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The basic spin difference charactet of SO(2n) is a useful device in dealing with
characters of irreducible spinor representations of $SQ(& is shown here that its
kth-fold symmetrized powers, or plethysms, associated with partitioosk fac-
torize in such a way that”®{«x}=(A")"II, , wherer () is the Frobenius rank

of k. The analogy between SO(2 and Sp(2,R) is shown to be such that the
plethysms of the basic harmonic or metaplectic charaktef Sp(2n,R) factorize

in the same way to givé@{x}=(3)’(")ﬁK. Moreover, the analogy is shown to
extend to the explicit decompositions into characters of irreducible representations
of SO(2n) and Sp(a,R) not only for the plethysms themselves, but also for their
factorsll, andIl, . Explicit formulas are derived for each of these decompositions,
expressed in terms of various group—subgroup branching rule multiplicities, par-
ticularly those defined by the restriction from I)(to the symmetric groufsy.
lllustrative examples are included, as well as an extension to the symmetrized
powers of certain basic tensor difference characters of both §C{2d Sp(d,R).

© 2000 American Institute of Physics. [S0022-24880)02608-9

I. INTRODUCTION

In a preceding papérhereafter referred to as KWthe analogy between finite-dimensional
representations of SONP and infinite-dimensional representations of Sp(2) was made highly
explicit at the level of the characters of these representations and the decompositions of their
various tensor products and powers. However, as pointed out in KWI a central problem in making
applications of Sp(8,R) to various models of physical systems such as nfitlend quantum
dot$"® is the resolution of tensor powers of the fundamental metaplectic representation which has

charactét’ A. Considerable progreéss® has been made on this problem, which amounts to the

evaluation of symmetrized powers, or plethysmsAofHere we tackle this problem by empha-
sizing the remarkable analogies discussed in KWI that exist betweenr$@f®i Sp(2,R). In
this context the precise analog of the basic metaplectic chardctesf Sp(,R) is the basic
spin-difference charactéf;'® A”, of SO(2n). While progres¥'¢ has also been made on the
problem of evaluating plethysms of such characters of $p,(2he aim here is to draw on the
analogy that exists between the two problems so as to solve both problems in a unified manner.
Our notation follows that developed in KWI and in references contained therein. In the case of
the orthogonal group O(® the spin representation of dimensioh\ith characte’A decomposes
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on restriction to the proper orthogonal group S@)2nto a direct sum of two irreducible repre-
sentations each of dimensioft 2 with characters\ , andA _ .
The relevant character formulas for S@(2take the form:

n

A=A++A,=i1:[1 (V24 x 1), (1.1a
n
A”=A+—A_=i[[1 (xM2=x ), (1.1b

wherex; andxi‘1 fori=1,2,..,n are the eigenvalues of an arbitrary group element of SP,(At
the identity element we havex;=1 fori=1,2,..,n so that dimA =2" while dimA”=0.

The sumA and differenced” characters of the infinite-dimensional irreducible representa-
tions of Sp(d,R) are given by

n

Z=Z++Z_=i_1_[l (x; Y2—xl2) =1, (1.23
n

A=A, -A =] (x Y2+x}»1, (1.2b

where nowx; and xi_l for i=1,2,..,n are the eigenvalues of an arbitrary group element of
Sp(2n,R).
The symmetric and antisymmetric squaresiofindA” are given by*~1°

o0

A@{2p=[1", +[1" 4+ 2, ([17 ¥+ [173 )+ 2[4 ), (1.39
A®{12}=§0 ([AN 14 4 201N~ 2- X[ 1N 34]), (1.3b
A"®{2}=[1“]++X§0 (—Dran o, (1.39
A”®{12}=[1”]+§0 (—1)F i, (1.3d

where[1X] is the character of th&th fold antisymmetrized power of the defining irreducible
representatiofl] of SO(2n). These representations are irreducibleiferl,2...n—1, while for
k=n we have[1"]=[1"], +[1"]_.

Similarly, the symmetric squares &f andA” are given by **

Be{2t=(10)+ X (1), (1.4a

Ae{1%=(1(0))* +X§0 (1(x)), (1.4b
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Z”®{2}=<1(0))+<1(0)>*+XZO(—(1(1+4x)>—(1(3+4x))+2(1(4+4x))), (1.40

Ae{1%= ZO (—(1(1+4%)) +2(1(2+4%)) — (1(3+4x))), (1.40

where(1(m)) is the character of a certain harmonic series infinite-dimensional irreducible repre-
sentations of Sp(2,R) and the asterisk signifies the associaté an irreducible representation of
Sp(2n,R).

Comparison 0f1.1) and(1.2) gives a formal connection between the characteedA” of
SO(2n) and the characters andA” of Sp(2n,R). The formal connection is brought home rather
forcibly in (1.3) and(1.4) through the analogy between the symmetrized squarAssoidA”, and

between those ah” andA. It is the latter analogy which is explored further here through some
observations on the somewhat unexpected factorization of the plethysgs«<} of SO(2n) and

A®{k} of Sp(2,R).
For SO(), sincé®

AcAL=[1"+ X [1"272], ALAL = [1M 1, 1.9
x=0 x=0
it follows that (1.39 and(1.3d) can be written in the form:
A"@{2}=A"A,, A"®{1%}=—A"A_, (1.6)
with
dim(A,)=2""1 dim(—A_)=—-2""1 1.7

These factorizations and the accompanying dimensionality formulas may appear somewhat unre-
markable, however, it is also the case that

o0

A//®{21}:A//ZO (_1)X(_[1[1—1—3)(]_'_[1“—2—3)(])' (18)
with
dim ZO(—1)X(—[1“-1—3X]+[1“—2—3X]) A (1.9

