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Brian G Wybourne

1. Introduction

These notes are compiled as my attempt to understand some of the properties of the

embedding of the icosahedral group in the finite group PSL(2,11)

1.1. Characters of PSL(2,11)
Table 1 The Characters of PSL(2,11).

(1) 55(241%) 110(3°12) 132(5%1), 132(5%1)_ 110(632) 60(11 ). 6O(11)_
1 1 1 1 1 1 1 1
5 1 1 0 0 1 3 B
5 1 1 0 0 1 8 3
10 —2 1 0 0 1 -1 -1
10 2 1 0 0 -1 -1 -1
11 —1 -1 1 1 -1 0 0
12 0 0 Q o 0 1

12 0 0 o «Q 0 1 1

a=3(-1+V5), o/ = -1(1++5), B=3(-1+iVII)

NB. We have used the partitions appropriate to the classes of the symmetric group
Si1. The group PSL(2,11) is a subgroup of Sj;. Note that the conjugacy classes all
derive from even permutations which are appropriate to the group A;.

1.2. Characters of the Icosahedral Group

Chemists commonly present the character table as below
Table 2 Characters of the ordinary irreducible representations of I.

1 20C; 15C, 12C5 12C?
Af1 1 1 1 1
T3 0 -1 La++v5) la-+V5)
T3 0 -1 f1-v5) L(1+V5)
Ul4a 1 0 -1 ~1
Vs -1 1 0 0

while in terms of the isomorphic alternating group As they can be written as
Table 3 Characters of the ordinary irreducible representations of As.

(15) 20(312) 15(221)  12(5), 12(5)_

[5] 1 1 1 1 1
317, 3 0 -1 3(1+V5) 5(1-Vh)
317 3 0 -1 ia-vh) i1+V5)
[41] 4 1 0 —1 —1
[32] 5 —1 1 0 0
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NB. We designate irreducible representations of A, by partitions of n enclosed in

square brackets, [,], and distinguish splitting irreducible representations by attaching

a *+ as a subscript.

1.3. The PSL(2,11) — Z Branching Rules

These follow from the character tables of the respective groups to give

Table 4 The PSL(2,11) — Z Branching Rules.

X1 - A
x2: — V
X3 - V
X4 — TW+T,+U
X5 — A+U+V
X6 — ThW+T+V
xr — TT1+U+V
xs — DL+U+V

1.4. Kronecker Products for Ordinary Representations of I

Table 5 Kronecker products for the ordinary irreducible representations of I.

A T Ty U |4
A T Ty U |4
T, {A+V}+[T U+V Th+U+V Ti+T+U+V
T, U+Vv {A+V} + [T T'+U+V T+ T,+U+V
U TL+U+V TW+U+V {A+U+V}+ [Ty + T3] T+ T+ U+ 2V

V Ti+T+U+V Ti+Th+U+V

T+ Ty +U+2V {A+U+2V}+ [T1 + Ty, + U]

1.5. Kronecker Squares for the representations of PSL(2,11)

Below we give the resolution of the Kronecker squares of the irreducible representations

of PSL(2,11) into their symmetric and antisymmetric terms.
Table 6 Resolution of the Kronecker squares of the irreducible representations of
PSL(2,11).

Xi
X1
X2
X3
X4
X5
X6
X7
X8

xXi ® {2}

X1

X3+ X5

X2 + X5

X1+ X2+ x3+2x5 + X7+ Xs

X1+ X2+ X3+ 2Xx5 + X7+ Xs

X1+ X2+ X3+ 2x5 + X6 + X7+ Xs
X1+ X2+ X3+ 2Xx5 + X6 + X7+ 2Xs
X1+ X2+ X3+ 2Xx5 + X6+ 2x7 + Xs

xi ® {17}

X4

X4

X4+ X6 + X7+ X3
X4+ X6 + X7+ X8
2xa+ x6 + X7+ X8
2X4 + 2Xx6 + X7+ X8
2Xa + 2x6 + X7+ X8




4 Brian G Wybourne

Table 6a Resolution of non-trivial Kronecker products of irreducible representations
of PSL(2,11).

