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The sublime and the ridiculous are often so nearly
related, that it is difficult to class them sepa-
rately. One step above the sublime makes the
ridiculous, and one step above the ridiculous

makes the sublime again

—Thomas Paine. 1737-1809

ABSTRACT

The programme SCHUR, is an interactive C package for computing properties of Lie groups and
symmetric functions. We illustrate a number of examples where the use of SCHUR, has led to a several
interesting conjectures and to their ultimate establishment as hitherto unknown theorems. A number of
examples related to the non-compact group Sp(2n, R) and its subgroups are discussed. The potential of

SCHUR as a self-teaching tool is briefly considered.
1. Introduction

The range of problems requiring a detailed knowledge of the properties of Lie
groups, compact and non-compact, is well illustrated by the group-subgroup structure
relevant to N particles in a d—dimensional isotropic harmonic oscillator shown in Fig. 1.
The practical implementation of such a structure requires a knowledge of a host of group-
subgroup decompositions (or branching rules), Kronecker products and plethysms for both
compact and non-compact Lie groups as well as properties such as the dimensions and
Casimir operator eigenvalues of of irreducible representations . The non-trivial unitary

irreducible representations of non-compact Lie group Sp(2Nd, R) are infinite dimensional



and hence one must be able to determine properties up to a user chosen cutoff. In
determining the permutational symmetry of states one also needs to know decompositions
such as O(N) = S(N) where S(N) is the finite symmetric group acting on N particles. This
latter problem requires a knowledge of so-called inner plethysms which in turn requires a
knowledge of symmetric functions such as the Schur functions (S—functions for brevity).
Symmetric functions find many applications in chemistry and physics quite apart from

their intrinsic interest in mathematics.

Practioners find that whereas in simple cases it is possible to proceed with hand
calculations they rapidly achieve a state of mental exhaustion and doubts as to whether
their results are error free. The algorithms for carrying out calculations are often very
complex and frequently beyond the applicators knowledge. In making practical calcula-
tions, while understanding the basic physics of a given problem, the practioner should not

require a simultaneous detailed knowledge of the mathematics behind the calculations.

The objective of SCHUR'has been to supply results with the complex algorithms
fortunately hidden from view with the user able to obtain specific results and to be able
to use these results in a fully interactive manner, effectively using SCHUR as a scratch
pad. The development of SCHUR has occurred over many years and has been driven
by response to specific research problems and in the need to make available to students a

tool for learning about Lie groups by student creation of examples of practical examples.

In what follows I will first outline the tools included in SCHUR for carrying out

I The SCHUR package is available as a compiled C code for UNIX and DOS oper-
ating systems for IBM PC compatibles and work stations such as SUN, Hewlett-Packard
and Silicon Graphics. The distribution is through S. Christensen, PO Box 16175, Chapel
Hill, NC 27516 USA. Email: steve@smc.vnet.net . Additional details are available on the
WEB at http://smc.vnet.net/Christensen.html and at the authors WEB site at
http://www.phys.torun.pl/~bgw which contains downloadable versions of some of the

papers referenced below as well as further examples of the use of SCHUR.



the computations required to analyse group-subgroup structures such as displayed in Fig.
1 and then show how SCHUR has led to various conjectures that in turn have led to new
theorems. Finally I will briefly discuss the use of SCHUR as a self-instructing teaching

tool.
2. Labelling irreducible representations of Lie Groups

The basic object in SCHUR is the partition of an integer into integers. The
irreducible representations of the compact Lie groups[l-3], and certain of the unitary
irreducible representations of the non-compact Lie groups such as Sp(2n, R)[4,5], may
be uniquely by certain constrained partitions of integers, as for tensor representations,
or as half-integers for spinor representations. Such a notation is familiar to physicists
in the use of Young tableaux in describing tensors. The standard and spin irreducible
representations of the symmetric group may be similarly labelled. These labels are encased
in brackets according to the particular type of group being considered: curly brackets {,}
for U(n),U(p,q),SU(n),S(n); angular brackets <,> for Sp(2n), Sp(2n, R); square brackets
[,] for O(n),S0(n), SO*(2n); curved brackets for the exceptional groups Ga, Fy, Eg, Er, Es.
SCHUR automatically chooses the brackets appropriate to the set groups. SCHUR is
significantly different from programmes involving weight space constructions and Dynkin
diagrams though SCHUR will give translations of partition labels into Dynkin labels

and vice versa.

