The Vandermonde Determinant Revisited

Brian G Wybourne
Instytut Fizyki,
Uniwersytet Mikołaja Kopernika - Poland

11-18 September 2002
Dedicated to the memory of Claude Itzykson (1938-1995)

Introduction

- Claude Itzykson (1938-1995)
- The Laughlin Wavefunction
- Admissible Partitions
- The q-discriminant
- q-polynomials vanishing coefficients
- Some Results and Conjectures
- Hankel Determinants and Powers of the Vandermonde
- Concluding Remarks

Claude Itzykson's Comments

- Indeed you seem to have discovered a striking phenomenon which deserves an explanation ...
- The subject seems to me to be still widely open = For instance, is there a rule for the signs of the coefficients?
- What is the meaning of the vanishing terms you have found?
- What is their general feature?
- Is it significant that you found them starting at $N=8$? etc..
- Claude Itzykson March 11994

The Laughlin Wavefunction

- Laughlin[1] has described the fractional quantum Hall effect in terms of a wavefunction

$$
\begin{equation*}
\Psi_{\text {Laughlin }}^{m}\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{2 m+1} \exp \left(-\frac{1}{2} \sum_{i=1}^{N}\left|z_{i}\right|^{2}\right) \tag{1}
\end{equation*}
$$

- The Vandermonde alternating function in N variables is defined

$$
\begin{gather*}
V\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right) \tag{2}\\
\frac{\Psi_{\text {Laughlin }}^{m}}{V}=V^{2 m}=\sum_{\lambda \vdash n} c^{\lambda} s_{\lambda} \quad n=m N(N-1) \tag{3}
\end{gather*}
$$

where the s_{λ} are Schur functions and the c^{λ} are signed integers.

Expansion of the Laughlin Wavefunction

- Dunne[2] and Di Francesco et al[3] have discussed properties of the expansions while Scharf et al[4] have given specific algorithms. I have extended their results to $N=10$.
- The partitions (λ) indexing the Schur functions are of weight $N(N-1)$. For a given N the partitions are bounded by a highest partition $(2 N-2,2 N-4, \ldots, 0)$ and a lowest partition $\left((N-1)^{N-1}\right)$ with the partitions being of length N and $N-1$.
- Let

$$
\begin{equation*}
n_{k}=\sum_{i=0}^{k} \lambda_{N-i}-k(k+1) \quad k=0,1, \ldots, N-1 \tag{4}
\end{equation*}
$$

Admissible Partitions

- Define[3] Admissible partitions as satisfying Eq(4) with all $n_{k} \geq 0$.
- Di Francesco et al conjectured that the number of admissible partitions, A_{N}, was the number of distinct partitions arising in the expansion, $\mathrm{Eq}(3)$, provided none of the coefficients vanished.
- The conjecture fails[4] for $N \geq 8$. We find the number of admissible partitions associated with vanishing coefficients as

$$
(N=8) \quad 8,(N=9) \quad 66,(N=10) \quad 389
$$

- The coefficients of s_{λ} and $s_{\lambda_{r}}$ are equal if[2]

$$
\begin{equation*}
\left(\lambda_{r}\right)=\left(2(N-1)-\lambda_{N}, \ldots, 2(N-1)-\lambda_{1}\right) \tag{5}
\end{equation*}
$$

Admissible Partitions

- We list the 8 partitions for $N=8$, having vanishing coefficients, as reverse pairs
$\left\{1311985^{2} 41\right\} \quad\left\{13109^{2} 6531\right\} \quad \mathrm{Q}(1)$
$\left\{13119854^{2} 2\right\} \quad\{1310987531\} \quad \mathrm{Q}(2)$
$\{1311976541\} \quad\left\{1210^{2} 96531\right\} \quad \mathrm{Q}(3)$
$\left\{121197^{2} 4^{2} 1\right\} \quad\left\{1210^{2} 7^{2} 532\right\} \quad \mathrm{Q}(4)$

