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Abstract. The calculation of branching rules, tensor products and plethysms
of the infinite dimensional harmonic series unitary irreducible representations of
the non-compact group SO*(2n) is considered and the duality between SO*(2n)
and Sp(2k) exploited. The branching rule for the restriction of an arbitrary
harmonic series irreducible representation of SO*(2n) to U(n) is derived, and the
decomposition is given explicitly for each of the infinite number of fundamental
harmonic series irreducible representations, H,,, of SO*(2n) whose direct sum
constitutes the metaplectic representation, H, of SO*(2n). A concise expression for
the decomposition of tensor products is derived and a complete analysis of the terms
in both Hy, X H,,,r and H X H is given. A general formula for plethysms of arbitrary
irreducible representations of SO*(2n) is derived and its implementation illustrated
both by means of a detailed generic example and by a complete determination of the

symmetric and antisymmetric terms of H x H. Finally, relationships that arise from
the embedding of the product groups SO*(2n) x Sp(2k) and Sp(2n,R) X O(2k) in
the metaplectic group Mp(4nk) are discussed.

1. Introduction

The group SO*(2n) occurs as a maximal non-compact subgroup of the metaplectic
group, Mp(2n), which is also the double covering group for the non-compact
symplectic group Sp(2n, R) which finds important applications as the dynamical group
of the harmonic oscillator. The group SO*(8) has been considered in the literature!»?
with the local isomorphism SO(6,2) ~ SO*(8) being exploited to show the existence
of a complete set of SU(3) tensor operators in the enveloping algebra of SO*(8).
Here we wish to discuss the general case of the groups SO*(2n) which leave the skew
Hermitean form

* * * *
- len+1 + Zn+121 - T 2Ry + 291 %n

invariant®. A preliminary account of the group SO*(2n) was given earlier?. That
paper was largely devoted to the holomorphic discrete series and harmonic series of
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the non-compact groups Sp(2n, %) and U(p, ¢) with detailed derivations of appropriate
branching rules and tensor products. Only scant attention was paid to SO*(2n) and
the authors concluded their paper with the remark: “Little attention has been given
to SO*(2n) but we suspect that comparable formulae can be derived in this case, it
being merely necessary to change D to B and modify other rules appropriately”. In
this paper we explore in some detail the properties of the irreducible representations
of SO*(2n) and obtain the non-trivial “merely necessary” changes. Recent work®="
has shed further light on the properties of Sp(2n,R) and U(p, ¢), and more recently
still® it has been found convenient to introduce the notion of associate irreducible
representations of Sp(2n,R). While such a notion owes its origin to the existence of
mutually associate pairsth1? of irreducible representations of SO(2k), such irreducible
representations do not exist for SO*(2n). Nonetheless, we show herein that one can
map self-associate finite sets of irreducible representations of Sp(2n,R) into infinite
sets of irreducible representations of SO*(2n).

Formulae are given for the evaluation of branching rules, tensor products and
plethysms for arbitrary unitary harmonic series irreducible representations of SO*(2n).
These irreducible representations all appear as constituents of some power of the
harmonic representation, H, of SO*(2n). The representation I is the restriction to
SO*(2n) of the irreducible metaplectic representation, A, of the metaplectic group
Mp(2n). H is itself reducible into a direct sum of an infinite number of fundamental
irreducible representations in accordance with the decomposition:

H=>" H,=> [(m)], (1.1)

m=0 m=0

where 1t has been convenient to denote each of the infinite-dimensional fundamental
irreducible representations H,, of SO*(2n) by [1(m)]. It is also convenient to write
H=H, + H_ with

H, = i [1(2k)] and H_ = i [1(2k + 1)]. (1.2)

k=0

Relatively simple expressions are obtained for the branching rules; tensor products and
plethysms involving i and its various constituents 7, and H,, for m =0,1,..., c0.
In particular, complete results are given for the terms in H? = H x H and for those in
the symmetric and antisymmetric parts, H ® {2} and H @ {12}, respectively, of H?2.

Throughout we follow the notation developed earlier®®* for representations of
non-compact groups and certain signed sequences. In the case of the notation for
partitions and symmetric functions we follow that of Macdonald!'?, while for S-
functions series and modification rules we call where appropriate on formulae collected
together in three previous articles!!=13. References [4] and [8] will often be designated
as KW1 and KW2, respectively.

