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I have yet to see any problem, however compli-
cated, which, when you looked at it in the right

way, did not become still more complicated.
—Poul Anderson

ABSTRACT

The relevance of the mathematical concept of plethysm to physical problems is con-
sidered. The role of plethysm in symplectic many-body models is outlined with particular

emphasis on the case of the isotropic harmonic oscillator.
1. Introduction

The symmetrization postulate that the wavefunction for n identical fermions must
be totally antisymmetric with respect to positional permutations of the particles and that
for n identical bosons must be totally symmetric has a strong experimental underpinning
(See [1-3] and references therein). The construction of wavefunctions according to the
symmetrization postulate is central to many quantum physics applications. Note that
the symmetrization postulate refers to the total wavefunction. The total space of the
wavefunction may factor into the product of two, or more, subspaces as for example into
the product of a spin and an orbital space. The functions spanning these subspaces need

not be symmetric or antisymmetric with respect to permutations but may be of mixed



permutational symmetry. The only requirement is that the total space be symmetric or
antisymmetric. This means that the various subspaces will be symmetrized according
to particular irreducible representations of the symmetric group Sy in the case of an

N—particle system.

A common problem in physics is to have a set of functions that span an irreducible
representation A of some group G and to form an N-—fold product of these functions.
The resulting set of functions will span the irreducible representations contained in the
N —th Kronecker power of the irreducible representation A\. This Kronecker power may be

resolved into parts of definite permutation symmetry according to

VN =N e {p) (1)

pEN

where f%, is the dimension of the irreducible representation {p} of the symmetric group Sy
and the summation is over all standard partitions (p) of the integer N. The terms A ® {p}
represent the terms in the N —th Kronecker power of A that are symmetrized with respect
to permutations and transforming under the {p} irreducible representations of Sy. A @ {p}
will normally correspond to a reducible representation of the group G. The process of
resolving A@ {p} into irreducible representations of the group G is commonly referred to as
a plethysm, a term coined by D. E. Littlewood in connection with his "new multiplication

of S—functions”.

The group G may be a finite group, such as the octahedral @ ~ 84 or icosahedral
T ~ As groups, or a compact Lie group or a non-compact Lie group. The group ¢ may
be a simple group or a product of several groups of various types depending on the
nature of the physical problem being considered. The Schur functions[4-8] (S—functions
for brevity) play a key role in the practical resolution of plethysms[4,5,9-11]. The basic
ideas of symmetric functions and S—function plethysm are sketched in the proceedings
of an earlier school[12] and will not be repeated here. The key idea here is that if one
knows how to expand the characters of the group G as a sum of S—functions and inversely

express S—functions as characters of the group G[5,13-16] then the evaluation of plethysms



for the group G reduces to an evaluation of S—function plethysms.
2. Boson and fermion N— particle states

In many cases one needs to know what are the possible states for N identical bosons
or fermions. If A is a finite dimensional representation , not necessarily irreducible, of the
group G which is spanned by a finite set of single particle states then the relevant plethysms

are

xe {1V} For N fermions (2a)

Ao {N} For N bosons (20)

The symmetry postulate limits N in the case of fermions to dim(A)g whereas for bosons

there is no limit.

In the case of fermions or bosons having an angular momentum j = m/2 we have,

from Hermite’s reciprocity principle[17] for the binary full linear group,

fm}e {1V} ={m+1-N}o{N}, m+l>N (3a)
fm}e {1V} = {N}e{m+1-N}, m+l>N (30)
fm} @ {1V} = {m} @ (1" =N}, m 1> N (3¢)

The above results give a direct link between totally antisymmetric and totally symmetric
states. Thus from Eq.(3a) we see that the totally antisymmetric orbital states of ¢°
are in one-to-one correspondence with the totally symmetric orbital states of f2. From
Eq.(3b) we see there is a similar correspondence between the antisymmetric states of g*
and the symmetric states of d°. Finally the last equation, for jj-coupled states, exhibits
the well-known particle-hole symmetry or in the case of LS-coupled states the so-called

quarter-shell symmetry for states of maximum multiplicity.

The above examples all involve finite dimensional irreducible representations of a
compact Lie group. However, even for a single fermion or boson the total set of states
is infinite. In the well-known case of the isotropic three-dimensional harmonic oscillator

the states are all discrete whereas in the corresponding Coulomb problem there are both



discrete and continuum states. The enumeration of the states for N—particles in a har-
monic or Coulomb problem raise new aspects of plethysm involving infinite dimensional
irreducible representations of non-compact Lie groups. Here we shall restrict discussion
to the problem of n—particles in an isotropic harmonic oscillator potential, the first step

in symplectic models of nuclei and certain mesoscopic systems.
3. The harmonic oscillator dynamical group for a single particle

The dynamical group for a single particle in an isotropic three-dimensional har-
monic oscillator is the non-compact symplectic group Sp(6, R). The associated Lie algebra
is readily constructed from bilinear products of boson annihilation and creation operators
defined in terms of the coordinates and momenta of the oscillator[18]. The complete set
of states span two infinite dimensional unitary irreducible representations of the group
Sp(6, R) which I shall designate as < ;(0) > and < £;(1) >[19-22]. These two irreducible
representations belong to a single irreducible representation of the metaplectic group
Mp(6) which is the covering group of Sp(6, R).

