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1. Introduction

The symplectic group Sp(6,R) is well-known as the dynamical group of the
isotropic three-dimensional harmonic oscillator!. For a single particle the even-parity
states span a single infinite-dimensional irrep commonly denoted?? as < %(0) > while
the odd-parity ~states span the irrep < %(1) > of Sp(6,R). Collectively they span
a single irrep A of the metaplectic group Mp(6), the covering group of Sp(6, R).
These groups find significant applications in many-body symplectic models of nuclei?

56 A central problem in making

and in the mesoscopic properties of quantum dots
applications is the resolution of Kronecker powers of the fundamental irreps of Sp(6, R)
into their various symmetry types. Basic methods are known”~? for computing such
resolutions for the powers of the reducible representation < %(0) > 4+ < %(1) >.
However, it is desirable to also resolve separately the Kronecker powers of the two
fundamental irreps of Sp(6, R) and it this problem we address herein.

=1 We present a method of

Such problems fall in the domain of plethysms
systematically evaluating plethysms for the fundamental irreps of the group Sp(6, R).
In principal the same method applies for all Sp(2n, R). The Kronecker squares of the
fundamental irreps for all Sp(2n, R) are fully resolved which in turn leads to a number
of new S—function identities as well as a new insight into two-particle states. Explicit
calculation of the fourth powers leads to a surprising result that implies a remarkable
S—tunction identity for certain infinite series of S—functions.

We illustrate the application of the method by a brief discussion of the two and

three particle states in the symplectic model.

2. The Sp(2n,R) — U(n) reduction

The general problem of the Sp(2n, R) — U(n) reduction has been studied in some
detail*®. Under that restriction the two fundamental irreps of Sp(2n, R) decompose

as2’3

< 5(0) >—ed ({0} + {2} + {4} 4.

= 6%J\4+ (1)
1 1
<51 >—ez ({1} + {3} + {5} +..)

— 7 M_ (2)
where M, and M_ are respectively the even and odd terms of the infinite S—function
series indexed by the one part partitions (m) with m =0,1,..., 0.

In general
< 5(/\) >—e2 - {{\JN - Dn}ln (3)
where N = min(n, k), {\}* is a signed sequence’ of terms £{p} such that +[p]

>

is equivalent to [\] under the modification rules'?>~!* of the group O(k), Dy is the
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infinite S'—function series indexed by even partitions into not more than N parts.
The first - indicates a product in U(n) and the second - a product in U(N) as implied
by the final subscript N. Specific examples may be found elsewhere??.

Clearly, Eqs.(1) to (3) will involve an infinite series of irreps of U(N) and any
practical calculations must be truncated at some bound. Such calculations can be
readily made using the programme SCHUR'Y. The irreps < %(/\) >~of :gp(Zn, R) are
constrained by the requirement that the conjugate partition (A\) = (A1, Ag,...) satisty

the constraints

Xl + XQ S k (4:&)
A <n (4b)

The value of %k may be an integer or half-odd integer. In that respect it is useful to

introduce the equivalent notation

< sk (AN) >=< g(/\) > (5)
where

k

3 =s+ kK (6)

with « being the integer part of % and the residue part is s = 0 or % Thus the two

fundamental irreps will henceforth be designated as < s;(0) > and < s;(1) >.
It is critical to our analysis to note that under the reduction Sp(2n,R) — U(n)
the lowest weight U(n) irrep appearing in the decomposition is the irrep {A}.

3. Evaluation of plethysms for Sp(2n, R)

The evaluation of plethysms of the type (< s;(0) > + < s;(1) >) @ {v} has been
discussed elsewhere®® using the group chain

Sp(2nk, R) > Sp(2n, R) x O(k) > Sp(2n, R) x S(k) (7)

with the O(k) — S(k) decomposition playing a key role. Plethysms in Sp(2n, R) of
the type
<Ensem=Yag<t 8
2 Vy= Cy < 2(7—) > ( )

T

with
=k x|v] (9)

require a different approach.
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Here we proceed by first doing the branching Sp(2n, R) — U(n) to give

S AT (10)

where the coeflicients ¢| are non-negative integers. The sum is infinite with the lowest

weight irrep of U(n) being {A} with
=1 (11)

The next step is to evaluate the plethysms in U(n) to some user chosen cutoff.
This gives a list of U(n) irreps which may be ordered in increasing weight starting
with the lowest {p,,}. This observation implies that the Sp(2n, R) irrep < g(pm) >
occurs in the Sp(2n, R) plethysm. Thus we may remove from the list of U(n) irreps all
those derived from that Sp(2n, R) irrep. The lowest weight irrep of the residue U(n)
is identified and the U(n) content of the next Sp(2n, R) irrep removed. This process
is continued up to the chosen cutoff.