2. SO”"(2n) — U(n) branching rule

It should first be noted that the non-compact group SO*(2n) and the compact
group Sp(2k) are a dual pair with respect to Mp(4nk) in the sense that each is a



maximal centraliser of the other in the metaplectic group Mp(4nk). As a direct
consequence of this, the metaplectic representation of Sp(4nk,R) decomposes under
restriction to SO*(2n) x Sp(2k) in accordance with the rule:

A= [R(ND] % (), (2.1)

where the summation is over all A such that
M <k and X <n. (2.2)

The procedure necessary to determine the U(n) content of each harmonic series
irreducible representation [k(A)] of SO*(2n) is closely related to that used for Sp(2n, })
in Section 5 of KW1. Consider the two group-subgroup chains:
Sp(4nk,R) — SO*(2n) x Sp(2k) — U(n) x Sp(2k); (2.3a)
Sp(dnk,R) — U(2nk) — U(n) x U(2k) — U(n) x Sp(2k). (2.3b)

The first of these gives
A= 30 O] ¢ () — 32 Bl u) x (), (2.4)
A A
while the second leads to
A= 32 m) — 3 ) ¢ 2 ) — S F R} x (), (25)
m Iz LA

or, equivalently,
A= my =Ry < e ) — Y e {u} x (u/B)
=Y v By x (v), (26)

wherell-13

B = {8} = {01 {2 I B {22 {1 + - (2.7)
8

with the summation taken over all partitions /3 such that each distinct part is repeated
an even number of times. In (2.4) the coefficients BY are the required branching rule
coefficients for SO*(2n) — U(n), while in (2.5) the coefficients R) are the known
branching rule coefficients for U(2k) — Sp(2k). These are defined implicitly by (2.6).
We thus arrive at the following:

Proposition 2.1 Let A be such that A} < min(k,n). Then on restriction from
SO*(2n) to U(n) the irreducible representation [k(N)] of SO*(2n) decomposes in
accordance with the branching rule:

k(] — Y e Ri{u} = - {030 - B, (2.8)



where {/\s}<2k) is the signed sequence®®39

B =37 g (2.9)

with the summation extending over all v with v] < 2k such (v) = f;‘(A) under the
modification rules of Sp(2k).

The superscript (2k) has been used as a notational device to emphasise that the
signed sequences are constructed from a knowledge of the modification rules of Sp(2k).
These rules!!13 are such that the non-vanishing coefficients ¢} are all £1.

It follows from further consideration of the limitations imposed by branching via
U(n) x U(2k) in (2.5) and (2.6) that (2.8) can be re-written in the computational
simpler form:

k()] — - {05 Byy (2.10)

where N = min(2k,n). The first - indicates a product in U(n) and the second - a
product in U(N) as implied by the various subscripts N which limit all terms to those
labelled by partitions into no more than N parts.

TIrreducible representations [k(A)] of SO*(2n) satisfying (2.2) will be said to be

standard. The signed sequence {/\s}ﬁk) associated with modifications in Sp(2k) is
rendered finite by the constraint implied by the subscript N. Thus for k¥ = 2 and
n = 4 we have N = 4 and, for example,

311 = {31} — {313}, (2.11a)
whereas for £k = 2 and n = 3 we have N = 3 and only the first term survives:

(311Y = (31} (2.11b)

In general the modification rules'1? for Sp(2k) are such that for each standard

irreducible representation [k(A)] of SO*(2n) the corresponding signed sequence takes
the form:

DO = = (W) (ph+o with X <ul << (212)
where

Wr={2k+2- XA, .} (2.12b)
Standard irreducible representations [k(A)] associated with signed sequences {A }3¥
involving just one term are said to be highly standard. From (2.12) it can be seen that
this will be the case whenever

2k +2— A} > N = min(n, 2k). (2.13)
In particular this condition is automatically satisfied if A{ < 1. Hence all the

irreducible representations [k(m)] are highly standard, including H,, = [1(m)] for
all m.



