
1Plethysm in Physics and Chemistry ApplicationsB.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPoland(e-mail:bgw@phys.uni.torun.pl)I have yet to see any problem, however compli-cated, which, when you looked at it in the rightway, did not become still more complicated.|Poul AndersonABSTRACTThe relevance of the mathematical concept of plethysm to physical problems is con-sidered. The role of plethysm in symplectic many-body models is outlined with particularemphasis on the case of the isotropic harmonic oscillator.1. IntroductionThe symmetrization postulate that the wavefunction for n identical fermions mustbe totally antisymmetric with respect to positional permutations of the particles and thatfor n identical bosons must be totally symmetric has a strong experimental underpinning(See [1-3] and references therein). The construction of wavefunctions according to thesymmetrization postulate is central to many quantum physics applications. Note thatthe symmetrization postulate refers to the total wavefunction. The total space of thewavefunction may factor into the product of two, or more, subspaces as for example intothe product of a spin and an orbital space. The functions spanning these subspaces neednot be symmetric or antisymmetric with respect to permutations but may be of mixed



2 permutational symmetry. The only requirement is that the total space be symmetric orantisymmetric. This means that the various subspaces will be symmetrized accordingto particular irreducible representations of the symmetric group SN in the case of anN�particle system.A common problem in physics is to have a set of functions that span an irreduciblerepresentation � of some group G and to form an N�fold product of these functions.The resulting set of functions will span the irreducible representations contained in theN � th Kronecker power of the irreducible representation �. This Kronecker power may beresolved into parts of de�nite permutation symmetry according to��N =X�`N f�N�
 f�g (1)where f�N is the dimension of the irreducible representation f�g of the symmetric group SNand the summation is over all standard partitions (�) of the integer N . The terms �
 f�grepresent the terms in the N � th Kronecker power of � that are symmetrized with respectto permutations and transforming under the f�g irreducible representations of SN . �
f�gwill normally correspond to a reducible representation of the group G. The process ofresolving �
f�g into irreducible representations of the group G is commonly referred to asa plethysm, a term coined by D. E. Littlewood in connection with his "new multiplicationof S�functions".The group G may be a �nite group, such as the octahedral O � S4 or icosahedralI � A5 groups, or a compact Lie group or a non-compact Lie group. The group G maybe a simple group or a product of several groups of various types depending on thenature of the physical problem being considered. The Schur functions[4-8] (S�functionsfor brevity) play a key role in the practical resolution of plethysms[4,5,9-11]. The basicideas of symmetric functions and S�function plethysm are sketched in the proceedingsof an earlier school[12] and will not be repeated here. The key idea here is that if oneknows how to expand the characters of the group G as a sum of S�functions and inverselyexpress S�functions as characters of the group G[5,13-16] then the evaluation of plethysms



3for the group G reduces to an evaluation of S�function plethysms.2. Boson and fermion N� particle statesIn many cases one needs to know what are the possible states for N identical bosonsor fermions. If � is a �nite dimensional representation , not necessarily irreducible, of thegroup G which is spanned by a �nite set of single particle states then the relevant plethysmsare �
 f1Ng For N fermions (2a)�
 fNg For N bosons (2b)The symmetry postulate limits N in the case of fermions to dim(�)G whereas for bosonsthere is no limit.In the case of fermions or bosons having an angular momentum j = m=2 we have,from Hermite's reciprocity principle[17] for the binary full linear group,fmg 
 f1Ng = fm+ 1� Ng 
 fNg; m+ 1 � N (3a)fmg 
 f1Ng = fNg 
 fm+ 1� Ng; m+ 1 � N (3b)fmg 
 f1Ng = fmg 
 f1m+1�Ng; m+ 1 � N (3c)The above results give a direct link between totally antisymmetric and totally symmetricstates. Thus from Eq.(3a) we see that the totally antisymmetric orbital states of g3are in one-to-one correspondence with the totally symmetric orbital states of f3. FromEq.(3b) we see there is a similar correspondence between the antisymmetric states of g4and the symmetric states of d5. Finally the last equation, for jj-coupled states, exhibitsthe well-known particle-hole symmetry or in the case of LS-coupled states the so-calledquarter-shell symmetry for states of maximum multiplicity.The above examples all involve �nite dimensional irreducible representations of acompact Lie group. However, even for a single fermion or boson the total set of statesis in�nite. In the well-known case of the isotropic three-dimensional harmonic oscillatorthe states are all discrete whereas in the corresponding Coulomb problem there are both