This factorization and the accompanying dimensionality formula is far from trivial to derive, but
taken in conjunction wit{1.6) and(1.7) it is tempting to explore to what extent one might have

A"@{ky=A"TI,, (1.10

with IT,. both belonging to the ring ovet of characters of irreducible representations of SQ(2
and having dimension given by

dimIl, = +k"" 1, (1.11

wherek is a partition ofk.
Similarly for Sp(,R) it is known that
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thi:<1(o)>f+xzo (1(2+2x)), LZ::XEO (1(1+2x)), (1.12

where it has been convenient to den¢1€0)) and(1(0))* by (1(0)), and(1(0))_, respec-
tively. It then follows that(1.4a and(1.4b can be written in the following form:

Ae{2}=AA,, A®{1%=AA_. (1.13

Once again we have a rather trivial looking factorization leading us to seek am$)(2nalog
of (1.10 of the form

Aeof{xt=AI,, (1.14)

whereﬁK belongs to the ring ovét of characters of irreducible representations of 3P, but
now we would expect

dim I =o. (1.19

Before embarking on the evaluation of the plethysms of interest here, naxfielyx} and
Z@{K}, some general formulas are given in Sec. Il for the evaluation of arbitrary plethysms of the
form S®{«}, emphasizing the advantages that follow from expressing the pariitiofrrobenius
notation and from distinguishing between even and odd weight contributions to seBdsimut-
tions. In conjunction with a crucial proposition due to Scharf and Thideaderived here in Sec.

Il, some of these formulas are then used in Sec. lll to evaluate quite explicitly the plethysms
A"®{x} andA®{«}. The results are expressed in terms of the branching rule coefficients appro-
priate to the restriction from the orthogonal grougk®fo its finite subgroup, the symmetric group

S¢. In the case of the pIethysmEs@{K} of Sp(2n,R) this connection with such branching rule
coefficients was first pointed out by Carvath®he coefficients themselves may be evaluated in a
variety of ways:8-23

The remaining formulas of Sec. Il are then used in Sec. IV to derive factorizations of these
same plethysms in the form

A"®{k}=(A")IT, (1.1
and
Re{xt=(R)'®II,, (1.17

wherer («) is the Frobenius rank of the partition Explicit formulas are given fofl, andII, in
terms of characters of the symmetric group and certain symmetric functions. Furthermore, certain
determinantal expansions are derived for bhth andII,, leading to a very simple dimension
formula forIT,., but not of course fofl,, which is infinite dimensional.

However, these formulas do not reveal whethierandIl, can be expressed as linear com-
binations of characters of irreducible representations of 8p@hd Sp(2,R), as appropriate,
with integer coefficients. This is accomplished in Sec. V, where formulas interpolating between
A"®{«} andIl,, and betweed ®{«} andIl, are established. The coefficients in these expan-
sions are all integers, determined once again by group—subgroup branching rules and their in-
verses. Numerous examples of the explicit calculatiodlgf, IT,, A"®{«} and A®{«} are
provided in Sec. VI.

Finally, in Sec. VII, the procedures are extended to the case of the plethysms of the basic
tensor difference characters of S@j2and Sp(2,R). Once again factorization occurs, and the
remarkable analogy between S@)2and Sp(a,R) is shown to hold true yet again.
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II. SOME TECHNIQUES FOR EVALUATING PLETHYSMS

Before embarking on the evaluation of pleythysmsAdfand A, it is worth recalling from
KWI some of the Schur-function and character-theoretic background to these problems. This relies
heavily on the exploitation of partitions and Young diagrams.

Each partitionk=(«x1,x,,...,kp) Of k specifies a Young diagrafi“ consisting ofk=|«|
boxes arranged ip=/(«) left-adjusted rows of lengths; for i=1,2,..,p. The Iengthsfcj’ for
j=1,2,..,q of the g=b(k) top-adjusted columns df“ serve to define the conjugate partition
k' =(K1,K3,...,k4). The number of boxes=r(«) on the principal diagonal df“ is known as
the Frobenius rank of the partitioa In Frobenius notation

K=

al a2...ar
bl b2...br ’

where fork=1,2,..,r the parameters, = x,—k and b=, —k are the arm and leg lengths,
respectively, ofF“ with respect to its main diagonal of length With this notation the Young
diagram can also be viewed as the union of a set of nested hooks of lgrgty+ b, + 1 with
k=1,2,..,r. All this is illustrated schematically by

] k1 l | SIS e : ] 2
K __ _ ke _ _ b1 a2 — tha
= T ks I I I IAS_’_‘ (21)

With this notation there exist a number of distinct determinantal expansions of the Schur
function {«}. These include the following?242°
8
b

In the present context the significance of the last of these expansions is that for any linear
combination,S, of Schur functions the evaluation of its plethyss®{«} can be effected by
means of the determinantal expansion:

{r}= |{Ki_i+j}|p><p: |{1Kj/_j+i}|q><q:|{’<i_i+111Kj,_j}|r><r: (2.2

rxr

a
S®{K}=S®{ bs] . (2.3
lrxr
An alternative expansion dic}, entirely different to those of2.2), takes the fornt>2324
=> Lo 2.4
{K}_pkk Zpopp’ ( . )

where the sum is taken over all partitiopsof k, andp, is the power sum symmetric function
specified byp. The coefficienty; is the character in the irreducible representatian of the
symmetric groupS, of the conjugacy class of elements having cycle structure specified by the
partition p. If the length ofp is /(p) then

p:(plvPZ!"'lp/(p)):(kmki"'!znzilml) (25)
with
k k
;21 m=/(p), ,Zl jmj=k. (2.6)

With this notation
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k k
zp=j1]1 m;!m, |o,1=][[1 P}, 2.7
wherep; is just the elementary power sum function defined forjalll by

pj(xl,xz,...,xn)zz X, (2.9

for whatever is the appropriate set of indetermingtes,x,,...} that is denumerable but not
necessarily finite.

