Some SCHURTM Examples I : S-Functions

I. S-Functions: Part 2

Introduction

In this section we illustrate some further features of the SFN mode of **SCHUR**TM. **SCHUR**TM has proved particularly useful in revealing hitherto unnoticed features of symmetric functions. Here we reveal some features of **SCHUR**TM that have exposed aspects of the characteristics of the symmetric group S_N of significance in quantum chemistry and the so-called Symmetric Group Approach (SGA). The Pauli Exclusion Principle limits interest in S_N irreducible representations to those describable by just two-row Young diagrams $\{p,q\}$ where

$$p = \frac{N}{2} + S \qquad \text{and} \qquad q = \frac{N}{2} - S \tag{1}$$

with

$$N = p + q \qquad \text{and} \qquad S = \frac{p - q}{2} \tag{2}$$

Thus the characteristics $\chi_{(\rho)}^{\{p,q\}}$ where (λ) is a class of S_N , are of considerable interest. In the following notes we show how **SCHUR**TM can be applied to the calculation of such characteristics and how it can lead to certain conjectures which have subsequently been proved.

Calculation of Characteristics of S_N using SCHURTM

The **SCHUR**TM command $\langle SNchar, n, Class \rangle$ is used to calculate a list of all the non-zero characteristics $\chi_{(\rho)}^{\{\lambda\}}$ where n is the maximum number of parts of the partitions (λ) we wish to consider and (ρ) is the partition designation of the Class of interest. Thus, for example,

The integer preceding each S-function $\{p,q\}$ is the characteristic $\chi_{(1^6)}^{\{p,q\}}$ and in this particular case is the dimension of the corresponding irrep of the symmetric group S_6 . From Eq. (2) we note that $\{51\}$ is associated with spin S = 2 and $\{3^2\}$ with spin S = 0. But these two irreps of S_6 have the same characteristic. This raises the question of when is

$$\chi_{(1^N)}^{\{p,q\}} = \chi_{(1^N)}^{\{p',q'\}} \tag{3}$$

If we use **SCHUR**TM to examine the cases for N = 2, ..., 14 we find the equalities given in the table below:-

Ν	[p,q]S	[p',q']S'	$\chi^{[p,q]}_{(1^N)}$
2	[2]1	[11]0	1
6	[51]2	[33]0	5
7	$[52]\frac{3}{2}$	$[43]\frac{1}{2}$	14
13	$[94]\frac{5}{2}$	$[76]\frac{1}{2}$	429
14	[95]2	[86]1	1001

Inspection of the above table suggests that such equalities are quite rare and appear to divide into two cases

$$N(n) = \begin{cases} n^2 + 2n - 1 & n = 1, 2, \dots, \infty \\ n^2 + 2n - 2 & n = 2, 3, \dots, \infty \end{cases}$$
(4a)
(4b)

This suggests that the next values of N should occur at n = 4 giving N = 22 for case (4b) and N = 23 for case (4a). Running the **SCHUR**TM commands $\langle sn2, 1^{+}22 \rangle$ and

 $< sn2, 1^{123} > leads$ to

Ν	[p,q]S	[p',q']S'	$\chi^{[p,q]}_{(1^N)}$
22	$[14 \ 8]3$	$[12 \ 10]1$	149,226
23	$[14 \ 9]\frac{5}{2}$	$[13 \ 10]\frac{3}{2}$	326,876

Now we see a pattern emerging. In case (4a) it appears that

$$p(n) = \frac{n(n+2)}{2}, \quad q(n) = \frac{n(n+1)-2}{2}, \quad p(n) - q(n) = n+1, \quad S = \frac{n+1}{2}$$
(5a)

$$p'(n) = \frac{n(n+3)-2}{2}, \quad q'(n) = \frac{n(n+1)}{2}, \quad p'(n) - q'(n) = n-1, \quad S' = \frac{n-1}{2}$$
(5b)

while in case (4b)

$$p(n) = \frac{n(n+3)}{2}, \quad q(n) = \frac{n(n+1)-4}{2}, \quad p(n) - q(n) = n+2, \quad S = \frac{n+2}{2}$$
(6a)

$$p'(n) = \frac{n(n+3)-4}{2}, \quad q'(n) = \frac{n(n+1)}{2}, \quad p'(n) - q'(n) = n-2, \quad S' = \frac{n-2}{2}$$
 (6b)