4 discrete and continuum states. The enumeration of the states for N�particles in a har-monic or Coulomb problem raise new aspects of plethysm involving in�nite dimensionalirreducible representations of non-compact Lie groups. Here we shall restrict discussionto the problem of n�particles in an isotropic harmonic oscillator potential, the �rst stepin symplectic models of nuclei and certain mesoscopic systems.3. The harmonic oscillator dynamical group for a single particleThe dynamical group for a single particle in an isotropic three-dimensional har-monic oscillator is the non-compact symplectic group Sp(6; R). The associated Lie algebrais readily constructed from bilinear products of boson annihilation and creation operatorsde�ned in terms of the coordinates and momenta of the oscillator[18]. The complete setof states span two in�nite dimensional unitary irreducible representations of the groupSp(6; R) which I shall designate as < 12; (0) > and < 12 ; (1) >[19-22]. These two irreduciblerepresentations belong to a single irreducible representation of the metaplectic groupMp(6) which is the covering group of Sp(6; R).The group Sp(6; R) has the group U(3) as a maximal compact Lie subgroup andunder the reduction Sp(6; R) ) U(3)[15,16]< 12 ; (0) >)" 12 (f0g+ f2g+ f4g+ : : :)= " 12M+ (4a)< 12 ; (1) >)" 12 (f1g+ f3g+ f5g+ : : :)= " 12M� (4b)where M+ and M� are respectively the even and odd terms of the in�nite S� function seriesindexed by the one part partitions (m) with m = 0;1; : : : ;1. Thus for a single particle the< 12 ; (0) > and < 12; (1) > irreducible representations of Sp(6; R) are spanned by the evenand odd parity states respectively.4. Symplectic many-particle models and plethysmsGeneralisation of the dynamical group approach for N identical non-interacting



5particles in a d�dimensional isotropic harmonic oscillator potential is straightforward[20-24]. The complete set of states span a single irreducible representation of the metaplecticgroup Mp(2Nd), the covering group of Sp(2ND;R). The metaplectic group Mp(2Nd) hasa very rich subgroup structure[20,21,23] as shown in Fig.1. These subgroup structurescan be determined by contracting on particle or spatial indices. The diversity of thesubgroup structures re
ect di�erent ways of separating the spatial and particle numberdependencies. This topic has been discussed in the proceedings of our last school[20] andwill not be explored further here. The even parity N�particle states span the < 12; (0) >irreducible representation of Sp(2Nd) and those of odd parity that of < 12 ; (1) >. Theseirreducible representations may be decomposed using the typical group chainSp(2ND;R) � Sp(2N;R) �O(d) � Sp(2N;R) � S(d) (5)with the O(d) ) S(d) leading to a determination of the spins of the various states. Suchsymplectic models for N�particles are important in the description of certain nuclear[25-28] and mesoscopic models[21]. These problems involve in�nite dimensional unitary irre-ducible representations and the resolution of the Kronecker powers of the basic irreduciblerepresentations < 12; (0) > and < 12 ; (1) > for groups of the generic type Sp(2n;R) and hencethe evaluation of plethysms for these irreducible representations arises. Plethysms for thereducible representation < 12 ; (0) > + < 12; (1) > have already been considered in the liter-ature[27,28]. If one wishes to maintain close contact with con�gurations of particles inthe usual shell model presentations it is desirable to be able to compute separately theplethysms < 12; (0) > 
f�g and < 12 ; (1) > 
f�g (6)More generally, one may wish to compute plethysms of the generic type< k2 ; (�) > 
f�g (7)where under Sp(2n;R) ) U(n)[16]< k2; (�) >) " k2 � ff�sgkN �DNgN N = min(n; k) (8)