The q-discriminant

- Let $q \mathbf{x}=\left(q x_{1}, q x_{2}, \ldots, q x_{N}\right)$ and the q-discriminant of \mathbf{x} be

$$
\begin{equation*}
D_{N}(q ; \mathbf{x})=\prod_{1 \leq i \neq j \leq N}\left(x_{i}-q x_{j}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{N}(q ; \mathbf{x})=\prod_{1 \leq i \neq j \leq N}\left(x_{i}-q x_{j}\right)\left(q x_{i}-x_{j}\right)=\sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x}) \tag{7}
\end{equation*}
$$

So that

$$
\begin{equation*}
V_{N}^{2}(\mathbf{x})=\prod_{1 \leq i \neq j \leq N}\left(x_{i}-x_{j}\right)^{2}=R_{N}(1 ; \mathbf{x}) \tag{8}
\end{equation*}
$$

q-polynomials

- Introduce q-polynomials such that

$$
\begin{gather*}
R_{N}(q ; \mathbf{x})=\sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x}) \tag{9}\\
R_{N}(q ; \mathbf{x})=\sum_{\frac{(-1)^{N(N-1) / 2}}{(1-q)^{N}} \sum_{\nu \sqsubseteq(N-1)^{N}}}^{\left.\times((-q))^{|\nu|}+(-q)^{N^{2}-|\nu|}\right) s_{(N-1)^{N} / \nu}(\mathbf{x}) s_{\nu^{\prime}}(\mathbf{x})}
\end{gather*}
$$

- Such expansions have been evaluated as polynomials in q for all admissible partitions for $N=2, \ldots, 6$ with many examples for $N=7,8,9$.

Examples q-polynomials

N	$\left[c_{\lambda}\right]$	$q(\lambda)$	$\{\lambda\}$
2	$[1]$	q	$\{2\}$
	$[-3]$	$-\left(q^{2}+q+1\right)$	$\left\{1^{2}\right\}$
3	$[1]$	q^{3}	$\{42\}$
	$[-3]$	$-q^{2}\left(q^{2}+q+1\right)$	$\left\{41^{2}\right\}+\left\{3^{2}\right\}$
	$[6]$	$+q\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\{321\}$
	$[-15]$	$-\left(q^{2}+q+1\right)\left(q^{4}+q^{2}+q+1\right)$	$\left\{2^{3}\right\}$

$$
\begin{array}{ll}
-q^{17}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)^{5}(1-q)^{4} & Q(1) \\
+q^{16}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{6}(1-q)^{4} & Q(2) \\
+q^{16}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)^{3}\left(q^{2}+q+1\right)^{5}(1-q)^{4} & Q(3) \\
+q^{14}\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{5}(1-q)^{4} & \\
\times\left(q^{10}+q^{9}+3 q^{8}+4 q^{6}+q^{5}+4 q^{4}+3 q^{2}+q+1\right) & Q(4)
\end{array}
$$

Note the factor $(1-q)^{4}$ which vanishes for $q=1$.

Sum of Squares of Coefficients

- Di Francesco et al give the remarkable result that if

$$
V^{2}(N)=\sum_{\lambda} c^{\lambda} s_{\lambda}
$$

then

$$
\begin{equation*}
\sum_{\lambda}\left|c^{\lambda}\right|^{2}=\frac{(3 N)!}{N!(3!)^{N}} \tag{11}
\end{equation*}
$$

- Can one write a similar expression for

$$
\sum_{\lambda}|c(q)|^{2} ?
$$

q-polynomial Sums of Squares

- Unimodal and Symmetric?

$$
\begin{array}{cc}
N=2 & q^{4}+2 q^{3}+4 q^{2}+2 q+1 \\
N=3 & q^{12}+4 q^{11}+11 q^{10}+20 q^{9}+34 q^{8}+44 q^{7} \\
& +52 q^{6}+44 q^{5}+34 q^{4}+20 q^{3}+11 q^{2}+4 q+1 \\
N=4 & q^{24}+6 q^{23}+22 q^{22}+58 q^{21}+128 q^{20}+242 q^{19} \\
+418 q^{18}+646 q^{17}+929 q^{16}+1210 q^{15}+1490 q^{14} \\
& +1670 q^{13}+1760 q^{12}+1670 q^{11}+1490 q^{10}+1210 q^{9} \\
& +646 q^{8}+418 q^{6}+242 q^{5}+128 q^{4}+58 q^{3}+22 q^{2}+6 q+1
\end{array}
$$