The above process may be illustrated by calculating the plethysm < %(21) > @{2}
up to terms of maximum weight 10. We first compute the Sp(6, R) — U(3) branching
rule keeping all terms of weight < 10 to obtain

< 2(21) >—{81} + {72} + {7112} 4 {63} + {621} 4+ {61}
+ {54} + 2{531} 4+ {52} + {512}  + {432}  + {43}
+ {421} 4 {41} + {3?1}  + {32} + {31}  + {21}

We now compute the plethysm at the U(3) level again keeping all terms of weight
< 10 to give the following list of U(3) irreps

2{82} + {812} + 3{73} +7{721} 4 5{64} + 11{631}
+ 9{62?} + {62} + {61%} + {5%} + 10{541}  + 11{532}
+ 2{53} + 4{521}  + 8{4?*2} + {47} + 4{43%} + 4{431}
+ 3{42?} + {42} + 2{3?2} + {321} + {2°}

There are three irreps of weight 6 in the above list ({42}, {321}, {2°} allowing us to
immediately conclude that the Sp(6, R) irreps < 3(42) >, < 3(321) >, < 3(2%) > must
occur in the plethysm. These three irreps may be branched to U(3) and the resulting
U(3) irreps of weight < 10 removed from the list to leave the U(3) residue

(82} + {812} +2{73)  +5{121)  + 3{64) + 8{631)
+5{622}  + {612} + {57} + 7{541} 4+ 7{532}  + {53}
+2{521}  +4{422} 4+ 3{43?} 4+ 2{431}  + {3?2}

Inspection of the above list shows that there are seven irreps of weight eight and hence
seven more Sp(6, R) irreps. Continuing we readily find < 2(21) > ®@{2} contains, to
weight 10, the Sp(6, R) irreps
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< 3:(82) > + <3;(73) > +2<3;(721) >+ 2<3;(64) > +2<3;(631) >
+3<3;(622) > 4+ <3;(612) > +2<3;(541) >+ <3;(532) > + <3;(53) >

+2<3;(521) >4 2<3;(422) > +2<3;(431) >+ <3;(42) > + < 3;(3%2) >
+ <3;(321) > 4+ <3;(2°) >

The plethysms of the irreps < s;(0) > and < s;(1) > are of particular interest
in physics applications. The resolution of their Kronecker squares is straightforward.
The terms, to weight 16, for plethysms for up to power 4 are relevant to the description
of the states of two to four particles in an isotropic three-dimensional harmonic
oscillator and have been evaluated. The tabulated results are available at the WEB
site http://www.phys.uni.torun.pl/~bgw/.

4. The Kronecker square of the fundamental irreps

Inspection of the symmetrised powers of the irreps < s;(0) > and < s;(1) >

reveals a number of surprising features. It would appear that

(0> 002) =) <L(0+4) > (12)
< 5:(0) > @{12) = i_o: <1524 4i) > (13)
(1) > 0f2) = i < 1i(2440) > (14)
< (1) > @{1%} :<_1; (1%) > +i < 1;(4 4 4i) > (15)

holds for all Sp(2n, R) with n > 2. For n = 1 the irrep < 1;(1?) > in Eq.(15) must be
deleted. The correctness of Eqs. (12) to (15) may be verified by first noting that the
Kronecker squares of the fundamental irreps are n—independent for n > 2 and then
using S—function identities for the infinite series.

Remarkably, the irrep content in Eqs. (13) and (14) are identical and hence
< 5;(0) > @{1?} =< 5;(1) > @{2} (16)

which in turn implies a number of hitherto unnoticed identities for plethysms. Even

more remarkable is the observation that suggests the conjectured equivalence that
< 5:(0) > @{21%} =< s;(1) > @{31} (17)

The equality is evidently n—independent for n > 3. Such an equivalence would only
be possible if both plethysms under Sp(2n, R) — U(n) yielded the same set of U(n)

irreps. But this would again require a remarkable S—function plethysm identity.
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5. Plethysm identities for infinite series of S—functions
The equivalence observed in Eq.(16) implies that
My @ {1*} = M- {2} (18)

Such an equivalence may be readily proved using the properties of the infinite series
of S—functions defined elsewhere”1¢. The proof follows by first noting that