X2 X X3 = X1+ X7+ X3

X2 X X4 = X3+ Xa+ X6+ X7+ Xs

X2 X X5 = X3+ X5+ X6+ X7+ X8

X2 X X6 = X4+ X5+ X6+ X7+ X8

X2 X X7 = X2+ Xa+ X5+ X6+ X7+ X3

X2 X Xs = X2+ X4+ X5+ Xe+ X7+ Xs

X3 X X4 = X2+ X4+ X6+ X7+ X8

X3 X X5 = X2+ X5+ X6+ X7+ X8

X3 X Xe = X4+ X5+ X6+ X7+ X8

X3 X X7 = X3+ Xa+ X5+ X6+ X7+ X8

X3 X Xs = X3+ Xa+ X5+ Xe+ X7+ Xs

X4 X X5 = 2X4+ X5+ 2x6 + 2x7 + 2xs

X4 X X6 = X2+ X3+ Xa+2X5+ 2X6 + 2X7 + 2Xs
X4 X X7 = X2+ X3+ 2X4 + 2Xx5 + 2x6 + 2X7 + 2Xs
X4 X X8 = X2+ X3+ 2x4 + 2x5 + 2X6 + 2X7 + 2X3
X5 X X6 = X2+ X3+ 2xa+ X5+ 2X6 + 2X7 + 2xs
X5 X X7 = X2+ X3+ 2X4 + 2x5 + 2X6 + 2X7 + 2X8
X5 X X8 = X2+ X3+ 2X4 + 2Xx5 + 2x6 + 2X7 + 2Xs
X6 X X7 = X2+ X3+ 2x4 + 2x5 + 2Xx6 + 3Xx7 + 2X3
X6 X X8 = X2+ X3+ 2x4 + 2x5 + 2x6 + 2X7 + 3Xs
X7 X X8 = X2+ X3+ 2X4 + 2Xx5 + 2x6 + 3X7 + 3xs

Inspection of the above results allows us to conclude that the irreps
X2, X3 form a complex pair while the remaining irreducible representations are all real
and orthogonal.

1.6. Embedding PSL(2,11) in S

The irreducible representation {10 1} of the symmetric group Si; is of dimension 10
which is real and orthogonal, though NOT unimodular. We note that the symmetrized
square of this irreducible representation may be resolved as

{10 1} @ {2} = {11 } + {10 1} + {92} (1)
{10 1} ® {17} = {917} (2)

Three possible embeddings in {10 1} might be considered

{10 1} — x2 + x3 (3a)
{10 1} — x4 (3b)
{101} — x5 (3¢)
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The embedding (3b) is inconsistent with (1) since the symmetric square of x4 does
not contain itself. In the case of (3a) we are immediately led to the decompositions

{11} —x (4a)
{101} = x2+ x3 (4b)
{92} —2xs+x7+ x5 (4c)
{917} — X1+ 2xa + X7 + Xs (4d)
In the case of (3c) we are led to the decompositions
1) —x (52)
{10 1} = x5 (5b)
{92} —xe+xs+ X5+ X7+ X3 (5¢)
{917} — xa+ X6 + X7 + Xs (5d)

These branching rules can be readily extended by using the S;; characters evaluated
over the classes of PSL(2,11).

1.7. 811 — PSL(2,11) Branching Rules

Below we give the relevant S;; — PSL(2,11) decompositions for the embedding
defined by (3c). Since under S;; — PSL(2,11) the decomposition of the irreducible
representations labelled by conjugate partitions are the same we give only the
decomposition in the case of only one partition of each conjugate pair. Note that in
S11 the two irreducible representations {61°} and {43%1} are self-conjugate. Recall
that under S, — A, the character associated with a self-conjugate irreducible
representation of S, is the sum of two simple characters of A,. These characters
of A, take exactly half the values of the characteristics of 5, save for the splitting
classes of A,. In the case of Ay; the splitting classes are (11 )4 and (731)4.
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Table 7 Branching rules for S;; — PSL(2,11).