Consider the sum $C S(N)=\sum_{\lambda} c^{\lambda}$

N	No. Partitions	$\mathrm{CS}(\mathrm{N})$
2	2	-2
3	5	-14
4	16	70
5	59	910
6	247	-7280
7	1111	-138320
8	5294	1521520
9	26310	38038000
10	135281	-532532000

A Conjecture

- From the results tabulated for $N=2, \ldots, 10$ we conjecture that

$$
\begin{equation*}
C S(N)=\prod_{x=0}^{[N / 2]}(-3 x+1) \prod_{x=0}^{[(N-1) / 2]}(6 x+1) \tag{12}
\end{equation*}
$$

- Exercise 1. Derive the above result.
- Exercise 2. Extend the results to the q-polynomial coefficients $c_{\lambda}(q)$.

Hankel Determinants

- The Hankel matrix of order $n+1$ of a sequence c_{0}, c_{1}, \ldots is the $n+1$ by $n+1$ matrix whose (i, j) element is c_{i+j} with $0 \leq i, j, \leq n$.
- The Hankel determinant of order $n+1$ is the determinant of the corresponding Hankel matrix,

$$
\operatorname{det}\left|c_{i+j}\right|_{0 \leq i, j, \leq n}=\operatorname{det}\left|\begin{array}{cccc}
c_{0} & c_{1} & \ldots & c_{n} \tag{13}\\
c_{1} & c_{2} & \ldots & c_{n+1} \\
\vdots & \vdots & \vdots & \\
c_{n} & c_{n+1} & \ldots & c_{2 n}
\end{array}\right|
$$

Hankel Determinants - Example

- Consider the sequence where $c_{n}=n$!. Then for $n=3$ we have the sequence $1,1,2,6, \ldots$

$$
D_{n}^{1}(c)=\operatorname{det}\left|c_{i+j}\right|_{0 \leq i, j, \leq 3}=\operatorname{det}\left|\begin{array}{cccc}
1 & 1 & 2 & 6 \tag{14}\\
1 & 2 & 6 & 24 \\
2 & 6 & 24 & 120 \\
6 & 24 & 120 & 720
\end{array}\right|=144
$$

- Uber eine besondere Classe der symmetrischen Determinanten, Doctoral Thesis (1862) :- Hermann Hankel 1839-73

Hankel HyperDeterminants

- We may define a Hankel hyperdeterminant as

$$
\begin{equation*}
D_{n}^{k}(c)=\operatorname{det}_{2 k}\left|c_{i_{1}+\ldots+i_{2 k}}\right|_{0 \leq i_{p} \leq n-1} \tag{15}
\end{equation*}
$$

- NB. The sequence c need not be restricted to just integers but may involve sequences of polynomials etc. Thus Luque and Thibon ${ }^{5}$ consider the case where $c_{n}=h_{n}(X)$, the $n-t h$ complete homogeneous symmetric function of some auxiliary variables $X=\left\{x_{i}\right\}$ and show that $D_{n}^{(k)}(h)$ may be expressed in terms of Schur functions $s_{\lambda}(X)$
- This problem is equivalent to determining the Schur function expansion of the even powers, $\Delta^{2 k}$, of the Vandermonde determinant, Δ !

Concluding Remarks

- Remaining Problems
- In most sciences one generation tears down what another has built, and what one has established, another undoes. In mathematics alone each generation adds a new storey to the old structure. (Hermann Hankel 1839-1873)
- I have benefited from detailed discussions with Prof. R C King (Southampton University) and Prof. J-Y Thibon (Université de Marne-la-Vallée)
- This research has been performed under a grant from the Polish KBN (Contract No. 5P03B 057 21).