More generally, for all highly standard irreducible representations of SO*(2n)
(2.10) simplifies to just
[k(M)] — " - {{A} - Byly (2.14)
For example, the highly standard irreducible representation [2(31)] of SO*(6) branches
under SO*(6) — U(3) as
[231)] — * - {{31} - Bs};
=t {31} ({03 + {17} + {22} + {33+ {42} + )5
=’ ({31} + {321} + {3°2} + {41°} + {42} + {42}
+ {431} + {521} + {53} +--9)
= {532} + {543} + {54} + {63°} + {642} + {647}
+ {653} + {743} + {762} 4+ ---. (2.15)

In the case of the standard, but not highly-standard irreducible representation

[2(31)] of SO*(8) we have from (2.10) and (2.11), for SO*(8) — U(4)

[231)] — & - {({31} = {31°}) - B4},
= {({31) - 31 - ({0} + {1} + {1} + {2} + {2°1%}
+ 29+ 37+ 3P+ (4% k.
=2 ({31} + {321} + {372} + {417} + {42} + {4217}
+ {42°} + {431} + {521} + {53} + )
= {5327} + {5432} + {5742} + {63°2} + {642°} + {6437}
+ {6472} + {6532} + {7432} + {752*} +--- . (2.16)

In the particular case of the fundamental irreducible representations H,, of

SO*(2n) we have
H, =[L(m)] —e-{{m} B}y => e-{mtr,r} = {mtr,r}, (2.17)

since B, = Y {r*} and the relevant products are taken in U(2) with ¢ = {1?}. It
follows that under SO*(2n) — U(n) the basic harmonic representation decomposes as

H=>" [(m]— > e {mtrr}. (2.18)

Equivalently, but more formally, we have

H = Z [1(m)] — Z e-{{m} By}, =e - {MBy}, =¢-F,, (2.19)

where quite generally!!—!3

M=) {m} and MB=F=> {¢}, (2.20)
m ¢

with the latter sum being over taken over all partitions ¢, although in (2.19) the
subscript on I, indicates that the series is to be restricted to partitions involving at
most two parts.



3. Tensor products for harmonic unirreps of SO*(2n)

The case of tensor products for the holomorphic discrete series of SO*(2n) was

considered in KW1 who gave the result as (KW1 (7.12))

{udl < {v} = v- B}l (3.1

The corresponding results for the harmonic irreducible representations follow in a
very similar fashion to KW1 (8.10 - 8.15) by consideration of the two group-subgroup
chains

Sp(dnk+int, R) — Sp(dnk,R) x Sp(4nl, R)

— SO*(2n) x Sp(2k) x SO™(2n) x Sp(2¢)
— SO*(2n) x Sp(2k) x Sp(2¢) (3.2)

and

Sp(4nk+4nt, R) — SO*(2n) x Sp(2k + 2¢)
— SO*(2n) x Sp(2k) x Sp(2¢). (3.3)

Under (3.2) we have

A—Ax A= Slk(u)] () x ()] x (v)

v

- Z KA TRH(N)] % () x (v), (3.4)

where K4 are the required tensor product coefficients for SO*(2n). Alternatively,
under (3.3) we have

A= 37 ()] (N
= 3T O] < 3D R () < (), (3.5)

where the coefficients R)” are the branching rule coefficients for the restriction
Sp(2k+20) — Sp(2k) x Sp(2¢). Comparison of (3.4) and (3.5) shows that K{" = R\",
thereby yielding:

Proposition 3.1 The tensor product of a pair of unitary harmonic irreducible
representations [k(p)] and [¢(v)] of S)*(2n) decomposes in accordance with the rule

k()] % [e(w)] = D RE” [kH(A)]. (3.6)

To implement (3.6) it is convenient to note that under the restriction Sp(2k+2¢) —
Sp(2k) x Sp(2£) we have

(A =D B () x () = (A/m) x {&/B). (3.7)

K



This may be derived through the use of standard S-function method?!!.
An alternative formula may be derived from a consideration of the group-subgroup
chains:

SO*(2n) x SO*(2n) —= U(n) x U(n) — U(n); (3.8a)
SO*(2n) x SO*(2n) — SO*(2n) — U(n). (3.8b)

Using (2.8) the first of these gives
) < ) — (5 12908 ) (400 )
— e () )85 ) -5 (39

while from (3.6) and the use once more of (2.8) we obtain

[k(u] > [E()] =D R Th+H()]

A
— Y RV A EEO) B, (3.10)
A

with A] < N = min(k+{, n). Comparison of (3.9) and (3.10) then yields:
Proposition 3.2 The tensor product of a pair of unitary harmonic irreducible
representations of SO™(2n) decomposes in accordance with the rule

k()] % [6)]) = k(L - {r 320 B) ). (3.11)
where N = min(k+{, n) and
O
W = {0 otherwise. (3.12)

FEither (3.6) or (3.11) may be used to evaluate tensor products. Equation (3.6) has
advantages when a single coefficient RY” is required. In that case signed sequences
are not needed. However, equation (3.11) is particularly useful in evaluating complete
products.