Dim(X) {\} Decomposition

1 {11} xu

10 {101} x5

44 {92} xo+xs+xs+x7+ Xxs
45 {912} xa+ X6+ X7+ Xs

110 {83} x1+x2+x3+ xa+3x5 + X6+ 2X7 + 2xs

231 {821}  2x2+ 2x3 + 3xa + 3x5 + 5xe + 4x7 + 4xs

120 {81%}  4xy+ x5+ 2X6 + 2X7 + 2Xs

165 {74} x1+ X2+ X3+ 2xa +4xs + 2x6 + 3x7 + 3xs

550 {731} x1 4 4x2 + 4xs + 9xa + 8x5 + 9x6 + 107 + 10xs

385 {722} X1+ 4dxe+4xs +4xa+ Txs +6x6 + Tx7 + TXs

594 {7212} 4y + 4xs + 10x4 + 8x5 + 10x6 + 11x7 + 11xs

210 {71} X1+ x2+ X3+ 3xa + 4x5 + 3x6 + 4x7 + 4xs

132 {65}  x1+2x2+2x3 + X4+ 2x5 + 3x6 + 2x7 + 2xs

693 {641} 5xa + 5xs + 11xy + 10x5 + 11xs + 13x7 + 13xs

990 {632} 2x71 4+ 8x2 + 83 + 14x4 + 165 + 166 + 18x7 + 18xs
1232 {6312} x1 4 8x2 + 8x3 + 21x4 + 16x5 + 23x6 + 22x7 + 22xs
1100 {6221} 3x1+ 9x2 + 9xs + 15x4 + 19x5 + 17x6 + 20x7 + 20xs
924 {6213} X1 + 8x2 + 8x3 + 13x4 + 14xs + 15x6 + 17x7 + 17xs
252 {615} 2X1 + 3X2 + 3X3 + 2X4 + 6X5 + 4X6 + 4X7 + 4X8

330 {521} 3X2 + 3X3 + 4X4 + 5X5 + 6X6 + 6X7 + 6X8

990 {542} 2X1 + 8X2 + 8X3 + 14X4 + 16X5 + 16X6 + 18X7 + 18X8
1155  {541%} 2x1 + 8x2 + 8x3 + 19x4 + 17x5 + 196 + 21x7 + 21xs
660 {532} X1+ 4dxo +4xs + 11y + 10xs + +11xs + 12x7 + 1235
2310 {5321} 3X1 + 18)(2 + 18X3 + 35X4 + 34X5 + 39X6 + 42X7 + 42X8
1540 {5313} 2y + 11xa + 11xs + 24x4 + 23x5 + 26x6 + 287 + 28Xz
825 {523} 3x1 + 6x2 + 6x3 + 1214 + 15x5 + 12x6 + 15x7 + 15xs
462 {423} 2x1 + 3x2 + 3x3 + 8x4 + Tx5 + 8X6 + 8X7 + 8xs

1320 {4221} 2x; + 11y + 11xs + 18x4 + 215 + 22x6 + 227 + 22xs
1188  {43%1} 8y + 8x3 + 20x4 + 165 + 20x6 + 227 + 225

Under S7; — Aj; the above irreducible representations are irreducible apart from the
two irreducible representations {61°} and {4321} which split as

{617} — [61°]; + [61°]-

{431} — [43%1], + [43*1]_
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Under A;; — PSL(2,11) the branching rules are the same as in the
above Table apart from the splitting cases where

[61°]%  — x1+ X2+ 2x3 + Xa + 3x5 + 2x6 + 2X7 + 2Xs
[61°]- — X1+ 2x2 + X3 -+ Xa + 3X5 + 2X6 + 2X7 + 2Xs

[43%1] — 4o + 4x3 + 10x4 + 85 + 10xs + 11x7 + 11xs
[43%1]_ — 4y + 4x3 + 10x4 + 85 + 10xs + 11x7 + 11xs