For any givenk the summation ovep in (2.4) may be restricted to those partitions for which
the characterg; of S, are nonvanishing. The Murnaghan—Nakayama recurrence relation for
characters of the symmetric group takes the fofr242°

Xi= Eg (—1)7 " Ox, (2.9

where if p=(p1,p2,....0,(,)) theno=(p;,p3,....p,(,). The summation is over all continuous
boundary strips of lengthp, such that their removal from the Young diagr&ifi leavesF* for
some partition\. The parameter’ /' (£) is the leg length of, which is one less than the number
of rows containing boxes within the boundary stép

ForX; to be nonvanishing it is necessary under the iteratiof2 @ to remove all boxes df“
through various sequences of precisglfp) continuous boundary strip removals Ieading)ag)
=1 multiplied by some combination of leg length factors 1)””(9. Since these continuous
boundary strips each have at most one box on any diagonal and the longest diagehé tie
principal diagonal whose length is the Frobenius rark (), it follows that®

X,=0 if Z(p)<r(«x). (2.10

Just as(2.2) could be used by way of2.3) to simplify the evaluation of plethysms, so a
further time-honored method of evaluati®p{«} makes use of the expansi@®.4). This ap-
proach, supplemented by the multiplicative expansioppfn (2.7) and the simple observation
(2.10, yields the following formula:

k

1
So{kl= >, —x<I1 (sepp™. (2.11)
prk./p)=r(k) Zp  Tj=1

It might be stressed that the bourdp)=r(x) can always be saturated in such a way that
X,#0. This is done most simply by setting=(hy,h,,....n;). In fact Xﬁlhzmhr:
(—1)Pr*b2t b Moreover, for anyS=S(X;,Xz,....X,) andj=1 we not only haveS® p;=p;
®S but also

S(xl,xz,...,xn)®pj=S(le,x12,...,x£1). (2.12

In what follows a rather general lemma on plethysms is of use, namely:
Lemma 2.1: Let X and Y be two series of S-functions all of whose terms are of even and of
odd weight, respectively, and let « be an arbitrary partition. If

<X+Y>®{K}=§ pi{ e, (2.13

then
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<X'—Y'>®{K}=§ (—D)p{u}. (2.14

Proof: It should be noted from Lemma 5.3 of an earlier papérat Littlewood’s conjugacy
formula?® can be generalized to give in the present context

(Xe{p}) =X"®{p}, (Y&{p})'=Y'®{p'}, (2.19

for any partitionp. Moreover, Littlewood’s algebra of plethy$ff®is such that

(X+Y)o{x}=2 c5 (Xe{o})(Ye{r})= 2 i u}+ ; P =2 piut,
o,7 wiluleven i pnodd " (2 1@

where the coefficients’; . are the famous Littlewood—Richardson coefficiéhts defining prod-
ucts of S-functions, and the second step involves evaluating further products of the various
S-functions appearing iX®{o} and Y®{7}, distinguishing between those of even and odd

weight. Furthermore, thanks again in the first step to Littlewood’s algebra of plethysm and in the

second ta(2.15, we have
(X’-Y')@{K}Z(TET (—1)|T|C;’T(X'®{O'})(Y’®{T'})=;r (-l (Xe{ah) (Ye{r})'

— _1 |7'| K X Y I — M N 1 !
2 (Ve ((Xefoh(Yolm)'= 2 pin)= 2 pis')

o, T J7
=> (—1)HpHu'}, 2.17)
y

as required. The penultimate step depends on the fact that the only{jefrmppearing in(2.16
of odd weight are those that arise from products of the necessarily even weight tens of
®{o} with some odd weight term of ®{r}. Such terms arise precisely whehas odd weight]
As an application of Lemma 2.1 we may apply it directly to the fStfunction series denoted
in KWI by M, L, Q, andP, thereby obtaining:
Corollary 2.2: Let

©

M®{K}=( > {m} ®{K}=% mi{ut, (2.183

m=0

L®{K}=(mEO (—1)™1m} ®{K}=§ /ul, (2.18b
Q®{K}=<m20{1m} ®{K}=§ . (2.189
P@{K}=(r§0<—1>m{m} ofxt=3 pint, (2.189

then

/=(=1)Hme and pt=(—1)lgH. (2.19
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Proof: If we write M=X+Y with X={0}+{2}+--- andY={1}+{3}+---, thenX'={0}
+{1%}+--- and Y’ ={1}+{1% +---, so thatL=X'—Y’. The application of Lemma 2.1 then
leads immediately to the first part (2.19. Likewise, if we writeQ=X+Y with X={0}+{1?}
+--and Y={1}+{1%+---, thenX'={0}+{2}+--- and Y'={1}+{3}+---, so thatP=X’
—Y’. The application of Lemma 2.1 then leads immediately to the second p&2tl®. O

At least for reasonably small values kf the weight ofx, it is not difficult, although it is
certainly tedious, to evaluate the various coefficiems, /%, g%, and p% appearing in the
plethysms(2.18 up to any preassigned weight| through the use, for example, of the software
packagescHUR?” However, it is well worth noting that the following proposition has been derived
by Scharf and Thibolf as part of a Hopf algebra approach to inner plethysms:

Proposition 2.3: Let u be a partition which is U(k)-standard in the sense that /'(u)= u1
<k and let the coefficients g% be defined by the U (k) to S branching rule:

U(k)—S: {M}HK%k 9%(«), (2.20

where the summation is over all partitions « of k, then

Molet= 2 ogiu} and Lo{e= 2 (~D"lgi{u). (2.21

wi/ (m)<k AMES

The validity of the crucial first part of2.21) was establishéd as a reciprocity theorem
linking characters of Uf) andS,. The second part dR.21) is then a trivial consequence of the
conjugacy relatior{2.19. However, we can also offer an alternative proof®£1) using one of
Littlewood'’s resulté® on inner plethysms.

