Talk to be given at the ICM98 Satellite Conference on Representations of finite groups and combinatorics, August 10-14 (1998), Magdeburg, Germany

S-functions applied to the theory of non-compact Lie groups

Brian G. Wybourne

Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland

And yet the mystery of mysteries is to view machines making machines; a spectacle that fills the mind with curious, and even awful, speculation.

[—] Benjamin Disraeli: Coningsby (1844)

Introduction

- 1. Infinite series of S-functions
- 2. Application to compact Lie groups
- 3. The non-compact Lie groups: $Sp(2n, \Re)$, $SO^*(2n)$ and U(p,q)
- 4. The discrete harmonic series irreducible representations
- 5. Branching Rules for non-compact groups
- 6. Physical applications require the analysis of plethysms of irreducible representations of non-compact groups.
- 7. Further S-function identities
- 8. Patterns in plethysms for $Sp(2n, \Re)$
- 9. Relationships between irreducible representations
- 10. Plethysm identities for U(p,q)
- 11. Combinatorial identities
- 12. Concluding remarks

1. Infinite Series of S-functions

$$A = \sum_{\alpha} (-1)^{\frac{a}{2}} \{\alpha\} \qquad B = \sum_{\beta} \{\beta\}$$

$$C = \sum_{\gamma} (-1)^{\frac{c}{2}} \{\gamma\} \qquad D = \sum_{\delta} \{\delta\}$$

$$E = \sum_{\varepsilon} (-1)^{(\frac{e+r}{2})} \{\varepsilon\} \qquad F = \sum_{\zeta} \{\zeta\}$$

$$L = \sum_{m} (-1)^{m} \{1^{m}\} \qquad M = \sum_{m} \{m\}$$

$$P = \sum_{m} (-1)^{m} \{m\} \qquad Q = \sum_{m} \{1^{m}\}$$

$$V = \sum_{\omega} (-1)^{q} \{\omega'\} \qquad W = \sum_{\omega} (-1)^{q} \{\omega\}$$

$$AB = CD = EF = LM = PQ = VW = 1 = \{0\}$$

$$PM = AD = W$$
, $LQ = BC = V$, $LA = PC = E$

R C King, Luan Dehuai & B G Wybourne, J.Phys.A:Math.Gen 14, 2502 (1981)

2. Application to compact Lie groups Unitary irreducible representations are all of finite dimension.

$$U(n) \to U(n-1)$$

$$\{\lambda\} \to \{\lambda/M\}$$

$$U(n) \to O(n)$$

$$\{\lambda\} \to [\lambda/D]$$

$$U(2n) \to Sp(2n)$$

$$\{\lambda\} \to \langle\lambda/B\rangle$$

$$Sp(2n) \to U(2n) \to O(n)$$

 $\langle \lambda \rangle \to \{\lambda/A\} \to [\lambda/AD]$

$$Sp(2n) \to O(2n)$$

 $\langle \lambda \rangle \to [\lambda/W]$
 $O(2n) \to Sp(2n)$
 $[\lambda] \to \langle \lambda/V \rangle$

G R E Black, R C King & B G Wybourne, J.Phys.A:Math.Gen 16, 1555 (1983)

3. The Non-compact groups $Sp(2n, \Re)$, U(p,q) and $SO^*(2n)$

Non-trivial unitary irreducible representations are all of infinite dimension.

$$Sp(2n, \Re) \to U(n)$$

 $\langle \frac{1}{2}(0) \rangle \to \varepsilon^{\frac{1}{2}} M_{+}$
 $\langle \frac{1}{2}(1) \rangle \to \varepsilon^{\frac{1}{2}} M_{-}$

$$M_{+} = \sum_{m=0}^{\infty} \{2m\}$$

$$M_{-} = \sum_{m=0}^{\infty} \{2m+1\}$$

Physically $Sp(6,\Re)$ is the dynamical group of the three-dimensional harmonic oscillator.