By way of example, consider the evaluation of the terms, to weight eight, in the
tensor product [2(21)] x [3(1%)] for the group SO*(8). Since N = 4 all products
appearing in (3.11) may be evaluated within U (4) and the signed sequences restricted
to the terms

{21,119 = {21} — {217}, (3.13a)
{123 = {17} (3.13b)

Their product in U(4) yields the terms

{213} + {271} — {2%1} + {317} + {32} — {321%}. (3.14)



Since we are evaluating terms to weight eight only terms in the B-series to weight
three are relevant, that is the two terms

{0} + {17}, (3.15)
and forming the product we obtain the terms, to weight eight, as

{217} + {271} + {2°1} + {317} + {32} + 3{321°}

+2{327} + 2{3%1} + {417} + 2{421} + {43}. (3.16)

Changing the notation to that for SO*(8) and inserting the integer 5 in front of each
partition, we finally obtain the result

[2(21)] < [3(1%)] =[5 ( I+ B D]+ [B(2°D)] + [B(317)] + [5(32))
+3[5(321%)] + 2(5(32 )] +2[6(3°1)] + [5(417)]
+2[5(421)] + [5(43)] + - -. (3.17)

4. The explicit decomposition of H x H

Equation (3.11) is also useful in deriving explicit complete fomulae for tensor
products. In particular the use of (3.11) immediately leads to the result

o0 min(m,m')
H, x H,, =[1m)]x[Lm)]=>" > [2m+m +p-—zp+2) (4.1)
p=0 r=0
This can be seen by noting that successive multiplication in U(2) of a term {p?} in B
by {m} and then {m’} can be carried out diagrammatically to give:

aaaccc‘c‘c‘c‘d‘d‘d‘ (4.2)
b|b|d|d

where there are precisely p columns containing the pair (a,b), m entries ¢ in the first
row and m’ entries d, x of which are in the second row and the remainder in the first,
with no identical entries d allowed in the same column.

Extending this analysis to the case of the square of the basic harmonic

representation we have
Proposition 4.1 For H as defined in (1.1)

H?=HxH=Y Y (r—s+1)(s+D2rs)]. (4.3)

r=0s=0
Proof We have from (1.1) and (4.1)

oQ

H*=HxH= > [I(m)]x[L(m)]
m,m’=0
o min(m,m’)
= Z Z 2m+m +p—a,p+2)]
p,m,m’=0 r=0

Il
Q
o
o
—~
=

[
P
—~

N

.
s



where . ; 1s the number of diagrams of type (4.2) having rows of length » and s for
any p, m, m’ and x. For fixed » and s it is clear that the distribution of the letters is
such that the number of d’s in the second row of length s can vary from 0 to s, while
the number in the first row of length r can, independently, vary from 0 to » —s. Thus
C,s=(s+1)(r —s+1), as required.

It is useful for later work to split H into its even and odd parts, H, and H_,
respectively, which are defined in (1.2). The coefficients C7¢ of the terms [2(r, s)] in
the various products H, x H. are given by the following proposition
Proposition 4.2 Let C,, = (r —s+ 1)(s+ 1). Then forn,{ € {+,—} we have

H, x H = ZZ cne 2 (4.5)

r=0s=0

with

1
5(0” +1) if ¥ and s are both even;

++_ )
Cl 507«5 if r and s are both odd; (4.6a)
0 otherwise,

1
5(0” -1 if ¥ and s are both even;

Cr™ = %C’” if r and s are both odd; (4.6)
0 otherwise,
=C, if r is even and s is odd,
Ct-=cCt= 4.6
e e 1C’N if r 1s odd and s 1s even, (4.6¢)
0 otherwise.

Proof First it should be noted that
H77 X HC = [2(]\477 'MC - B),l, (4.7)

where M, = 3 Am}and M_ = " {m}. Since all the term of B are of

even weight it follows that all terms [2(r, s)] of both H? and H? must be of even

weight, so that » and s are either both even or both odd. Similarly, all the terms of

H, x H_ must have r and s of opposite parity. This accounts for all the 0’s appearing
n (4.6a-c).