6 with f�sgk being a signed sequence[15,16] of terms �f�g such that �[�] is equivalent to[�] under the modi�cation rules[13,14] for the group O(k) and DN the in�nite S�functionseries indexed by even partitions into not more than N parts. The �rst � indicates aproduct in U(n) and the second � a product in U(N). Speci�c examples of this branchingrule are given elsewhere[15,16]. The decomposition in Eq.(8) will normally involve anin�nite series of U(n irreducible representations and hence in practical applications theseries must be truncated.Likewise, the plethysms typi�ed by Eqs. (6) and (7) will also involve an in�niteseries of Sp(2n;R) irreducible representations and must be truncated in practical applica-tions. In general < k2; (�) > 
f�g =X� c�� < 2̀ ; (�) > (9)where ` = k � j�j (10)where the c�� are non-negative integers.A practical, though far from optimal, way of evaluating Sp(2n;R) plethysms forthe irreducible representation < k2 ; (�) > is to �rst use Eq.(8) to express < k2 ; (�) > interms of list of U(n) irreducible representations up to a chosen cuto�. Then select fromthe list the U(n) irreducible representation of lowest weight, say f�mg. Noting Eq. (8),this implies that at the Sp(2n;R) level the plethysm necessarily contains the Sp(2n;R)irreducible representation < 2̀ ; (�m) >. Thus we may remove from the list of U(n) irre-ducible representations all those derived from < 2̀ ; (�m) >. The lowest weight irreduciblerepresentation contained in the residue of the U(n) list is identi�ed and the U(n) contentof the next Sp(2n;R) irreducible representation removed. This process is continued up tothe chosen cuto�.Clearly the above method is completely impossible for hand calculations but hasbeen implemented in the current version of SCHUR[29] which is the topic of my secondlecture.



7The plethysms of the irreps < s; (0) > and < s; (1) > are of particular interest inphysics applications. The resolution of their Kronecker squares is straightforward. Theterms, to weight 16, for plethysms for up to power 4 are relevant to the descriptionof the states of two to four particles in an isotropic three-dimensional harmonic oscil-lator and have been evaluated. The tabulated results are available at the WEB sitehttp://www.phys.uni.torun.pl/�bgw/.5. Properties of Sp(2n;R) plethysmsThe advantage of having available even limited tables of Sp(2n;R) plethysms isthat they can be a source of clues for a deeper understanding of such plethysms and tosuggest new identities[30]. Our detailed understanding of even plethysms for S�functionsremains as very limited and does not encourage the search for properties of more generalplethysms. Nevertheless some progress has been made[19,21,22,30] which we now brie
yreview. In the particular case of the Kronecker squares of < s; (0) > and < s; (1) > one isable to establish the complete results:-< s; (0) > 
f2g = 1Xi=0 < 1; (0 + 4i) > (11)< s; (0) > 
f12g = 1Xi=0 < 1; (2 + 4i) > (12)< s; (1) > 
f2g = 1Xi=0 < 1; (2 + 4i) > (13)< s; (1) > 
f12g =< 1; (12) > + 1Xi=0 < 1; (4 + 4i) > (14)which hold for all Sp(2n;R) with n � 2. For n = 1 the irrep < 1; (12) > in Eq.(14) must bedeleted. Further, one notices that the right-hand sides of Eqs. (12) and (13) are identicalshowing that < s; (0) > 
f12g �< s; (1) > 
f2g (15)Even more surprising is the equivalence< s; (0) > 
f212g �< s; (1) > 
f31g (16)