The group Sp(6,R) has the group U(3) as a maximal compact Lie subgroup and

under the reduction Sp(6, R) = U(3)[15,16]

< %; (0) >=e3 ({0} + {2} + {4} +..)

=My (4a)
< %; (1) >=es ({1} + {3} + {5} +...)

=M (4b)

where M} and M_ are respectively the even and odd terms of the infinite S— function series
indexed by the one part partitions (m) with m =0,1,...,cc. Thus for a single particle the
< £;(0) > and < 3;(1) > irreducible representations of Sp(6, R) are spanned by the even

and odd parity states respectively.
4. Symplectic many-particle models and plethysms

Generalisation of the dynamical group approach for N identical non-interacting



particles in a d—dimensional isotropic harmonic oscillator potential is straightforward[20-
24]. The complete set of states span a single irreducible representation of the metaplectic
group Mp(2Nd), the covering group of Sp(2N D, R). The metaplectic group Mp(2Nd) has
a very rich subgroup structure[20,21,23] as shown in Fig.1. These subgroup structures
can be determined by contracting on particle or spatial indices. The diversity of the
subgroup structures reflect different ways of separating the spatial and particle number
dependencies. This topic has been discussed in the proceedings of our last school[20] and
will not be explored further here. The even parity N—particle states span the < 1;(0) >
1

irreducible representation of Sp(2Nd) and those of odd parity that of < 1;(1) >. These

irreducible representations may be decomposed using the typical group chain
Sp(2ND, R) D Sp(2N, R) x O(d) D Sp(2N, R) x S(d) (5)

with the O(d) = S(d) leading to a determination of the spins of the various states. Such
symplectic models for N—particles are important in the description of certain nuclear[25-
28] and mesoscopic models[21]. These problems involve infinite dimensional unitary irre-
ducible representations and the resolution of the Kronecker powers of the basic irreducible
representations < 1;(0) > and < 1; (1) > for groups of the generic type Sp(2n, R) and hence
the evaluation of plethysms for these irreducible representations arises. Plethysms for the
reducible representation < 3;(0) > + < 3;(1) > have already been considered in the liter-
ature[27,28]. If one wishes to maintain close contact with configurations of particles in
the usual shell model presentations it is desirable to be able to compute separately the
plethysms

<HO>op)  ad < g o) (6)

More generally, one may wish to compute plethysms of the generic type

< 3> e (7)
where under Sp(2n, R) = U(n)[16]
B NS DG Dyin N = min(n, k) (8)
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with {X;}* being a signed sequence[15,16] of terms +{p} such that +[p] is equivalent to
[A] under the modification rules[13,14] for the group O(k) and Dy the infinite S—function
series indexed by even partitions into not more than N parts. The first - indicates a
product in U(n) and the second - a product in U(N). Specific examples of this branching
rule are given elsewhere[15,16]. The decomposition in Eq.(8) will normally involve an
infinite series of U(n irreducible representations and hence in practical applications the

series must be truncated.

Likewise, the plethysms typified by Eqs. (6) and (7) will also involve an infinite
series of Sp(2n, R) irreducible representations and must be truncated in practical applica-

tions. In general

s> =Yg <5 (9)

T

where

=k x|v| (10)
where the ¢7 are non-negative integers.

A practical, though far from optimal, way of evaluating Sp(2n, R) plethysms for
the irreducible representation < £;(X) > is to first use Eq.(8) to express < £;()) > in
terms of list of U(n) irreducible representations up to a chosen cutoff. Then select from
the list the U(n) irreducible representation of lowest weight, say {p,}. Noting Eq. (8),
this implies that at the Sp(2n, R) level the plethysm necessarily contains the Sp(2n, R)
irreducible representation < £;(pn) >. Thus we may remove from the list of U(n) irre-
ducible representations all those derived from < £;(p,) >. The lowest weight irreducible
representation contained in the residue of the U/(n) list is identified and the U(n) content

of the next Sp(2n, R) irreducible representation removed. This process is continued up to

the chosen cutofl.

Clearly the above method is completely impossible for hand calculations but has
been implemented in the current version of SCHURJ[29] which is the topic of my second

lecture.



The plethysms of the irreps < s;(0) > and < s;(1) > are of particular interest in
physics applications. The resolution of their Kronecker squares is straightforward. The
terms, to weight 16, for plethysms for up to power 4 are relevant to the description
of the states of two to four particles in an isotropic three-dimensional harmonic oscil-
lator and have been evaluated. The tabulated results are available at the WEB site
http://www.phys.uni.torun.pl/~bgw/.