Separating H? = (Hy+H_ )2 = (Hf_ —|—HE)—|—2(H+ x H_), as given by (4.3), into
terms of even and odd weight, then immediately gives (4.6¢). Moreover to separate the
terms of Hf_ + H? into those of (4.6a) and (4.6b) it is merely necessary to show that
Hi —H?2 =575 _,[2(r, s)] with the summation restricted to r and s both even.
This may be established, by using (4.7) and various S-function series identities®'3
which imply that

HY — HZ =[2(M} — MZ2) - B),] = [2(W - B),] = [2(D,)], (4.8)

where the restriction of the S-function series D to two-part partitions gives D, =
Sy _oir, s} with r and s both even, as required.



5. Symmetrised powers of irreducible representations of SO*(2n)

Following the techniques of Section 6 of KW2 it is not difficult to derive the
following general formula for symmetrised powers or plethysms of arbitrary irreducible
representations of SO*(2n):

Proposition 5.1 Let the partition A be such that | < min(k,n) and let p be an
arbitrary partition of r, then

k)@ {p} =D w4, [kr(p)] (>.1)

where the summation is over all partitions p such that p) < min(kr,n) and the
coefficients yéfp are determined by the expansion

(A By @ {p}) - A= o, {pu 7 (5.2)

where A = B~1,
Furthermore, just as for ease of calculation (2.8) can be replaced by (2.10), so (5.2)
can be replaced by

((({As}ﬁi’” By)y @10}, ~AM)M =3, (5.3)

where N = min(2k, n) and M = min(2kr, n). Finally in order to read off the required
plethysm coefficients in (5.1) from (5.3) it is only necessary to retain the leading term

{p} in each signed sequence {us}ﬁkr), since it is only the leading term of each signed
sequence that satisfies the required Sp(2kr)-standardness condition pj < kr. This
implies that in using (5.3) in (5.1) we may effectively replace M = min(2kr, n) by
min(kr, n), a considerable simplification which leads to:

Corollary 5.2 With the notation of Proposition 5.1 the SO*(2n) plethysm coefficients
yéfp are determined by

((({As}ﬁi’” By)y @ {0H) ~AK)K =57 (5.4)

where N = min(2k,n) and K = min(kr,n).

The significance of (5.3) and the subsequent remarks leading finally to (5.4) can
be seen in the evaluation of the terms in the plethysm [2(21)] ® {21} of SO*(24). In
such a case we have k =2, r=3 and n = 12 so that N =4, M =12 and K = 6. We
show how to calculate all terms [6(p)] of [2(21)] ® {21} up to weight 16 and of width
#y < 3 using (5.3). Such terms will necessarily have length pj <6.

Since k = 2 the signed sequence is evaluated in Sp(4) giving

{213} = {21} - {217} (5.5)
Next the terms in the B-series up to weight 16, width 3 and length 4 are:
{0} + {17} + {1} + {27} + {2717}

+ {24} + {3°} + {3°1°} + {3°2%} + {3} (5.6



The tensor product of the terms in (5.5) with those of (5.6) is to be carried out in
U(N) with N = 4. Again up to weight 16, width 3 and length 4 this gives

{21}
+ {322}

+ {271}
+ {3%1}

+ {312}
+ {3221}

+ {32}

+ {3212}
(5.7)

Now we calculate the mixed symmetry third order plethysm signified by {21} of this
sum of terms in U (M) with M = 12 to give up to weight 16, width 3 and now length

12:

{241}

+ {271}

+ 9{3231%}
+ 10{32°}
+ 3{3%21}
+ 9{322215}
+ 20{331%}
+ 40{332%}
+ 120{3%21}

+ {2413}

+ {321%)

+ 5{3231%}
+ 11{32°12}
+ 12{3%213}
+ 45{3%231}
+ 5{331°}

+ 2{2°1}
+ 2{3221%}
+ 6{32%}
+ 7{32%}
+ 7{3221°}

+ 40{322313}

+ 10{3%2}

+ 117{332212} + 71{3%23}

+ 28{3%}

+ {2513}

+ 3{3221%}
+ 15{3241%}
+ {3213}

+ 18{32221}
+ 54{322%1}
+ 60{33212}
+ 32{3%1}

+ 2{2°1}

+ {323}

+ 4{3241%}

+ 2{321°}

+ 33{322213}

+ 12{331%}

+ 51{3321%}

+ 70{3%13}
(5.8)