8 These equivalences are associated with hitherto unknown S�function identities such as[22]M+ 
 f12g � M� 
 f2g (17)and M+ 
 f212g � M� 
 f31g (18)There are many hints that much remains to be discovered about the properties ofSp(2n;R) plethysms. Inspection of tables for the plethyms < s; (0) > 
f�g and < s; (1) >
f~�g where ~� is the conjugate of � suggests that the two plethysms are remarkably relatedby one-to-one mappings such that if< s; (0) > 
f�g =X� g� < k; (�) > (19)where k = j�j=2 and g� is the multiplicity, then the terms g� < k; (�) > in < s; (1) > 
f~�gare identical to those in Eq. (19) apart from those that are related by the following simple(�) one-to-one mappings� ` 2 (0) ! (12)� ` 3 (0) ! (13) (a) ! (a1) (a1) ! (a)� ` 4 (0) ! (14) (a) ! (a12) (a12) ! (a)� ` 5 (0) ! (15) (a) ! (a13) (a13) ! (a) (ab) ! (ab1) (ab1) ! (ab)� ` 6 (0) ! (16) (a) ! (a14) (a14) ! (a) (ab) ! (ab12) (ab12) ! (ab)(20)That such simple relationships seem to exist is by no means evident from the methodsused to establish the plethysms and hints at an underlying simplicity that remains to bediscovered and a conjugacy theorem still to be exposed.6. Back to the harmonic oscillatorThe above remarks give an increased understanding of even the case of two parti-cles. It follows from the plethysm identity, Eq. (15), that for the even-parity two-particlestates there is a one-to-one correspondence between the spin triplet states formed by two-



9particles in even-parity orbitals with the spin singlet states formed by two particles inodd-parity orbitals, a feature of the much studied isotropic three-dimensional harmonicoscillator potential that does not seem to have been hitherto observed. One �nds thatthe plethysms exhibit stability properties[22] and hence certain plethysms for Sp(2n;R)become independent of n and this must in turn be re
ected in relating systems havingdi�erent numbers of particles. It is now possible to systematically establish the Sp(2n;R)irreducible representations relevant to a particular many-particle symplectic model. Theevaluation of the decompositions for all the group-subgroup combinations exhibited inFig. 1 are, in principle known, and readily computable. Nevertheless much remains tobe done. Problems relating to multiplicity separation remain to be considered. Alreadyenough is known to be able to discuss model Hamiltonians for explicit systems and muchsuch work has been done in the case of nuclear symplectic models[25,26].7 The Coulomb many-particle problemAs in the case of the harmonic oscillator it is possible to construct a dynamicalgroup for a single charged particle in a spherically symmetric Coulomb �eld such asfor the hydrogen atom[18]. The situation is complicated by the existence of an energyspectrum involving a discrete and a continuous part. The relevant dynamical groupis SO(4;2) � SU(2;2). Virtually nothing is known about plethysms for these groups andrelatively little of their general group-subgroup decompositions. I know of no constructionof a dynamical group structure similar to that shown in Fig. 1 for the harmonic oscillator.8. Concluding remarksThe concept of plethysm developed originally as a part of the theory of symmetricfunctions but now �nds wide application in many areas of physics and chemistry. Here wehave merely sketched a few areas having said nothing about applications to selection rules,enumeration of e�ective operators, determination of normal forms for tensor polynomialsof objects such as the Riemann tensor, explicit determination of the place of the adjointrepresentation in the Kronecker square of irreducible representations of simple Lie groups



10 etc. Many of the results draw on developments in mathematics while others raise newproblems in mathematics.AcknowledgementThis work has been supported by Polish KBN Grant 18/p3/94/07.



