operators P(P + 2) + @? for his group O(4)12 and L(L + 1) for the
0O(3)12 subgroup. Tt is somewhat surprising that he does not include the second SO(4) Casimir operator,
Q(P + 1), which has the effect of lifting the degeneracy of the SO(4) states [PQ]+ for @ # 0. He gives
detailed examples with fits to actual spectra in the case of doubly excited states. As he notes one of the
difficulties is that the group O(4)12 has been constructed in terms of the difference in the Runge-Lenz
vector of the two electrons and hence his effective Hamiltonian cannot be consistently extended to more
than two electrons. In addition there is the problem of interpreting spurious states if U(4);5 is introduced.
An alternative might be to use the SO(5) model suggested above. In that case one has, in addition to
the usual O(4)12 effective operators, the possibility of using the two independent Casimir invariants for
SO(5). Again T leave that task to someone else. The methods outlined in ref. [30] are probably relevant.

Fini ...
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For a man to commit his thoughts to writing when he can
neither arrange them nor bring any new light to bear upon
them and, indeed, when he has no attraction whatsoever to
offer his reader, ts a senseless waste of teme, and of paper,
too.

— Tuscalanae Disputationes, Book 1 Cicero