First it should be noted that the irreducible representationof the symmetric group$,
specified by the partitionc of k, may also be specified in reduced notation (loy where («)
=(k—|»|,v). With this notation we have:

Lemma 2.4: Let \ be a partition of |[\| with |[\|<k, and let p=k—|\|. Then

(MM)=(p-\), (2.22

where / and - signify S-function quotients and products, respectively.
Proof: The reduced notation used on the left-hand sid€2d?2 is such that in more conven-
tional standard notation we have

(MMY= > (NmYy=>, (k—|\|+m,\/m). (2.23

However on the right-hand side ¢2.22 the application of the special case of the Littlewood—
Richardson rule known as the Pieri rule gives

(p~>\)=§ (p+m,\/m). (2.24

Sincep=k—|\|, comparison 0f2.23 and(2.24) yields (2.22), as required. O
Now we can return to the proof of Proposition 2.3.
Proof: From the definition oM and the algebra of plethysiist follows that
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Me{xt=({0pH{1}+{2H+-o{d= X cf,.(({0}e{h)-({Lieiph- (2te{sh- )

p,0,...

= 2 oo ({Ueleh-(2eloh )= 3 e finemizetn- kb

(2.295

where the coefficients’  are defined by th&-function product

TpO..

{w}-{p}-{o}--:g Cl oAt} (2.26

and use of the Littlewood—Richardson rule as many times as appropriate. Similarly, the coeffi-
CIENSC{{130 () (1210 (o)) 2TE defined by

({Lte{p})-({2}e{a})---= % CfL{l}@{p})({z}@{g})...{/L}. (2.27)

The second step @2.25 makes use of the fact thf®} ®{=} =0 if 7 is not a one-part partition,
while in the case of a one-part partitignwe have{0}®{p}={0}=1.

Turning to (2.20), the branching rule for the restriction frotd (k) to U(k—1) may be
expressed in the form

U()—U(k=1):{up—{p/M}= 2 {p}/fa} =2 {u}/({1}o{a}), (2.28

where, largely for aesthetic reasons in what follows, use has been made of the faft}that
®{a}={a}. Littlewood® has provided the branching rule for the restriction fronkt() to S,
in his Theorem XI. This takes the following form:

Uk—1)—S: {V}Hbycn%gnn(({n}'{é}'")-({V}/(({2}®{77})~({3}®{§})---
-({2}®{b})-({3}®{c})--*))), (2.29

where the angular bracke{s ) have been used again to signify character§pexpressed in
reduced notation.

Combining (2.28 and (2.29, and using the fact thatu}/X=X cf,{&} for all X, with {£}
={1}®{¢&}, we obtain



J. Math. Phys., Vol. 41, No. 8, August 2000 Analogy between plethysms of SO(2n), Sp(2n,R) 5665

U(k)—S:

W= 2 Clielayqaeim- (@) (el (e ) (el 7 )

= be 2, Cliedean q@ew m ot (€16

= 2 Climempn w2t qaetr{(p12)- (/D) (o))

a,b,c,....,p,0,7,...

= 2 it (2o (@ety-{(p o) m)

m,p,o, T

2 clyei-qasion- (et (o T )M)

p,0,T,..

= 2 Climeph-qeio-(@eir (P o)

p,0,T,..

S

= & Clwewh-qaeeh- @@ty Copon.(K); (230
where in the penultimate step use has been made of Lemma 2.4, extended by virtue of its linearity
in \ to the case in which is replaced by-o- - andp=k—|p|—|o|— |7 —---.
Comparison 0f2.30 with (2.25 then completes the proof of the first part(@f21) and hence
of Proposition 2.3, since the second part follows, as we have seen(2&ds). O

ll. EVALUATION OF THE PLETHYSMS A”"®{x} AND A®{«}
It follows from KWI Sec. Il that

n n
A=e"Q=e?[] (1+x ), A"=€eVL=€"[] (1-x1), (3.1a

i=1 =1

n n
A=eM=e[] (1-x)71, A'=ePP=€"[] (1+x)71, (3.1b

i=1 =1

where it has been convenient to introduce the S-function s@rmdf which are contragredient
to Q andL, respectively. It follows that in order to evaluate the required SQ@nhd Sp(2,R)

plethysms ofA, A”, A, andA” at the level of UQ) it is only necessary to evaluate plethysms of
Q, L, M, andP, and take the contragredient where appropriate. However, general expressions for
these plethysms are only available through Proposition 2.3/fer{«} andL®{«}. These are

related through3.1) to the plethysms oA andA”.

Taking the cas@ first, we arrive at a result first enunciated without proof by Carvélho.
Proposition 3.1: Let \ be a partition which is O(k)-standard in the sense that A ; +\;<k and
let the coefficients b’ be defined by the O(k) to S, branching rule:

Ok =S [\= 2 bi(x), (3.2

where the summation is over all partitions « of k. Then for any partition « of k the corresponding
plethysm of the representation A of Sp(2n,R) decomposes in accordance with the rule
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Ae{x}= 2 b)3kO)), (3.3
NN +HAL=k
or, equivalently,
> (bYmOVYFRL (MmO )+ > bMm(N) if k=2m
- NZ(N)<m N/ (N)=m
A{k}=
% (bX(A;m(N))+bY (A;m(N))*) if k=2m+1,
N:Z(N)=m

(3.9

where the asterisk (*) signifies an associate™ irreducible representation of Sp(2n,R), and it has
been convenient to denote (3+m(A)) by (A;m())).
Proof: From (3.19 and Proposition 2.3 we have