R C King & B G Wybourne, J.Phys.A:Math.Gen 18 3113 (1985)

4. The discrete harmonic series irreducible representations

The groups $Sp(2n,\Re)$ and O(k) form a dual pair with respect to the metaplectic group $Mp(2nk,\Re)$ such that the basic irreducible representation $\tilde{\Delta}$ under $Sp(2nk,\Re) \to Sp(2n,\Re) \times O(k)$ branches as

$$\tilde{\Delta} \to \sum_{\lambda} \langle \frac{1}{2} k(\lambda) \rangle \times [\lambda]$$

where the summation is over all λ such that

$$\lambda_1' + \lambda_2' \le k$$
 and $\lambda_1' \le n$

Likewise, for the dual pair $SO^*(2n),\ Sp(2k)$ we have

$$\tilde{\Delta} \to \sum_{\lambda} [k(\lambda)] \times \langle \lambda \rangle$$

where the summation is over all λ such that

$$\lambda_1' \le \min(n, k)$$

5. Branching Rules for non-compact groups

$$Sp(2n, \Re) \to U(n)$$

$$\langle \frac{1}{2}k(\lambda) \rangle \to \varepsilon^{\frac{k}{2}} \cdot \{\{\lambda_s\}_N^k \cdot D_N\}_N$$

$$N = \min(n, k)$$

$$SO^*(2n) \to U(n)$$

 $[k(\lambda)] \to \varepsilon^k \cdot \{\{\lambda_s\}_N^{\langle 2k \rangle} \cdot B_N\}_N$

where N = min(2k, n).

R C King & B G Wybourne, J.Phys.A:Math.Gen 31,6691 (1998)

R C King, F. Toumazet & B G Wybourne, J.Phys.A:Math.Gen 31, 6691 (1998)

6. Physical applications require the analysis of plethysms of irreducible representations of non-compact groups.

We find for the second powers of the basic irreducible representations of $Sp(2n, \Re)$:-

$$\langle \frac{1}{2}(0) \rangle \otimes \{2\} = \sum_{i=0}^{\infty} \langle 1(4i) \rangle \tag{1}$$

$$\langle \frac{1}{2}(0) \rangle \otimes \{1^2\} = \sum_{i=0}^{\infty} \langle 1(2+4i) \rangle \tag{2}$$

$$\langle \frac{1}{2}(1) \rangle \otimes \{2\} = \sum_{i=0}^{\infty} \langle 1(2+4i) \rangle \tag{3}$$

$$\langle \frac{1}{2}(1) \rangle \otimes \{1^2\} = \langle 1(1^2) \rangle + \sum_{i=1}^{\infty} \langle 1(4i) \rangle$$
 (4)

Eq. (2) and (3) imply

$$\langle \frac{1}{2}(0) \rangle \otimes \{1^2\} \equiv \langle \frac{1}{2}(1) \rangle \otimes \{2\} \tag{5}$$

which implies the S-function identity

$$M_{+} \otimes \{1^{2}\} \equiv M_{-} \otimes \{2\} \tag{6}$$

7. Further S-function plethysm identities can be found.

Define

$$A_{\pm} = \{1^2\} \otimes L_{\pm}$$
 $B_{\pm} = \{1^2\} \otimes M_{\pm}$ $C_{\pm} = \{2\} \otimes L_{\pm}$ $D_{\pm} = \{2\} \otimes M_{\pm}$

Let Z = A, B, C, D, M, L then

$$Z_+ \otimes \{1^2\} = Z_- \otimes \{2\}$$

and

$$Z \otimes \{2\} = ZZ_+$$
 and $Z \otimes \{1^2\} = ZZ_-$

Furthermore

$$Z_{+} \otimes \{21^{2}\} = Z_{-} \otimes \{31\}$$

to which can be added the generalisation

$$Z_{+} \otimes (\{1^{2}\} \otimes \{\sigma\}) = Z_{-} \otimes (\{2\} \otimes \{\sigma\})$$

K Grudzinski & B G Wybourne J.Phys.A:Math.Gen 29, 6631 (1996)

J-Y Thibon, F Toumazet & B G Wybourne J.Phys.A:Math.Gen 31, 1073 (1998)

8. Patterns in plethysms for $Sp(2n,\Re)$

$$\langle \frac{1}{2}(0) \rangle \otimes \{3\} =$$

$$\langle s1; (0) \rangle + \langle s1; (4) \rangle + \langle s1; (6) \rangle + \langle s1; (8) \rangle + \langle s1; (91) \rangle \dots$$

$$\langle \frac{1}{2}(1) \rangle \otimes \{1^3\} =$$

$$\langle s1; (1^3) \rangle + \langle s1; (41) \rangle + \langle s1; (61) \rangle + \langle s1; (81) \rangle + \langle s1; (9) \rangle \dots$$

$$\langle 1(0) \rangle \otimes \{3\} =$$
 $< 3; (0) > + < 3; (2^2) > + < 3; (3^21^2) >$
 $+ < 3; (4) > + < 3; (42) > + < 3; (42^2) >$
 $+ < 3; (521) > \dots$

$$\langle 1(1^2) \rangle \otimes \{3\} =$$
 $< 3; (1^6) > + < 3; (2^21^2) > + < 3; (3^2) >$
 $+ < 3; (41^4) > + < 3; (421^2) > + < 3; (42^2) >$
 $+ < 3; (521) > \dots$