My =M+ P (19)
where

VS Py 0
and that

M? — M? = MP =W (21)
Then

(2My) @ {17} = 2(My @ {1*}) + MY = (M + P) @ {1*} (22)
leading to

2(My @{1?}) =(M+P)o {1’} - M; (23a)

20M_®{2}) =(M —P)® {2} — M? (23b)

Thus Eq.(18) will be valid if

(M+P)o{1*}—(M-P)o{2}=M; -M> =W (24)
Expanding the left-handside we obtain

Mo({12y -2 +2W=-Map +2W =W (25)
which establishes the conjectured equality. From the equality it follows that

M ®{2} = MM, and M ®{1*} = MM_ (26)

In precisely the same manner one finds
L+o{l’t=L-o{2} (27)

where L, and L_ are respectively the positive and negative terms of the series

L= -1 (28)

m=0
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Still further identities arise for the infinite S—function series defined by
Ay ={1’} @ Ly, By = {1’} @ My, Ci = {2} @ Ly, Dy = {2} ® M (29)
Use of the associativity property of plethysms!® leads directly to
Z,@{1*}=Z_2 {2} (30)
for Z = A, B,C, D. Furthermore,
Z@{2Y=27Z, and Z@{1*\=227_ (31)
Now to the remarkable Eq. (17). This plethysm implies that
My @ {21} = M_ @ {31} (32)

Three independent proofs of this identity have been established. The author first,
rather tediously constructed a proof similar to that given for Eq. (18), next Thibon!”
gave a simple proof based upon a power sum expansion of both sides of Eq. (32),

finally King!'® used the associativity property of plethysms to give

M, © {217} = My © ({17} @ {17})
— (M 0 {17} 0 {12} = (M_ o {2}) © (1)
= M_ o ({2} @ {1%}) = M_ @ {31}. (33)

where use has been made of the fact that {1?} ® {1?} = {21?} and {2} @ {1?} = {31}.

King further notes the generalisation
My o ({1Pofo}) = Moo ({2} @ {o}). (34)

Again the identities in Eqs. (33) and (34) can be extended to the series given in Eq.
(29). King’s generalisation, Eq. (34), can give a useful check on computations of

Sp(2n, R) plethysms. For example, choosing {0} = {2} gives the identity

My @ ({2} +{1"}) = M_ @ ({2°} + {4}) (35)

6. Stable Sp(2n, R) plethysms

A given plethysm, Kronecker product or decomposition will be said to be stable if
at the stable value of n = n; there is a one-to-one mapping between the resultant list
of irreps obtained at the stable value n, and those obtained for all values of n > n,.
Egs. (1) and (2) are examples of stable decompositions under Sp(2n, R) — U(n) with
a stable value of ny = 2. Likewise the decomposition in Eq. (3) is stable for all values
of n > k.
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It follows from King and Wybourne® Eq. (8.18) that the Sp(2n, R) Kronecker
product

< ;(A) > X < g(u) >=< (k;_g)(({As}k Av Y D)pyon > (36)

is certainly stable for all n > (k 4 (). We say certainly because in certain cases
premature stability may occur for values of n < (k+ (). At this point note that all the
S—functions in Eq. (36) must satisty, at every stage in the calculation, the constraints
of Egs. (4a) and (4b). This restricts terms in the infinite D series of S—functions to
those members of the series of length ((6) < @. Similar restrictions apply to the

signed sequences appearing in Eq. (36). As a trivial example consider
< 1;(0) >< 1;(0) >=< 2;(({0,}* - {0,}*- D)4, >

We anticipate stabilisation at n = 4 but

{0,}* = {0} — {27}
However, {2°} cannot satisfy the constraints of (8.19) for n < 4 and should be
discarded. Furthermore only the terms of the D series of length 2 can satisfy Egs.
(4a) and (4b) and hence the product stabilises at n = 2.

One observes that the third-order plethysms for the two fundamental irreps
stabilise at n = 3. This is consistent with the stabilisation of the products < s;(0) ><
1;(p) > and < s;(1) >< 1;(p) > at n = 3 and for similar reasons stabilisation of the
N-th order plethysms must occur at n = N as observed. Again premature stabilisation
for individual plethysms may occur for n < N. Thus for N = 3 all the plethysms
stabilise at n = 2 except for < s;(1) > @{1°} which stabilises at n = 3. Stabilisation
for arbitrary N stabilisation occurs at n = N — 1 except for < s;(1) > @{1V} which
stabilises at n = N.