A{k}=(e"M)@{x}=€"AMa{x})=€? >  g“ul, (3.5
i/ (n)<k

where the coefficientg’: are defined by the W) — S, branching rule2.20. We can refine this
branching rule by noting that ®] is a subgroup of W) which itself containsS, as a subgroup.
For u such that”(x) <k let the coefficient®R{ be defined by the W) to O(k) branching rule:

U(k—0(k): {ul— 2 R (3.6

N ’
)\.)\1+)\2<k

Combining this with(3.2) gives

Uk—O(k)—S: {ul— 2 RAI— X RebM«). (3.7
ANNg A=k ANNg A=k
KikEK

Comparison with(2.20 reveals that
g“= > R for /(u)<k and kFk. (3.9
ANNg A=k

However, it is also known that

Sp2n,R)—U(n):  (3K(\))— €2 _/(EM Ri{u} for Ni+Np=k, (3.9

i/ ()<

where this expression serves to define the charadief\)) of Sp(2n,R) completely since
Sp(2n,R) and U(n) are of the same rank. It follows that the successive ug8.8f and(3.9) in
(3.5 leads directly ta(3.3) as follows:

Ao{c}=e? >  RCOMul= D, bMik(\)) for xhk. (3.10
AR NN A gk
)\:)\1+)\2sk

The passage fror8.3) to (3.4) is effected by noting that the summation owein (3.3) yields
mutually associated pairs of irreducible representations of Is{()2together with self-associate
irreducible representations in the cdse2m. Hence(3.3) can be rewritten in the form
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> (BmO))y -+ (MY )+ > bMm(\)) if k=2m
~ NZ(N)<m N/ (N)=m
A®{k}=
% (BNE;m(N))+b (K;m(n))*) if k=2m+1.
NZ(N)=m

(3.1)

The notatiot! is such thatm(\))* =(m(A*)) and(A;m(\))* =(A;m(\*)), where\* is thek
associate of the partitioh for k=2m andk=2m+ 1, respectively. However, in @] we have
[A*]=[A\]*=[0]*[\] and on restriction from Q) to S, we have[0]* — (1¥). Moreover inS,
we have (¥)-(x)=(«") for all «. It follows thatbﬁ*zbf(,. Using this in(3.11) gives(3.4), as
required to complete the proof of Proposition 3.1. O

Turning to the case aA”, the analog of Proposition 3.1 takes the form:

Proposition 3.2: Let \ be such that A+ \,=<k and let the coefficients b* be defined by the
O(k) to Sy branching rule (3.2). Then for any partition « of k the corresponding plethysm of the
difference character A” of SO(2n) decomposes in accordance with the rule

A" @]k}

> (—1)MNA MY b [mYN] )+ (—D)MbAmYN'] if k=2m
NI(AN)<m NI(AN)=m

> (—L)MAA;MYNT =B [A;mYN] L) if k=2m+1.
NZ(N)<m
(3.12

Proof: From (3.1), Proposition 2.3, and3.8) we have

Mo{kp=(eDe{d=eALolh= >  (=1)HeCg{u'}

wi/ ()=

= 2 (DRI W)

L, (CDMEMRED R (i)

+ > (—DHEMREDM LY i k=2m
= ,u}\i((ﬂ)ijm (3.13

i/ ()
N/ (N
if

L (C DM R [+ R D
\)sm
k:

2m+1.

This time it is necessary to convert the combination of characters a) dppearing on the
right-hand side 03.13) into linear combinations of characters of S@J2 To this end we require
an analog of3.9).

It will be recalled that(3.9) arises from a comparison of the branching fdle

Sp2nk,R)—Sp2n,R)xOk): A— X, (2k(M))X[\], (3.19

N ’
NN+ No<K
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with the sequence of branching rules associated with the group—subgroup chain

Sp2nk, R)— U(nk)—U(n) X U(k)—U(n) X O(k). (3.19

This chain is such that

A—e™M— > utxeul— X PR ubXN]. (3.16
i/ (p)<k i/ (p)<k
NN A=k

In the last step 03.16 use has been made of thek)(to O(k) branching rulg3.6). In addition

the k-independent factoe™? with e=+1 has been dropped for convenience since its retention

would only involve various, but essentially equivalent, embeddings &) @( U(k). Now com-

parison 0f(3.14) and(3.16) leads directly to the required Sp§2R) to U(n) branching rulg3.9).
Mimicking this procedure in the case Af it is necessary to distinguish between the cases of

k even and odd. The branching rule of KWI for the restrictionAdffrom SO(2hk) to SO(2n)

X O(k) takes the form:

> (=DM XN H[MYNTOX N + (—1)MmYN XN ]
N:Z(N)<m NZ(N)=m

A”—> |f k:2m

W% (= D)MIA;MYN T XN =[A;MYN X [N]*)  if k=2m+1.
) (3.17)

The analog 013.15 is the group—subgroup chain
SQ(2nk)—U(nk)—U(n) X U(k)—U(n)*x O(k), (3.18

for which we have

A= X (DM el > (— )R LT[N]
i/ (m)<k i/ (m)<k
NN A<k

(3.19

In the last step use has been made of thk)W¢ O(k) branching rulg3.6) together with the fact

that the restriction from W() to O(K) is such thaR{'=R} . As before, the&k-independent factor

€"? with e= =1 has been dropped. Distinguishing in the usual way between even and odd values
of k and between irreducible representations ok)Oand their associates, this gives for the
branching from SO(8k) to U(n) X O(k):
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D (MR XN R FXINT)

wi/(p)<2m
NZ(N)<m

+ > (—DMeRALIX[N] if k=2m

wi/(p)<2m

NZ(N)=m

> (=DM V2R IN]+RE [ X [NT*) if k=2m+1.
w/(p)y<2m+1
NZ(N)=m
(3.20

Comparison 0f3.17) and(3.20 then yields the required branching rules for the restriction from
SO(2n) to U(n):

MY\ ].— > (—=D)H-MeMRELLY for /(N)<m, (3.21a
wi/ (p)<2m

[MYN' ] — D (—1)HNeMRE LY for /(N)<m, (3.21b
wi/ (w)<2m

MY\ ]— > (=D MemREfLT for /(N)=m, (3.219
w/ (w)<2m

[A;mYN ],— >, (—1)lHl=IMemt12Rer, v for /(N)<m, (3.219
wi/(n)<2m+1

[A;mYN']-— > (— 1)l INFLemEL2RE 107y for /(N)<m.  (3.218

w/ (w)<2m+1

As in the case 0f3.9), these branching rules furnish identities expressing characters of irreducible
representations, in this case of S@§2in terms of those of Uf), a subgroup of the same rank.