1.8. Embeddings of PSL(2,11) in the Orthogonal groups O,, and SO,

The group S,+1 may be embedded in the orthogonal group O,. In that case the
n—dimensional irreducible representation {n, 1} is embedded in the vector irreducible
representation [1] of the full orthogonal group, O(n). The irreducible representation
{n, 1} is orthogonal but not unimodular and hence S,,;; cannot be embedded in the
special orthogonal group SO,,. For n > 5 all the irreducible representations of the
alternating group are both orthogonal and unimodular and as such can be embedded
in an appropriate SO,,. For example, in the case of the icosahedral group Z ~ A we
may embed the irreducible representation U in the vector irreducible representation
[10] of SOy or the irreducible representation V' in the vector irreducible representation
of SO5 etc. For the group PSL(2,11) the irreducible representations x, + x3 and xs
are orthogonal and unimodular and hence may be embedded in SO,y. However, it is
sufficient to note that SO D A;; and one has the typical SO;9 — A;; decompositions
Table 8 Some SO,y — A;; branching rules

Dim(\) [ Decomposition

1 [0] [11]

10 [1] [10 1]

54 [2] [10 1] + [92]

45 1] [912]

210 3] [11 ]+ [10 1] + [92] + [91?]

320 [21] 92] + [91%] + [821]

120 [1%] 817]

660 [4] [11 ]+ 2[10 1] + 2[92] + [91%] + [83] + [821] + [74]
1386 [31] [10 1] + [92] 4 2[912] + [83] + 2[821] + [817] 4 [731]
770 [22] 92] + [83] + [821] + [727]

945 [212] 821] + [81%] + [7217]

210 [14] [714]

We note that in a similar fashion we have SO, D As and SO; D Ag. In the latter case
while Ag O Ligs one does not have Gy O Ag. In the former case it may be naturally
seen from the fact that the pentahedral group P is a subgroup of SO(4) as noted
elsewhere*?.
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1.9. Spin irreducible representations of A,

The alternating groups A,, possess spin or projective irreducible representations which
may be labelled by partitions of n into k distinct parts'= with the understanding that
irreducible representations with n — k even constitute a pair of conjugate irreducible
representations. Noting that SO, ; D A, we may equivalently label the projective
irreducible representations of A, as [A;\] where A\ is a partition into p distinct parts
with the weight, wy, of A is such that n —wy > A and A\; < [5]. In that case
if the partition (\) is such that n — p is odd then the irreducible representation
forms a conjugate pair and the two irreducible representations are distinguished by
attaching a + as a subscript to [A; A]. Thus for As we have the projective irreducible
representations and their dimensions as given below

Table 9 Dimensions of the projective irreducible representations of As.

Dim[A;\]  Irreducible representation

2 [A, O]i
6 [A;1]
4 [A; 2]

while for Ag we have
Table 10 Dimensions of the projective irreducible representations of Ag.
Dim[A; \]  Irreducible representation

8 [A; 0]

24 [A, 1]:|:
56 [A; 2]+
64 [A; 21]
56 INER
48 [A; 31]

and finally for A;; we have
Table 11 Dimensions of the projective irreducible representations of Ay;.
Dim[A;A]  Irreducible representation

16 [A, O]i
144 [A;1]
560 [A; 2]
616 [A; 214
1200 [A; 3]
1584 [A:31].
1232 [A;32].
528 [A; 321]
1440 [A; 4]
1584 INLS
880 [A;42],
672 [A; 5]
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1.10. PSL(2,11) as a subgroup of SUs

The group PSL(2,11) is a natural subgroup of the special unitary group SUs with the
vector irreducible representation of SUs, {1}, branching to the complex x5 irreducible
representation of PSL(2,11). The SUs — PSL(2,11) branching rules may be readily
evaluated and a typical table is given below.

Table 12 The SU; — PSL(2,11) branching rules.