7. Conjugacy mappings

Inspection of tables for the plethyms < s;(0) > @{\} and < s;(1) > @{\} where
A is the conjugate of A suggests that the two plethysms are remarkably related by
one-to-one mappings such that if

<s:(0) > 0{A} =) g" < k() > (37)

where & = |A|/2 and ¢* is the multiplicity, then the terms ¢" < k;(p) > in
< s(1) > @{\} are identical to those in Eq. (37) apart from those that are related
by the following simple () one-to-one mappings

AF2 (0) — (1%)

AE3 (0) = (1°)  (a) = (al) (al) = (a)

Ak 4 (0) = (1%)  (a) = (a1?) (al?) — (a)

AFED (0) — (1°) (a) — (al®) (al®) — (a) (ab) — (abl) (abl) — (ab)
AF6 (0) — (1°) (a) — (al?) (al*) — (a) (ab) — (abl?) (abl?) — (ab)

(38)
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That such simple relationships seem to exist is by no means evident from the methods
used to establish the plethysms and hints at an underlying simplicity that remains to

be discovered and a conjugacy theorem still to be exposed.

8. Two-particle states

The plethysm equivalence noted in Eq. (16) has consequences for the case of
the states of two non-interacting fermions in an isotropic three-dimensional harmonic
oscillator potential. It means that for the even-parity two-particle states there is a
one-to-one correspondence between the spin triplet states formed by two-particles in
even-parity orbitals with the spin singlet states formed by two particles in odd-parity
orbitals, a feature of the much studied isotropic three-dimensional harmonic oscillator
potential that does not seem to have been hitherto observed.

The corresponding plethysm equivalence noted in Eq. (17) is less applicable since
for N spin % identical fermions the Pauli exclusion principle excludes spin states
involving irreps of of S(N) involving partitions into more than two parts. In the case
of nucleons where spin and isospin are considered irreps of S(N) involving partitions
into up to four parts arise and some application is possible but not in the form found

so directly for two-particles.

9. Three-particle states

There is no difficulty, in principle, in determining the states for N —particles in an
isotropic three-dimensional harmonic oscillator. The case of three particles suffices to
illustrate the general procedure. For three particles in an isotropic three-dimensional
harmonic oscillator potential the dynamical group is Mp(18) whose fundamental irrep

A decomposes under restriction to Sp(18, R) as

A =< %(0) >+ < %(1) > (39)

Then under Sp(18, R) — Sp(6, R) x O(3)

1(0) >— < s1;(0) > [0] + < s1;(1%) > [1)# + <s1;(2) > [2]
+ <s1;(31) > [3]# + <sl;(4) >[4 + <sl;(51) > [5]#
+ <s1;(6)>[6]  + <sL;(71) >[7# + <s1;(8) > [§]
+ o< s1;(91) > [9)# + < s13(10 ) > [10]
(1) >— < s1;(1) > [1] + < s1;(1%) > [0]# + < s1;(21) > [2]#
+ <s1;(3)>[3] + <sl;(41) > [4]# + < s1;(5) > [5]
+ <s1;(61) > [6]# + <sL;(7)>[7 + <s1;(81) > [8]#
+o<s1;(9)>[9] 4 <s1:(101) > [10 |# (40)
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The spins associated with these representations can be found from a knowledge of the
O(3) — S(3) branching rules. Note that to obtain the branching rule for [n]# one
simply replaces the S(3) irreps by their conjugates.

The terms associated with the {3} irrep of S(3) are spurious while those with {21}
and {1°} correspond to states with spin S = % and % respectively.

The three-particle states can be equivalently found from the use of the Sp(6, R)

plethysms. The even parity states must arise from

(5 = %) < %(0) S 921+ < %(1) > 02} < %(0) >
+ < %(1) > ©{1%} < %(0) > (41)
(5 = ;) < %(0) > @{1%)+ < %(1) S ©{1%) < %(0) > (42)

while for the odd parity states they arise from

(5 = %) < %(1) S 921+ < %(0) > 02} < %(1) >
< %(1) < %(0) > @{1%) (43)
(5=2) < 5(1) > (P} < 2(0)© 1%} < 5(1) > (44)

To weight 10 we obtain the following even parity states

=1) < s1;(1%) > +2<s1;(2) > +2<s1;(31) >+ 3 < s1;(4) >
+ 4 <sl;(51) >+ 4 <s1;(6) > +5<s1;(71) >+ 6 < s1;:(8) >
+ 6 <s1;(91) >+ 7 < s1;(10 ) >