In certain calculations non-standard partition labels may arise. SCHUR will auto-
matically apply modification rules[1,6] to yield either signed standard labelled irreducible
representations or null results as appropriate as may be seen in the following SCHUR

fragment



DP>
->gréud4sobspb6e8sprbosp5,6
Groups are U(4) * SO(5) * Sp(6) * E(8) * Sp(6,R) * 0Sp(5/86)
DP>
—>[21%5174%321%21"T*s1;21%431]
{21} [s;1741<321>(21°7 )<s1;(21)>[431>

DP>
->std last

- {21}[s;172 1<321>(21°7 )<s1;(21)>[431>
DP>

where the input is distinguished by an arrow — >. Note that the SO(5) irreducible repre-
sentation labelled [s; 14] is non-standard and in the final line of output has been converted

into the standard irreducible representation [s; 12] with a negative sign.
3. Properties of irreducible representations

In practical applications one often needs to know the dimension of an irreducible
representationor a list of irreducible representations. Thus for the staircase partition of

weight 153 of S(153) we have the SCHUR fragment
REP>
->gr s153
Group is S(153)
REP>
->conv_s wt—-153 ser 153,t

{17 16 15 14 13 12 11 10 987654321}
REP>
->dim last
dimension=12671579865747532750746781433923532863503681425492319766
50253430956950626708285103360378018562189941581034579401
4793141889217331200
REP>

where in the second line of input we obtained the relevant partition from the t series of

staircase S—functions.

The eigenvalues of the Casimir invariants are useful in the study of model Hamil-
tonians[7,8]. SCHUR can present a number of properties upon invoking the command

<<prop>> as shown below:-
REP>
->gr e8
Group is E(8)
REP>
->prop42
<dynkin label>(00000020)

dimension=4881384 60*2nd-casimir=200
2nd-dynkin=65610



In the case of the group Sp(2n, R) the non-trivial unitary irreducible representations are
of infinite dimension and just the eigenvalue of the second-order Casimir operator is

evaluated. Thus

REP>

->gr spr8

Group is Sp(8,R)

REP>

->prop s1;21
4*2nd-casimir=300

REP>

where for Sp(2n, R) we have

o< 5500 >) = Sonl - 20y (2 220k o) (1)

The eigenvalues of higher order Casimir invariants may be evaluated for the compact Lie

groups.
4. Kronecker products of irreducible representations

SCHUR readily handles Kronecker products for the compact Lie groups. The
non-compact groups Sp(2n, R) require special consideration since the non-trivial unitary
irreducible representations are all of infinite dimension and results must be truncated to
a finite cutoff. Consider the two fundamental irreducible representations < s;(0) > and
< s;(1) > where s = ;. SCHUR readily yields the terms of the three possible Kronecker

products for Sp(6, R), to weight 15, as
REP>
p s;0,s;0
<1;(14 )> + <1;(12 )> + <1;(10 )> + <1;(8)> + <1;(86)> + <1;(4)>
+ <1;(2)> + <1;(0)>
REP>
p s;0,s;1
<1;(15 )> + <1;(13 )> + <1;(11 )> + <1;(9)> + <1;(7)> + <1;(5)>
+ <1;(3)> + <1;(1)>
REP>
p s;1,s;1
<1;(14 )> + <1;(12 )> + <1;(10 )> + <1;(8)> + <1;(86)> + <1;(4)>
+ <1;(2)> + <1;(172 )>
REP>

The above results lead to the conjecture that

<5;(0)>X<5;(0)>:§:<1;(2i)> (2a)



<5;(0)>><<5;(1)>:§:<1;(2i—|—1)> (20)

=0

<s;(l)>x<s(l)>=< 1;(12)>—|-§:<1;(2i)> (2¢)

i=0
Examination of Sp(2n, R) for n > 3 shows the result to continue to hold. Such results imply
the existence of certain S—function identities which play an essential part in proving the
conjectures which we shall not give here[9]. This gives us our first example of the way in

which SCHUR can uncover, hitherto unknown, general results.