Then the terms in the A-series up to weight 16, width 3 and length 12 are found to

be

{0}
+ {3271}

- {17)
- {322

+ {212}
+ {34}

- {2°}

— {31%}
(5.9)

and their tensor product with the terms in (5.8) calculated in U(12) gives

{241}

— {3215}

— 4{3231%}
— 2{32°1%}
— 5{37215}
— 10{3%2313}
— 13{3%21%}
+ 4{3°}

— {2919

+ 2{32212}
— {32316}
+ {3213}

— 3{3%217}
+ 7{3312}
+ 12{3%27}

+ {251}

— 2{32%15}
+ 3{32%}

— {3217}

+ 10{3%221}
— 7{3%1%}
+ 6{3323}

- {2°1°}

+ {323}

— 3{321%}
+ 3{3%21}

— 10{32221%}
+ 6{3%2}

+ 10{3%1}

+ {3214}

+ 4{3231%}

+ 2{325}

+ 5{3%213}

+ 10{322%1}
+ 13{3321%}
+ 14{3421}

(5.10)

Now the labelling is changed to that of irreducible representations of SO*(24) with
kr = 6 inserted before each partition to yield

[6(2%1)]

— [6(321°%)]
— 4[6(3231%)]
— 2[6(32°12)]
— 5[6(32215)]

— [6(217)]

+ 2[6(32712)]

— [6(32519)]
+ [6(3°17)]

— 3[6(32217)]

— 10[6(32231%)] + 7[6(3%12)]

— 13[6(3%21%)]
+ 4[6(3°)]

+ 12[6(3%27)]

+ [6(2°1)]

— 2[6(3221%)]

+ 3[6(324)]
— [6(3717)]

+ 10[6(32221)]

— 7[6(331°)]
+ 6[6(3%2°)]

— [6(2°1%)]
+ [6(32%)]
— 3[6(32%1%)]
+ 3[6(3%21)]

— 10[6(3%271%)]

+ 6[6(3%2)]
+ 10[6(341)]

+ [6(321%)]

+ 4[6(32312)]
+ 2[6(32°)]

+ 5[6(3221%)]
+ 10[6(32251)]
+ 13[6(33212)]
+ 14[6(3%21)]

(5.11)

At first the appearance of negative terms seems disconcerting until it is realised that
they correspond to non-standard terms in the signed sequences {pu,}{'? of (5.3).



Restricting attention, as required, to SO*(24)-standard terms in accordance with (5.4),
finally yields the result
2021 ® {21} =

[6(2¢1) O] Y]+ 26(32212)] 4 [6(32%)

FA6(32212)] 4 3[6(329] 4 2[6(32%)] 4 [6(3%1%)]  + 3[6(3221)]
F5[6(3221%)] 4 10[6(37221)] + 10[6(322%1)] + 7[6(3%1%)]  + 6[6(3%2)]
FI3[6(3%217)] 4+ 12[6(3%2%)] 4+ 6[6(3°2%)]  + 10[6(371)]  + 14[6(3%21)]

+ 4[6(3%)] + (5.12)

up to weight 16 and width 3, where it is to be noted that, as promised, the surviving
terms all have length ) < 6. This is because K = min(kr,n) = 6. It would clearly
have been simpler to use (5.4) at an earlier stage and discard all terms of length greater
than 6 in (5.8)-(5.11) rather than to use (5.3) and keep terms up to length 12. At each
step the calculation would have involved fewer terms and the final signed sequence
problems would have been circumvented. This example, while exhibiting the fact that
signed sequences do emerge in a natural way, serves to illustrate the computational
merits of Corollary 4.2.

6. Resolution of H? = H ® {2} + H ® {1?}

In the special case for which p 1s a partition of 2, so that r = 2, we have
K = N = min(2k,n) in (5.4). Consequently for symmetrised squares of irreducible
representations of SO*(2n) we have

k(] @ {p}] = [({AIEH - B) @ {p}) - 4) ], (6.1)

where all products and plethysms are to be carried out in U(N). Setting {p} = {2} and
{12}, using the algebra of plethysms and the fact that® (B® {2})- A= B, BA = B,
and (B ® {12}) -A=DB_BA = B_ it follows that

k(] @ {2} = k({3 @ {23) - BT+ KA @ {1°)) - BO) KT (6.2a)
k(D] @ {17} = [26(({A 3P @ {17)) - By)n] + RE(({A P @ {2)) - BO)x], (6.2b)

where N = min(2k, n).
Further specialisation of the above result leads to

H, @12} =[1l(m)]e{2}= ZZ[Q(?m +p—2x,p+x)] with ptr even;  (6.3a)

p=0x=0

H, @{1*} =[1(m)] e {17} =>_ > [22m+p—x,p+2)] with ptr odd.  (6.3b)

p=0x=0

This can be seen by noting that in U(2) each term {p?} of B belongs to B, or B_
according as p is even or odd, respectively, while {m} @ {2} and {m} ® {12} contain
terms of the form {2m — x, 2} with 2 even and odd, respectively. Typical terms
contributing to (6.3a) are represented diagrammatically by:

alalalalc|c c‘c‘c‘d‘d‘d‘
blblb

(6.4)




where there are precisely p columns containing the pair (a,b), # columns containing
the pair (¢,d), m — & columns containing just ¢ and the same number containing just
d, with p and x either both even or both odd.