5. Properties of Sp(2n, R) plethysms

The advantage of having available even limited tables of Sp(2n, R) plethysms is
that they can be a source of clues for a deeper understanding of such plethysms and to
suggest new identities[30]. Our detailed understanding of even plethysms for S—functions
remains as very limited and does not encourage the search for properties of more general
plethysms. Nevertheless some progress has been made[19,21,22,30] which we now briefly
review. In the particular case of the Kronecker squares of < s;(0) > and < s;(1) > one is

able to establish the complete results:-

<s(0)> o2 =3 < 15 (044i) > (11)
1=0

<5(0)> 017} =3 < (24 4i) > (12)
1=0

cs(D>o) =Y <124 4i) > (13)
1=0

<s;(1) > e{l*}=< 1;(12)>—|-§:<1;(4—|-4i)> (14)

1=0

which hold for all Sp(2n, R) with n > 2. For n =1 the irrep < 1;(1?) > in Eq.(14) must be
deleted. Further, one notices that the right-hand sides of Eqs. (12) and (13) are identical

showing that
<5(0) > a{1* =<5 (1) > {2} (15)

Even more surprising is the equivalence

<5:(0) > {21*} =< 5;(1) > {31} (16)



These equivalences are associated with hitherto unknown S—function identities such as[22]
Myo{1*}=M_ {2} (17)

and

My {212y = M_ @ {31} (18)

There are many hints that much remains to be discovered about the properties of
Sp(2n, R) plethysms. Inspection of tables for the plethyms < s;(0) > @{A} and < s;(1) >
@{A} where X is the conjugate of A suggests that the two plethysms are remarkably related

by one-to-one mappings such that if

<s5(0) >} =g <ki(p) > (19)

where k = |A|/2 and ¢# is the multiplicity, then the terms g# < k;(x) > in < s;(1) > @{A}
are identical to those in Eq. (19) apart from those that are related by the following simple

(u) one-to-one mappings

Ak2 (0) — (12)

Ak3 0)—=(1%)  (a)=(al)  (al)—(a)

A4 0)—1%)  (a)=(al?)  (al?)—(a)

AED (0) — (1°) (a) = (al?®)  (al®)—(a)  (ab) — (abl)  (abl) — (ab)
A6 (0) — (18) (a) = (al?)  (al*)—(a)  (ab) — (abl?) (abl?)— (ab)

(20)
That such simple relationships seem to exist is by no means evident from the methods
used to establish the plethysms and hints at an underlying simplicity that remains to be

discovered and a conjugacy theorem still to be exposed.
6. Back to the harmonic oscillator

The above remarks give an increased understanding of even the case of two parti-
cles. It follows from the plethysm identity, Eq. (15), that for the even-parity two-particle

states there is a one-to-one correspondence between the spin triplet states formed by two-



particles in even-parity orbitals with the spin singlet states formed by two particles in
odd-parity orbitals, a feature of the much studied isotropic three-dimensional harmonic
oscillator potential that does not seem to have been hitherto observed. One finds that
the plethysms exhibit stability properties[22] and hence certain plethysms for Sp(2n, R)
become independent of n and this must in turn be reflected in relating systems having
different numbers of particles. It is now possible to systematically establish the Sp(2n, R)
irreducible representations relevant to a particular many-particle symplectic model. The
evaluation of the decompositions for all the group-subgroup combinations exhibited in
Fig. 1 are, in principle known, and readily computable. Nevertheless much remains to
be done. Problems relating to multiplicity separation remain to be considered. Already
enough is known to be able to discuss model Hamiltonians for explicit systems and much

such work has been done in the case of nuclear symplectic models[25,26].
7 The Coulomb many-particle problem

As in the case of the harmonic oscillator it is possible to construct a dynamical
group for a single charged particle in a spherically symmetric Coulomb field such as
for the hydrogen atom[18]. The situation is complicated by the existence of an energy
spectrum involving a discrete and a continuous part. The relevant dynamical group
is SO(4,2) ~ SU(2,2). Virtually nothing is known about plethysms for these groups and
relatively little of their general group-subgroup decompositions. I know of no construction

of a dynamical group structure similar to that shown in Fig. 1 for the harmonic oscillator.
8. Concluding remarks

The concept of plethysm developed originally as a part of the theory of symmetric
functions but now finds wide application in many areas of physics and chemistry. Here we
have merely sketched a few areas having said nothing about applications to selection rules,
enumeration of effective operators, determination of normal forms for tensor polynomials
of objects such as the Riemann tensor, explicit determination of the place of the adjoint

representation in the Kronecker square of irreducible representations of simple Lie groups



10

etc. Many of the results draw on developments in mathematics while others raise new

problems in mathematics.
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