It is left as an exercise to show that the irreps [p,q] and [p',q'] as defined in (5a,b) are of the same dimension and likewise for (6a,b). The above gives a complete description of two infinite classes of irreps of S_N

Thus for N = 118 we expect from (5a,b) that the two irreps [65 53] and [63 55] will be of the same dimension. This we can readily check in the REP mode of **SCHUR**TM by first setting the group as S(118) and then using **SCHUR**TM's **dimension** command as shown in the **SCHUR**TM fragment below:-

REP mode
REP>
gr s118
Group is S(118)
REP>
dim!65!53
dimension=2617041085391803324124303483690133

4

```
REP>
dim!63,!55
dimension=2617041085391803324124303483690133
REP>
```

and likewise for N = 119 we expect from (6a,b) that the two irreps [65 54] and [64 55] will be of the same dimension as verified by the **SCHUR**TM fragment below:-

```
REP>
gr s119
gr s119
Group is S(119)
REP>
dim!65!54
dimension=5323553660882471719158839565113262
REP>
dim!64!55
dimension=5323553660882471719158839565113262
REP>
```

Finally we collect together the results as a single table

Ν	[p,q]S	[p',q']S'	$\chi^{[p,q]}_{(1^N)}$
2	[2]1	[11]0	1
6	[51]2	[33]0	5
7	$[52]\frac{3}{2}$	$[43]\frac{1}{2}$	14
13	$[94]\frac{5}{2}$	$[76]\frac{1}{2}$	429
14	[95]2	[86]1	1001
22	$[14 \ 8]3$	[12 10]1	149,226
23	$[14 \ 9]\frac{5}{2}$	$[13 \ 10]\frac{3}{2}$	326,876
33	$[20 \ 13]\frac{7}{2}$	$[18 \ 15]\frac{3}{2}$	218,349,120
34	$[20 \ 14]3$	$[19 \ 15]2$	463,991,880
46	$[27 \ 19]4$	$[25 \ 21]2$	$1,\!335,\!293,\!573,\!130$
47	$[27 \ 20]\frac{7}{2}$	$[26 \ 21]\frac{5}{2}$	2,789,279,908,316
61	$[35 \ 26]\frac{9}{2}$	$[33 \ 28]\frac{5}{2}$	$33,\!833,\!779,\!021,\!731,\!045$
62	$[35 \ 27]4$	$[34 \ 28]3$	69,923,143,311,577,493
78	$[44 \ 34]5$	$[42 \ 36]3$	$3,527,\!173,\!835,\!643,\!930,\!141,\!670$
79	$[44 \ 35]\frac{9}{2}$	$[43 \ 36]\frac{7}{2}$	$7,\!237,\!577,\!480,\!931,\!700,\!810,\!180$
97	$[54 \ 43]\frac{11}{2}$	$[52 \ 45]\frac{7}{2}$	1,504,860,519,529,865,622,776,830,848
98	$[54 \ 44]5$	$[53 \ 45]4$	3,072,423,560,706,808,979,836,029,648
118	[65 53]6	[6353]5	$2,\!617,\!041,\!085,\!391,\!803,\!324,\!124,\!303,\!483,\!690,\!133$
119	$[65 \ 54]\frac{11}{2}$	$[64 \ 55]\frac{9}{2}$	5,323,553,660,882,471,719,158,839,565,113,262

Note that the problem is combinatorially explosive. In the preceding we have shown how \mathbf{SCHUR}^{TM} can lead to conjectures and surprises even in well trodden areas. Of course a conjecture is only a beginning, but it can stimulate efforts towards proof.

An Open Problem

Above we have established two infinite classes of pairs two-row irreps of S_N that

have the same dimension. Using **SCHUR**TM shows that there are no other pairs of such two-row irreps of the same dimension. It is an open problem to show whether we have exhausted the possibilities or whether for some higher values of N additional pairs arise, perhaps in a random fashion.

Back to the Future

The next notes will show how **SCHUR**TM has led to new insights into the stabilisation of characteristics of S_N and some hitherto unnoticed identities for two-row characteristics of direct relevance to problems in quantum chemistry and statistical models of spectra. For a preview see:-

Brian G. Wybourne, Norbert Flocke and Jacek Karwowski, "Characters of Two-Row Representations of the Symmetric Group" (draft version only. May 1996) Available at this site.