Summing over all m we obtain

Z H, {2} = ZZ (s+ 1)[2(r,s)] with r and s both even; (6.5a)

r=0s=0

ZH ® {1 }_ZZ (s+ 1)[2(r,s)] with r and s both odd. (6.5a)
r=0s=0

The first of these follows from the fact that for fixed » and s the distribution of letters
in diagrams of type (6.4) is such that the number of d’s in the second row of length s
can vary from 0 to s, while the number in the first row is necessarily (r — s)/2. The
second follows in the same way. The only difference is now that instead of r and s
both being even, they are both odd.

This allows us to resolve H? into its symmetric and antisymmetric parts H @ {p}
with {p} = {2} and {12}, respectively:
Proposition 6.1 Let C,, = (r—s+1)(s+1). Then for {p} = {2} and {17} we have

Ho(d=Y Y ¢l 2 (5:5)

r=0 s=0
with

%(C’” +1) if 7 and s are both even;

ciz = %(qs —1) if 7 and s are both odd; (6.7a)
%C’” otherwise,
1 .
5(0” -1 if » and s are both even;

citt = %(C” +1) if » and s are both odd; (6.7b)
%C’” otherwise,

Proof Since

H? = (Z ) ZHZ + > H,H,, (6.8)

m m#Em’

1t follows that

Ho{2}= (;Hm) © {2} = Z(Hm®{2}) +% > i1,

m m#Em’

Z(H ®{2}) 1<H2 Zan)

m m

%(HZJF;(HT” ®{2}—Hm®{12})). (6.9)



Similarly

H®{1*} =

<H2 —Z(Hm®{2}—Hm®{12})). (6.9b)

m

N | —

The results (6.7) then follow from (4.3) and (6.5).

7. Relations between group chains and irreducible representations of

SO*(2n) and Sp(2nR)
Starting with the metaplectic group Mp(4nk) we may relate the decompositions

involving the non-compact subgroups SO*(2n) and Sp(2n,R) by means of the
commutative diagram:

SO*(2n) x Sp(2k) ——— Mp(4nk) —— Sp(2n, R) x O(2k)

U(n) x Sp(2k) U(n) x O(2k) (7.1)

U(n) x SO(2k) ———s ——  U(n) x SO(2k)

The terminal subgroup in each case is U(n) x SO(2k). Taking into account the
labels used to distinguish mutually associate pairs of irreducible representations
of Sp(2nR), the decomposition of the metaplectic irreducible representation A of
Mp(4nk) proceeds as indicated below:

Skl ) — A —— Atk x DY
S lE )l % (1) Tl x 7y
Sk @l * K/AD] —— T, (RO + (1= 530X Dy [

where the symbols [ ]y(,) and (---)y,) signify restriction from SO*(2n) and
Sp(2n,R), respectively, to Ugn), while the skew products of k with A and D correspond
to passing from Sp(2k) up to U(2k) and then down to SO(2k). Tt should be noted
that at the level of U(n) x SO(2k) the summations over both & and A are restricted
so that these partitions have no more than P parts with P = min(k, n).

Since!3

AD=W = i ZT: (=1)*{r,s} with r — s even, (7.3)

r=0s=0



it follows that on comparing the terms of the form --- x [A] we have

[ W)y = () )y + (1= 8301) (RO - (7.4)
As special cases of this with £ = 1 and A = (0) and (1), we obtain:

(1) gy = LNy = (L0 + (10 (7.52)

(H—)U(n) = [MM)]y(ny = (M) yny- (7.5b)

Tt should be stressed that quite generally a knowledge of the restriction to U(n) of
any direct sum of harmonic series unitary irreducible representations of both SO*(2n)
and Sp(2n, R) is sufficient to determine these representations up to equivalence. This
1s because such representations are determined up to equivalence by their characters
which are themselves evaluated on elements of the maximal compact subgroup U(n).