Theorem:- For any partition $\rho \vdash r$, the corresponding r-fold symmetrized power of the associate irreducible representation $\langle \frac{1}{2}k(\lambda)\rangle^*$ of $Sp(2n,\Re)$ is such that

$$\langle \frac{1}{2}k(\lambda) \rangle^* \otimes \{\rho\} = \begin{cases} \left(\langle \frac{1}{2}k(\lambda) \rangle \otimes \{\rho\}\right)^* & \text{if } k \text{ is even;} \\ \left(\langle \frac{1}{2}k(\lambda) \rangle \otimes \{\rho'\}\right)^* & \text{if } k \text{ is odd,} \end{cases}$$

$$(5.25)$$

where the * on the left signifies a k-associate, while those on the right signify kr-associates.

R C King & B G Wybourne, J.Phys.A:Math.Gen 31,6691 (1998) 9. Relations between group chains and irreducible representations of $SO^*(2n)$ and $Sp(2n\Re)$

R C King, F. Toumazet & B G Wybourne, J.Phys.A:Math.Gen 31, 6691 (1998)

10. Plethysm identities for U(p,q)

The group U(p,q) contains an infinite set of basic irreducible representations

$$H = \{1(\bar{0};0)\} + \sum_{m=1}^{\infty} (\{1(\bar{m};0)\} + \{1(\bar{0};m)\})$$

which may be conveniently divided as

$$H = H^+ + H^-$$

where

$$H^{+} = H_0 + \sum_{m=1}^{\infty} (H_{2m} + H_{-2m})$$

$$H^{-} = \sum_{m=1}^{\infty} (H_{2m+1} + H_{-2m-1})$$

with $H_x = \{1(\bar{0}; x)\}$ and $H_{-x} = \{1(\bar{x}; 0)\}$

It is not difficult to see from the earlier diagram that in terms of their $U(p) \times U(q)$ decompositions that

$$\langle \frac{1}{2}(0) \rangle \sim H^+$$
 and $\langle \frac{1}{2}(1) \rangle \sim H^-$

Recalling that

$$\langle \frac{1}{2}(0) \rangle \otimes \{1^2\} \equiv \langle \frac{1}{2}(1) \rangle \otimes \{2\}$$

leading immediately to the non-trivial plethysm identity for U(p,q)

$$H^+ \otimes \{1^2\} \equiv H^- \otimes \{2\}$$

11. Combinatorial identities

The properties of Lie groups can provide a rich supply of combinatorial identities of which I give one for illustrative purposes. It was proved by the late Derek Breach and the proof lost, given a machine proof, and again rederived by R C King.

$$3^{\nu-1} = \sum_{x} \left\{ \begin{pmatrix} 2\nu \\ \nu - 1 - 6x \end{pmatrix} - \begin{pmatrix} 2\nu \\ \nu - 2 - 6x \end{pmatrix} - \begin{pmatrix} 2\nu \\ \nu - 4 - 6x \end{pmatrix} + \begin{pmatrix} 2\nu \\ \nu - 5 - 6x \end{pmatrix} \right\}$$

R C King, Luan Dehuai & B G Wybourne, J.Phys.A:Math.Gen 14, 2502 (1981)

which returns us to the beginning to Benjamin Disraeli's "Coningsby"

Collaborators

Prof R C King, Mathematics Department, Southampton University, UK
Prof J-Y Thibon and F Toumazet,
Institut Gaspard Monge, Université
de Marne-la-Vallée, France
Dr T Scharf, Lehrstuhl II für Mathematik, Universtät Bayreuth, Germany

Research supported by Polish KBN Grants

Questions?

The only questions worth asking are the unanswerable ones

— John Ciardi Saturday Review-World (1973)

For every complex question there is a simple answer

- and it's wrong.
- H. L. Mencken