Dim()\) SUs  PSL(2,11)

1 {O} X1

0 {1} X2

15 {2} X3+ X5

10 {12} X4

35 {3} X1+ X5 + X7+ Xxs

40 {21} xs+x6+ X7+ X3

10 {13} X4

70 {4} 2x2 + X3 + 2x5 + X6 + X7 + Xs

105 {31} x2+2xa+ x5+ 2x6 + 2X7 + 2xs

50 {2%} X1+ Xz + 2X5 + X7 + X3

45 {212} xa+ X6+ X7+ X5

o {14} X3

126 {5} X1+ X2+ 2x3 + X4 + 3x5 + 2x6 + 2x7 + 2xs
224 {41} X2 + 2x3 + 4xa + 4x5 + 3x6 + 4x7 + 4xs

175 {32} X2 + 2x3 + 2X4 + 3X5 + 3x6 + 3x7 + 3xs
126 {312} x243xa+ x5+ 3x6 + 2x7 + 2Xs

75 {221} xo+xs+txa+2x5+ X6+ X7+ Xs

24 {21°} X7+ Xs

1 {15} X1

210 {6} 2x1 + 2x2 + 2x3 + X4 + 6x5 + 2x6 + 4x7 + 4xs
420 {51} 3x2 + 3x3 + Txa +4xs + 8xe + 8Xx7 + 8xs
420 {42} 2X1 + 4X2 + 4X3 + 5X4 + 7X5 + 6X6 + 8X7 + 8X8
280 {412} x2 4 2x3 + 5xa + 4x5 + 5X6 + B5x7 + Bxs

175 {3%} 6x1 + X5 + 3x6 + 3x7 + 3Xs

280 {321} 2x2+3x3 +3x4+ 5x5 + 5X6 + 5Xx7 + 5xs
70 {313} Xo+2xa+t X5+ X6+ X7+ Xs

50 {2%} X1+ X3+ 2x5 + X7 + X3

45 {221} xa+ X6+ X7+ X5

5 {21} x
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Table 12 The SU; — PSL(2,11) branching rules (continued).

Dim(\) SUs  PSL(2,11)

330 {7} X1+ 4x2 + 4x3 + 2x4 + Txs + 5xe + 6x7 + 6xs

720 {61} X1+ 6x2 4+ 5x3 + 11xa + 11x5 + 12x6 + 13x7 + 13xs
840 {52} 2x1 + Tx2 + 6x3 + 12x4 + 15x5 + 13x6 + 15x7 + 15x3s
540 {512} 3X2 + 3)(3 + 10X4 + 6X5 + 1OX6 + 10X7 + 1OX8

560 {43} 5x2 + 5x3 + 9xsa + Tx5 + 10x6 + 10x7 + 10xs

700 {421} 2x1 +6x2 + 5xs + 10x4 + 11xs + 11xs + 13x7 + 13xs
160 {413} x4 2x3 + 2Xa + 2X5 + 3X6 + 3x7 + 3xs

315 {321} X2+ 2x3 + 6x4 + 3x5 + 6x6 + 6x7 + 6xs

210 {322} X1+ 2x2 + 2x3 + 2xa + x5 + 3x6 + Axr + 4xs

175 {3212} x2 4 X3+ 3x4 + 3x5 + 3X6 + 3x7 + 3xs

15 {314} X3+ X5

40 {2°1}  Xxa+xe+ X7+ Xs

10 (2213}

1.11. SO(10) — PSL(2,11) Decompositions
Table 13 Some SO(10) — PSL(2,11) Decompositions

Dim[\]  SO(10) PSL(2,11)

1 [0] X1
10 [1] X2 + X3
45 [17] X1+ 2x4 + X7 + Xs
54 2] X2 + X3+ 2x5 + X7 + Xs
210 3] X1+ X2 + X3+ 4xa + 4xs + 2x6 + 4x7 + 4xs
320 [21] 3x2 + 3x3 + 6x4 + 2x5 + 6x6 + 6x7 + 6xs
120 [1°] X2 + X3 + 4xa + 2x6 + 2x7 + 2xs
660 [4] X1+ 8X2 + 8x3 + 5xa + 12x5 + 11x6 + 12x7 + 12xs
1386 [31] X1 + 10x2 + 10x3 + 21x4 + 205 + 25X6 + 25X7 + 25Xs
770 [22] 4dx1 + 6x2 + 6x3 + 10x4 + 16x5 + 10x6 + 14x7 + 14xs
945 [212] 62 + 6x3 + 17xs + 12x5 + 17x6 + 17x7 + 173
210 [14] X1+ 3x2 + 3xa + 2x5 + 3x6 + 4x7 + 3xs
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