As a further example, consider the group SU(4) whose adjoint irreducible repre-
sentation is {21%2}. Suppose {A} is a real irreducible representation of SU(4). We can
ask ourselves "How many times does the adjoint irreducible representation occur in the

Kronecker square of {A}7”. Consider the following results from SCHUR:-

REP>
gr su4
Group is SU(4)
REP>
p22,22

{4~2 F + {431} + {422} + {272} + {212 } + {0}
REP>
p211,211

{422 } + {3°2 2} + {31} + {272} + 2{21"2 } + {0}
REP>
p321,321

{642} + {63"2 } + {5"2 2} + 2{543} + {53}
+ 2{521} + {43 } + {42 } + 4{431} + 3{42"2 }
+ {4} + 3{3"2 2} + 3{31} + 2{2°2 } + 3{21"2 } + {0}
REP>

Note that in the above three products the SU(4) irreducible representation {212} occurs
with multiplicities 1, 2, and 3 respectively. Is it a coincidence that those numbers corre-
spond to the number of distinct steps in the Young diagrams of the partitions associated
with the partitions (22),(212),(321) respectively? For SU(5) the adjoint irreducible rep-
resentation is {213} and using SCHUR we find that {4321} > 4{213}. This leads us to
conject that the number of times the square of a real irreducible representation {A} of
SU(n) contains the adjoint irreducible representation is equal to the number of distinct
steps in the Young diagram of the partition (). Formal proofs of this conjecture are given

elsewhere[10,11]. The original inspiration came from use of SCHUR.



5. Symmetrized Kronecker powers

Plethysms for the classical compact Lie groups and the exceptional group G5 can
be evaluated in SCHUR. SCHUR can also resolve Kronecker powers of irreducible
representations of
Sp(2n, R) into their symmetrized components which amounts to evaluating plethysms.
Again such resolutions are given up to a user defined limit. Thus we find for the two

fundamental irreducible representations of Sp(6, R) to weight 15

REP>
pl s;0,2

<1;(12 )> + <1;(8)> + <1;(4)> + <1;(0)>
REP>
Pl s;0,11

<1;(14 )> + <1;(10 )> + <1;(6)> + <1;(2)>
REP>
pl s;1,2

<1;(14 )> + <1;(10 )> + <1;(6)> + <1;(2)>
REP>
pl s;1,11

<1;(12 )> + <1;(8)> + <1;(4)> + <1;(1"°2 )»>
REP>

The above results suggest that for general Sp(2n, R) we have

< 5:(0) > {2} = f; <1 (i) > (34)
< s (0)>®{12}:§:<1;(4i—|—2)> (3b)
=0
<5;(1)>®{2}:§;<1;(4i—|—2)> (3¢)
<s (1) >e{l*t=< 1;(12)>—|—§:<1;(4i—|—4)> (3d)
=0

Notice that the irreducible representations contained in Eq. (3b) and (3c) are identical

and implies the existence of hitherto unknown S—function identities[9].

Plethysms can play an important role in establishing selection rules. We alluded
to the problem of determining the number of times the adjoint irreducible representation
of a Lie group can occur in the Kronecker square of a real irreducible representation. The
natural extension is to ask "How many times does the adjoint irreducible representation

occur in each of the symmetrized Kronecker power of a real irreducible representation”.



This question has been answered elsewhere[10,11].
6. Group-subgroup decompositions

Figure 1 displays a very rich group-subgroup structure. To be of practical use
one must be able to make group-subgroup decompositions for every group-subgroup pair
displayed in Fig. 1. Recent extensions of SCHUR make it possible to determine all
such decompositions in a systematic and self-consistent manner. In the case of the group
being a non-compact group the decompositions are determined up to a user defined limit.
It the group is compact then the decomposition is complete. Most of the relevant cal-
culations are well beyond the possibilities of hand calculations. Nearly 60 generic types
of group-subgroup decompositions are available in SCHUR. By way of example we give
the following Sp(12,R) = Sp(4, R) x O(3) decomposition for the fundamental irreducible
representation < s;(0) > of Sp(12, R) where terms to weight 12 have been evaluated:-

DP>

->gr spri2

DP>

->br38,4,3gri[s;0]

Groups are  Sp(4,R) * 0(3)