8. Powers and plethysms of irreducible representations of SO*(2n) from

those of Sp(2n,R)

The results of the previous section lead to an alternative method of computing
powers of the basic harmonic representation H of SO*(2n) and its constituents H
and H_. Since H = H, + H_ it follows from (7.5) that the U(n) content of the
harmonic representation H of SO*(2n) coincides with that of the representation S of

Sp(2n,R), where
S = (1(0)) + (1(07)) + (1(1)). (8.1)

The same must be true of both their powers and plethysms.
Since S is a self-associate representation of Sp(2n,R) it follows that its pth power
may be written in the form:

SP — Z g* (p(p+ (1 - 6u§p)“*>’ (8.2)
pipy <P

with P = min(p, n), for some set of coefficients ¢g*. Tt then follows from (7.5) that

H = Y g" (- W)p)] (8.3)

pipy <P

where the subscript P on (u - W)p indicates that the only terms (v)p to be retained
are those for which v; <= P = min(p,n). Likewise, for any partition = of p, the
corresponding pth-fold symmetrised power may be expanded in the form

Seiry= S0 W (plut (1= 6,,)07), (8.4)

pipy <P

for some particular set of coefficients h*. It then follows that

Hof{ry= Y 0" [p((u-W)p)l. (8.5)

pipy <P



A similar situation applies to H, and H_, and indeed to plethysms and powers of
any sum of SO*(2n) representations of the form [k(A - W)] as in (7.4). Conversely,
plethysms and powers of any self-associate sum of Sp(2n,R) representations of the
form (k(k - V)) can be evaluated from a knowledge of the powers and plethysms of
[k(k)] in SO*(2n), where V = W=1 = W',

As a final example we compute the terms of H_ @ {21} up to weight 12 and width
4 in SO*(24) starting from the Sp(24,R) plethysm

(D) @ {21} =
(3(21)) + (3(213)) + (3(2%1)) +2(3(31%))  + 2(3(32))
+2(3(3212))  +2(3(32%))  +3(3(321)) 4+ 2(3(41)) + 2(3(41%))
+6(3(421))  + 4(3(43)) + 4(3(4312))  +5(3(432))  + 5(3(421))
+ 2(3(423)) (8.6)

Now we remove the prefix p = 3 and standardise the irreducible representations in the
group U(3) to give

{21} + {221} + 2{31%} + 2{32} + 2{322}
+ 3{321} + 2{41} + 6{421} + 4{43} + 5{432}
+ 5{421} + 2{4?3} (8.7)

The terms in the W-series up to weight 12 are

{0} - {17 + {2} + {27} - {31}
! + {4} + {42} + {47 (8.8)

Forming the tensor product, in U(3), of (8.7) and (8.8), and keeping terms up weight
12 and width 4 gives

{21} + {221} + 2{31%} + 2{32} + 2{32?}
+ 4{3%1} + {3%} + 3{41} + 7{421} + 6{43}
+ 9{432} + 7{4%1} + 6{423} (8.9)

These U(3) irreducible representations are now converted into SO*(24) irreducible
representations by inserting p = 3 before each partition and adopting the notation
appropriate to the group SO*(24) leading to

H_®{21} =
[3(21)] + [3(2°1)] +2[3(31%)] + 2[3(32)] + 2[3(32%)]
+4[3(3°1)] + [3(3%)] + 3[3(41)] +7[3(420)]  + 6[3(43)]
+9[3(432)]  + 7[3(4%1)] + 6[3(473)] o (8.10)

This is the same as the result that can be found using (5.1) and (5.4). While the above
calculation was carried out for SO*(24) it should be noted that the result is valid for
all SO*(2n) with n > 6.



9. Concluding remarks

The objective in writing this paper has been to complete the results hinted at
in KW1. In the process methods for calculating tensor products and plethysms of
the infinite dimensional unitary irreducible representations of SO*(2n) have been
developed. In addition explicit results have been obtained for the case of the
basic infinite-dimensional harmonic representation H of SO*(2n) and its various
constituents H, and H,,. Furthermore, the embedding of the product groups
SO*(2n) x Sp(2k) and Sp(2n,RN) x O(2k) in the metaplectic group Mp(4dnk) has
been shown to yield interesting and indeed useful relationships between irreducible
representations of the non-compact groups SO*(2n) and Sp(2n,R) as well as their
powers and plethysms.
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