< s1;(1%) > +2<s1;(31) >4 <sl;(4) > +2<sl;(51) >
+2<s1;(6) > +3<sL;(7T1) >+ 2<s1;(8) > +4<s1;(91) >
+ 3 < s1;(10 ) >

I
N W
~—

while for the odd parity states we obtain

(S=12) < sl;(1) > +2<s1;(21) >4+ 2<s1;(3) > +3<sl;(41) >
+4<sl;(5) > +4<s1;(61) >4 5<s1;(7) > +6<s1;(81) >
+ 6 < s1;(9) >

(=2 < s1;(1%) > + <s1;(21) > + <s1;(3) > +2<s1;(41) >

+ <sl;(5) > +3<sL;(61) >4 2<s1;(7) > +3<s1;(81) >
+ 3 <s1;(9) >

10. Lowest energy states for non-interacting particles

In the case of N non-interacting particles in a harmonic oscillator potential the

energy of a given state is simply the sum of the one-particle energies and hence the
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lowest energy state associated with a given Sp(6, R) multiplet < k() > is, relative to

the groundstate energy,
wyhw (45)

where w is the oscillator angular frequency and w) is the weight of the partition ().
Representations of Sp(6, R) having different partitions but of the same weight will
have the same zero-order energy as given in Eq. (45).
For three-particles we have, to weight 6, the U(3) states with spin S = % are
illustrated in Fig. 1 and those for .S = % in Fig. 2.
The U(3) states of weight w for N —particles may be determined as follows
Partition the integer w into N parts allowing zero parts if necessary.
Even weight partitions involve even parity states otherwise odd parity states.
Replace each part ,i ,by {¢} which then labels the U(3) irrep for a single particle
in the :—th harmonic oscillator orbital. A given orbital : can accommodate up to
41 + 2 particles with spin %
4. For a given partition containing k distinct non-repeating parts form the SU(2) x

U(3) Kronecker product

(5 L) A5) > fia} {5} * (i) (46)

to give a series of SU(2)° x U(3) multiplets.
5. If the parts ¢ are repeated with a multiplicity m then evaluate the plethysm

GHibe @) = T e ) if m>2
= (Ui e 2+ YA e (2} ifm=2 (4D

For N = 3 we have for weight 4 the four partitions
440+0, 34140, 24240, 24141 (48)

Applying the above algorithm we find for the first partition a U(3) multiplet with
S = 1. The second partition gives two U(3) multiplets, {4} + {31} with spins S = 1
and S = 2. The third partition yields the U(3) multiplet {31} with S = 2 and the

2
U(3) multiplets {4} + {31} + {2?} with spin S = 1. The fourth partition yields the
two U(3) multiplets {31} 4+ {2?} with spin S = 2 and the three U(3) multiplets
{4} + 2{31} + {2%} + {21°} with spin § = 1. Thus for spin S = 2 we obtain
the U(3) multiplets {4} + 3{31} + {21?} and for spin S = 1 the U(3) multiplets
4{4} 4+ 4{31} +2{2*} + {21*} in agreement with those found in Figs. (1) and (2) using

the group Sp(6, R) = U(3) decompositions.
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11. Concluding remarks

Some basic methods of computing plethysms for the non-compact group Sp(2n, R)
have been outlined. A novel, and unexpected, feature of this work has been the
recognition of a number of new identities concerning plethysms of the fundamental
irreps of Sp(2n, R) and consequential identities involving plethysms of certain infinite
series of S—functions. These identities give rise to an apparently hitherto unrecognised
property of two-particle states in an isotropic harmonic potential.

An initially surprising feature is the essentially n—independence of the Sp(2n, R)
plethysms. These stabilise for sufficiently large n and results for smaller n follow by
rejection from the stabilised result of all Sp(2n, R) irreps that do not satisfy Eq. (4)
for the smaller value of n. Increasing n beyond its stabilsed value involves considerably
more computation but no new types of Sp(2n, R) irreps.

Much of the preceding work is relevant to symplectic models of nuclei and
mesoscopic systems such as quantum dots. It should be possible to start to consider
the properties of model Hamiltonians constructed from the group generators. The
first step is the determination of the states of the non-interacting particles which has

been one of the objectives of this paper.
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Figure 1: U(3) multiplets to weight 6 for spin S = % 3-particle harmonic oscillator states.

Figure 2: U(3) multiplets to weight 6 for spin S = 3 3-particle harmonic oscillator states.