<s1;(12 )>[12 1 + <s1;(11 1)>[11 J# + <s1;(10 )>[10 1 + <s1;(91)>[9]#
+ <s1;(8)>[8] + <s1;(71)>[71# + <s1;(6)>[6] + <s1;(51)>[5]#
+ <s1;(4)>[4] + <s1;(31)>[3]1# + <s1;(2)>[2] + <s1; (172 )>[1]#

+ <s1;(0)>[0]
DP>

The hash sign # is used to distinguish associated irreducible representations of O(3).
7. The O(n) = S(n) decompositions and inner plethysms

The O(n) = S(n) decompositions play an important role in determining the spin
states that arise in symplectic models of nuclei and mesoscopic systems such as quantum
dots[12-15]. The relevant branching rule can be succinctly written for tensor irreducible

representations [A] of O(n) as[16]
A =<1>a{)/G} (4)

where

G=3 (-1 )

€



The term, < 1 > @{\/G}, is an example of a reduced inner plethysm[17]. Such objects defy
description here, suffice to say that SCHUR automatically evalutes Eq. (4) and reduced
inner plethysms of the generic type <1 > @{\} and can systematically build up the more
general reduced inner plethysms < g > @{A}. As an example we obtain the result for

<21 > ®{21} as

<7l > +2<7> + <621 > +5<62> +5<612> 4+ 17<61>
+14<6> 4+ <bd> +2<53l> +9<53> + <5H22> + 2<521% >
+20<521 > +45<52> + <51t> +10<51®> +47<51%2> + 81 <51 >
+45<5> 4+ <4%1 > +5<4? > +3<432> 4+ 3<4312> + 25<431 >
+47<43> 4+ 3<4221> +20<422> 4+ 2<4213 > 4+ 30<4212> + 118 <421 >
+ 149 <42> 4+ 10<41t> +64<413> 4+ 163 <41?2> + 185<4l> + T8<4>
+3<3221> 4+ 16<3%22> + <321°>  4+20<3%12> +73<3%1> 4+82<32>
+ <323 > +2<32212> +25<3221 > 4 73<322> 4+ <321*>  +20< 3213 >
+ 118 <3212 >+ 270 < 321 > + 235 < 32> +5<31°> +47<31*> + 163 <31°>
+280<31%> +240<3l > +83<3> 4+ <2 > +5<2t> + 9 <2312 >
+47T<221> 4+ 82<22> +5<221t> 445 <221 > + 149 < 2212 >+ 235 < 221 >
+ 162 <22> 4 <21¢> +17<21°> 481 <21*> 4+ 185<213> + 240 <212 >
+ 173 <21l > +55<2> +2<17> +1M4<1%> 4+45<1°> 4+ 7W8<1t>
+83<1?> 4+55<1?2> +19<1> +2<0>

where SCHUR'’s ability to produce TEX output has been exploited. Inspecting the above
result one is immediately struck by the observation that the complete set of partitions is

self-associated as may be verified by the SCHUR fragment

SFN>

->setsllast

SFN>

->sub svi,conj svil
zZero

SFN>

Furthermore, the partition (21) is a staircase partition. Could it be that

if < pu>o{\y =< H >, where (u) and (X) are staircase partitions, then H is self-associated?
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If we try < 21 > ®{321} we find the conjecture holds! This motivates us to see if the
conjecture can be proved, as indeed it can[17]. This is but another of many examples of
the application of SCHUR being used to establish a conjecture and leading to a hitherto

unknown theorem.
8. SCHUR as a teaching tool

The above results have emphasized the use of SCHUR as a research tool. It
can also be useful as a teaching tool in the areas of group theory and in the theory
of symmetric groups. Here one can exploit the interactive nature of SCHUR to allow
the student to develop simple examples, such as computing the dimensions of simple
irreducible representations of S(n), drawing a Young frame, constructing the hook length
graph of a Young frame, computing Kronecker products in U(n) etc. A large array of help

files can be brought to screen describing every command with examples of its use.
9. Concluding remarks

In the preceding I have tried to illustrate a few applications of SCHUR. Many
other applications such as, to Riemann tensor polynomials[18], automorphisms of SO(8)
and the electronic f—shell[19], expansion of powers of the Vandermonde determinant in
S—functions[20], or the various aspects of the exceptional Lie groups in atomic physics
[21,22], have been omitted for reasons of space-time and are left to you to explore in the

literature.
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