11References[1] M. de Angelis, G. Gagliardi, L. Gianfrani and G. M. Tino, Test of the symmetriza-tion postulate for spin-0 particles, Phys. Rev. Lett. 76 (1996) 2840-3 .[2] R. C. Hilborn and C. L. Yuca, Spectroscopic test of the symmetrization postulatefor spin-0 nuclei, Phys. Rev. Lett. 76 (1996) 2844-7.[3] O. W. Greenberg, A testing time for bosons, Phys. World 9 (1996) 27.[4] D. E. Littlewood, The Theory of Group Characters, 2nd ed. (Clarendon Press,Oxford, 1950).[5] B. G. Wybourne, Symmetry Principles in Atomic Spectroscopy (Wiley , New York,1970).[6] G. D. James and A. Kerber, The Representation Theory of the Symmetric Group,(Addison-Wesley, Reading, 1981).[7] B. E. Sagan, The Symmetric Group (Wadsworth & Brooks/Cole mathematics se-ries, Paci�c Grove, 1991).[8] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed. (ClarendonPress, Oxford 1995).[9] S. P. O. Plunkett, Plethysm of S�functions Can. J. Math. 24 (1972) 541-52.[10] P. H. Butler and R. C. King, Branching rules for U(N) � U(M) and the evaluationof outer plethysms, J. Math. Phys. 14 (1973) 741-5.[11] Y. M. Chen, A. M. Garsia and J. Remmel, Algorithms for plethysm, Contemp.Math. 34 (1984) 109-53.[12] B. G. Wybourne, Symmetric Functions and Their Application to Problems inPhysics, in W. Florek, D. Lipi�nski and T. Lulek, Symmetry and Structural Prop-erties of Condensed Matter (World Sci., Singapore, 1993) 79-100.[13] R. C. King, Branching rules for the classical Lie groups using tensor and spinormethods, J. Phys. A: Math. Gen. 8 (1975) 429-49.



12 [14] G. R. E. Black, R. C. King and B. G. Wybourne, Kronecker products for compactsemisimple Lie groups, J. Phys. A: Math. Gen. 16 (1983) 1555-89.[15] D. J. Rowe, B. G. Wybourne and P. H. Butler, Unitary representations, branchingrules and matrix elements for the non-compact symplectic groups, J. Phys. A:Math. Gen. 18 (1985) 939-53[16] R. C. King and B. G. Wybourne, Holomorphic discrete series unitary irreduciblerepresentations of non-compact Lie groups: Sp(2n;R); U(p; q) and SO�(2n), J. Phys.A: Math. Gen. 18 (1985) 3113-39.[17] B. G. Wybourne, Hermite's reciprocity law and the angular-momentum states ofequivalent particle con�gurations, J. Math. Phys. 10 (1969) 467-71.[18] B. G. Wybourne, Classical groups for physicists (Wiley , New York, 1974).[19] B. G. Wybourne, Plethysm and Symplectic Models, Lithuanian J. Phys. 36 (1996)159-61.[20] K. Grudzinski and B. G. Wybourne, Computing properties of the non-compactgroups Mp(2n) and Sp(2n;R) using SCHUR, in T. Lulek, W. Florek and S. Wa lcerz,Symmetry and Structural Properties of Condensed Matter (World Sci., Singapore,1995) 469-93.[21] K. Grudzinski and B. G. Wybourne, Symplectic models of n-particle systems, Rept.Math. Phys. (In Press) (1996)[22] K. Grudzinski and B. G. Wybourne, Plethysm for the noncompact group Sp(2n,R)and new S-function identities, J. Phys. A:Math. Gen. (In Press) (1996).[23] R. W. Haase and N. F. Johnson, Classi�cation of N�electron states in a quantumdot, Phys. Rev. B48 (1993) 1583-94.[24] B. G. Wybourne, Applications of S�functions to the quantum Hall e�ect andquantum dots, Rept. Math. Phys. 34 (1994) 9-15.



13[25] D. J. Rowe, Microscopic theory of the nuclear collective model, Rept. Prog. Phys.48 (1985) 1419-80.[26] V. V. Vanagas, Algebraic foundation of the microscopic nuclear theory (In Russian)(Moscow: Nauka, 1988).[27] M. J. Carvalho, Symmetrised Kronecker products of the fundamental representa-tion of Sp(n;R), J. Phys. A: Math. Gen. 23 (1990) 1909-27.[28] B. G. Wybourne, The representation space of the nuclear symplectic Sp(6; R) shellmodel, J. Phys. A: Math. Gen. 25 (1992) 4389-98.[29] SCHUR An interactive program for calculating properties of Lie groups and sym-metric functions, distributed by S. Christensen Email: steve@scm.vnet.net,http://scm.vnet.net/Christensen.html and http://www.phys.uni.torun.pl/�bgw/.[30] B. G. Wybourne, Guesses - Hunches - Formulae - Discoveries, Adv. QuantumChem. (1996) (In Press).