Using these identities i(8.13 and recalling thab,ﬁ* = bﬁ, gives(3.12), and thereby completes the

proof of Proposition 3.2. O
IV. THE FACTORIZATION OF PLETHYSMS OF A” AND A
We are now in a position to derive the following:
Proposition 4.1: Let « be a partition of k of Frobenius rank r=r(«). Then
A"@{K}Z(A”)r(’()n,ﬂ (41)
with
1 k
HK: _XK(A//)/(p)—f(K)H ij , (42)
ok Ap=r(x) Zp" P j=1
where
n
P=TT (x24I 24 0712), 4.3

Proof: SettingS=A" in (2.12, with A” given by the character formuld.1b, immediately

gives
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n

n
A"®pj:H (xf’z—xi_”z H 1/2 — 12 (X(J 1)/2+X(1 32, .. . (=012 AP,
=1 i

(4.9
with P; as defined in(4.3). It then follows from(2.11) that
1 k
Ae{xt= > H (A"@p)™
prk,(p)=r(x) Z
1 k
T e A | L
ka p)=r(x) Zp
_ z (A”)/(p)H p M (4.5

ka/(p)>r(K) Z

where use has been made(&f7). As required, this give$4.1) with 11, as defined in4.2). [
The factorization ofA”"®{«} spelt out in(4.1) and (4.2) serves to both confirm and refine
(1.10. In seeking to do the same f¢t.11) the following result may be derived:
Corollary 4.2: Let x be a partition of k which in Frobenius notation takes the form

al a2...ar

K= bl b2...br

with r=r(«). Then A”@{x}=(A")" (11, with

HK:|H(:S)|rXr (4.6)

t

and
dim IT, = (— 1)1 P20 (ag+ by + 1)1 (4.7)

where dimII . is the value of IT, at the identity, that is the value at x;=1 for all i=1,2,..,n
Proof: SettingS=A" in (2.3 gives

a
A”®{K}:’A”®:bs] :|A”H(a$]|r><r:(A")r(K)|H(a$)|r><r- (4.9
t ey | by

rXxr
Comparison with the definition dfl . in (4.1) gives(4.6).

To derive (4.7) we first consider the special case whare (7)=(1+a,1°) with k=|«x|=
+b+1 andr=r(«)=1. Then, since dim"=0, it follows that in(4.2) the only terms contribut-
ing to dimII, are those for which’(p)=r(x)=1. But there is only one such term and that

corresponds to the one part partitipr= (k) for which z,=z,=k. Moreover, X“al (—1)"°.
Hence

1 1
dimHK:Z—X&“‘*lb dim P= (- 1)Pk"=(—1)(a+b+1)"" 1. (4.9
k

This confirms the validity of4.7) in the case&k= 1. Thanks to(4.6) we then have in the general
case

dim 1, =[dim 1 =

\ Ot

liser =](=1)P(as+ b +1)" Y &, (4.10

giving (4.7), as required. O
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Plethysms ofA can be dealt with in exactly the same way and one arrives at the general result:
Proposition 4.3: Let « be a partition of k of Frobenius rank r=r(«). Then

Z®{K}:(Z)T(K)ﬁw (4.1
with
1 k
= > Y (R)y/ @] po™ (4.12
ok GI=r(0) 2,7 ° =1t
where
n
F)j:.l_ll (X724 (=302 = =D -1 (4.13
=
Moreover,
L= T2 e 4.19
bt,

Proof: Proceeding as before, we &t A in (2.12 and use the character formuta2a for A
to obtain instead of4.4) the analogous formula

n n
X —jl2 j/2\ — - 1/2 1/2\ — j—1)/2 j—3)/2 = (j—1)/2y—
A®pj:|]:];l(xl J _X{ ) 1:i]:[l (Xi _Xi ) l(Xi(] ) +Xi(J ) +..._|_Xi (-1 ) 1

=AP; . (4.15
Using this in(2.11) with S=A then leads to the analog ¢4.5), namely:
1 k
Aefci= > —xXA)YW[] P ™. (4.16
prk /P =r(x) Zp j-1 !

Extracting the appropriate factors Afthen gives(4.11) with ﬁK as in(4.12.
This time because of the infinite-dimensional nature of battrand PJ-_1 there exists no

complete analog of Corollary 4.2. However, the us&efA in (2.3 leads, as in the derivation of
(4.6), to the identity(4.14). B O

To close this section we provide some conjugacy rules for Bhbthand IT,. The outer
automorphism¥, of SO(2n) is such thaf

(A"e{xh* =(A")* @ {x}=(-A")e{}=(-1*A"e{«'}, (4.17
where, as usuak=|«|. From the factorization formulé.2) it follows that
(A" (T, )* = (= 1) (A" WAL )* = (= 1)KA") WL, (4.18
sincer(«x')=r (k). Hence
I =(= D). (4.19
Similarly, the properties of associate irreducible representations offSRj2are such that
(Ao {kH*=Ae{«k'}. (4.20

It thus follows from the factorization formul@ét.11) that
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(R*) O )* = (K) (1T, )* = (R) ¥, (4.21)
and hence
I, = (IT,)*. (4.22

There remain several problems with Propositions 3.1 and 3.3. First, it is not at all clear
whether or notll,. (respectively,Il,) can be expressed as linear combinations of characters of
irreducible representations of SO(R[respectively, Sp(&,R)]. Second, if this is indeed true then
the explicit formulas we have given fof,, andIl, are not amenable to re-writing them in terms
of such characters. Third, even if this can be done it is by no means obvious that the resulting
coefficients of these characters are integers solihatrespectivelyll,) belongs to the rings of
the characters of SO(J [respectively, Sp(&,R)] over the integerd. These problems are ad-
dressed in the following sections whdre, andII, are evaluated.

V. THE EVALUATION OF II,. AND ﬁK

Having established the factorization af' ®{«} andA®{«} as in(4.1) and (4.11), respec-
tively, the evaluation ofll, and IT, can be accomplished in a number of different ways. In
principle one could proceed by exploitin@.1) to express the required plethysms in the form
€?(Lo{k}) and €((M®{«x}), then evaluating I(®{x}) and M®{«x}), factoring out the
r («)th power ofL andM, and finally re-expressing the resulting characters af)l{s characters
of SO(2n) or Sp(,R), as appropriate.

In the case of SO() this may indeed be accomplisHéat least for smalk andn since the
relevant series are finite. The extension to arbitramay be carried out inductively and checked
dimensionally using4.7). Some short cuts may be found using the algebra of plethysms. In this
way one arrives at the following results:

=1, (5.1a

=A,, (5.1b

Hpe=—A_, (5.109

H3=[1"]+—X§0 (1)1 33, (5.10)

HZl:XZO (_1)X(_[1n7173X]+[1n7273X]), (519
Hls=[1“]f—go (—1)1"373, (5.1f)

M= >, (—1)X([A;1N 3 4], —[A;1n 6734 ), (5.19

o

Ho= 3 (~1X(-[A17 Y] A1), (5.10
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0

Mpp= 2 (= DX(—[A" 3] 4[ALN 1], (5.1)
M= 2 (= DX([AAN O3] — [, (5.1)
X, y=

The above partitions are all of Frobenius rank 1. The partitien(22) has Frobenius rank 2
and may be calculated in terms of the above rank 1 results by usé@fof Corollary 4.2 as
follows:

A"®{22=A"®

0’ i MX’[E] A"‘g’[é]

1 0

Hence

Mp=Tlplly~Tllp2= 2 (- DX (—[1" 7+ [17 27D+ X, [17717%], (53

X=

where use has been made(6f13—(5.19, (5.1 and(1.5). The result(5.3) can be recast in the
simpler form:

HZZZXEO ([1n—2—6X]+[1n—3—6X]+[1n—4—6X]). (54)

Proceeding in exactly the same way for other Frobenius rank 2 partitions one obtains, for example,

o)

3= 20 (—1)X([A;AN 273 4] —[A;1N 4734 ), (5.53
X, y=

My2,= 20 (= D)X([A; AN 473 4], —[A;1N 72734 ), (5.5h)
X, y=

It might be noted that these two results are in conformity, as they must be, with the conjugacy
formula (4.19. Before turning to alternative ways of identifying the multiplicities of the various
characters that appear Iih,, it is worth pointing out that in all the examples @&:.1), (5.4), and
(5.5 the multiplicities are integers. At first sight it would appear that the multiplicities we have
obtained are alt=1 but this is not the case. 5.1g, for example, the multiplicity of A;1" 2]
is 2, corresponding to the terms in the summation for whietd, y=0 andx=0, y= 3. However
it is true that the multiplicities are indeed always integers.

In order to establish the general result it is helpful to consider the group—subgroup chain

O(k—r(k))—-+—0O(k—=s)—---—0O(k—1)—O(k)— S, (5.9

and the corresponding branching and inverse branching rules which are such that
MM O] [ NMS] [N M]—=[N]— > b(k). (5.7)
KikFk

Fors=0,1,..,r(«) this chain may be used to define coefficielmfs associated with the subchain
extending from Ok—s) to S, through the rule
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[ [l o] 3 b (), ©9

wherelL is the inverse oM. It follows from (5.7) and (5.8) that

by/d"=bl, bl =bi"". (5.9
Consequently,
s s—1
bies' =bM =yt T=bi . (5.10

In addition, for all Ok—s) we have[u* |=[u]*=[0]*[«] and under the restriction from
O(k—s) to S, we have[0]* — (1%) with (1¥)- (k)= (") for all partitionsx of k. It follows that
quite generallyofj’ZI b%, ¢, while

b# =b =b* _ if k—s=2x and /(u)=x. (5.11

With the use of these coefficieritd ¢ we may interpolate betweek’ ®{«} andIl, by means of
the following:

Definition 5.1: Let « be any partition of k with Frobenius rank r(«), and let the coefficients
b’ ¢ be defined by (5.8) for s=0,1,..,r(«). Then, let

> (CD)EIE X )] b X 1)+ X (1) X ]
' i/ (n)=x

i/ (p)<x
X&) = if k—s=2x
> (—1)H(bE AX Y] =0, JAXY '] ) i k—s=2x+1.
i/ (m)=x ' ’
(5.12
With this notation we have
Lemma 5.2: Let « be any partition of k with Frobenius rank r («), then
A'XE=xE"D for s=1,2,...r(k). (5.13

Proof: In the casek—s=2x with s=1, the product ofA” with Xff) may be evaluated as
follows:

AXP= 3 (- DLTAN DT b XL )
wi/(p

+ 2 (=DM (A L)) ~[AXY L] )
wi/(w)=x

= _/(E) (DI LAY L] =, JAXYpL])
mol ()=

= 2, 2 (DR AN (e p) L~ b JAXY(u-p)']-)
mil ()= =

= > 2 > (=)Mo bk [AX Y] bk [AXY(v)']0)

wi/ (m)<x p=0 v:/(v)<x
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o0

= (2 2 — 1)y A XY ' L —b P AX v ]2)

2 (S DPUOTAX Y ] b A ] )= XE. (5.14
v/ (v)=x '

The first step involves the use of the product rules enunciated in KWI. Thanis I it is
possible to regroup all the terms into a single sum as in the second step. The next four steps
depend on the fact that=>_,(—1)*{1P} andM=X__o{p}, while

{M'D}ZEV: Cupt ¥ {V/IO}=§ Cupt it (5.19

wherec,, are the usual Littlewood—Richardson coefficients. These are nonvanishing only if
=|u|+pand/(n)</(v)</(u)+1. In fact, potential terms for whick'(v)=x+1 all vanish
since they all involvex"/v'. The final step is then accomplished by the usg®10 and a
comparison of the resulting expression with the second ca¢g.b? in which s is replaced by
s—1 so thatk—(s—1)=2x+1, as required.

Proceeding in the same way in the ckses=2x+1, the product ofA” with X(KS) gives

A= 3 (DML DY L]+l LD L] )
w/(p)=

[}

= B R e ) b SO )
mil ()= =0 vi/(v)=

=, GO )Y ] B (1))

o]

+ 2 2 > (—nler (b bk O (x+ 1)V w']. (5.16
v/ (v)=x+1 p=0 u:/(u)=x ' ’

Thus far, the only new features are the use in the first step of the notation introduced in KWI
whereby, for characters of SO(2, we have

[N]if A<n

M= g, i ag=n,

(5.17

and the occurrence ifb.16 of the final set of terms for whiclr’'(v)=x+ 1. These cannot be
discarded in this case as they now invo[\(&+1)"/v'] rather than/x"/»']. However, for all
such terms with”’(v) =x+1 we have

[ oo

p/M=> > bk =2 X (Chyblotch, by, (5.19
' p=0 N:ix</(\)=x+1 p=0 w:/(u)=x '

where it has been recognized that the only partitiansiith /(\)=x+1 for which bA
nonvanishing are those of the fori=u* with /(u)=x, where u* =(u,1) is the O(( )

=0(2x+1)-associate ofu. For such terms we havlefj;= b‘K‘,’S as usual. Moreover, for'(v)
=x+1 and/(u)=x we have

v _ AV AV _ AV _ v
F,Z:O C#*D_C#*V\V|*\M|*l_C(M’1)~|V|*|/!-\*1_CMv|V\*|#\_pz:o Cup- (5.19
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where the crucial third equality relies on the fact that the relevant coefficients are 1 or 0 according
to whether the skew Young diagrarf&’(*Y and F*/* either are or are not, respectively, hori-
zontal strips in the terminology of MacdonattiSuch horizontal strips are indicated by the boxes
with an asterisk in the following illustrative diagrams appropriate to the gas®, v=(8663),
u=(763), andu* =(7631):

[*] Tx]
Fr/wl) Fie =

(5.20

It follows from the use 015.19 in (5.18 that

o

by :pgo W%:X cho(b¥ +b, ). (5.2

Substituting this intd5.16) gives

AXE= > (=M (x+ 1) 1 +bIM (x+ 1) ')

vi/(v)<x+1

+ 2 (—1MeMI(x+ 1) ']
vi/(v)=x+1 '

:ngfl) ) (5.22

The final step involves the use (.10 and the observation that in this case (s—1)=2(x
+1). This is necessary to make the connection with the first cagb.b® with s replaced by
s—1, andx by x+1.

Taken together(5.14 and (5.22 imply the validity of (5.13 for k—s both even and odd,
thereby completing the proof of Lemma 5.2. (]

This leads directly to

Proposition 5.3: Let « be any patrtition, and let(«) be its Frobenius rank. Then

A"@{k}=(A")X® for s=0,1,..,r(k). (5.23

Proof: Comparing(3.12 with thes= 0 case of the definitiofb.12), and noting from5.9) that
b’ o=Db’, shows that

A"@{k}=X. (5.24

Then starting from this expression, factorsAdf may be extracted one-by-one through the appli-
cation of Lemma 5.2 in the casss-1,2,..,r(«) to give

A”@{K}:X&O):A”XE}):(A”)ZX&Z):' e (AH)I‘(K)XE(I'(K)) ] (523

This completes the proof of Proposition 5.3 O
Recalling the definition oflI, given in (4.1), it follows immediately from(5.25 that II,
=X{) Thanks to Definition 5.1 this then implies:
Corollary 5.4: For any partition « of k with Frobenius rank r («),
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¢

/) =x (= 1) o [X )] bl o [XY']2)
w/ (e

M={ + X (~1#b  [xVu] if k—r(x)=2x

mi/(p)=x

(=)0t (LAY '] =, [ [AX Y] 0) if k—r(k)=2x+1,
| i/ (r)=x '
(5.26

The procedure used to evaludlie, may now be used to evalualg, . In fact, for technical
reasons that are largely a matter of notation and the absence of facterd,ofthe case of
Sp(2n,R) is slightly easier to deal with than that of SQ(2 This shows itself in the statement of
the analog of Definition 5.1, namely:

Definition 5.5: Let « be any partition of k with Frobenius rank r (), and let the coefficients
b’ ¢ be defined by (5.8) for s=0,1,..,r (). Then let

XO= > bE(Hk—s)(w). (5.27)

gy py<k-s

With this notation we have:
Lemma 5.6: Let x be any partition of k with Frobenius rank r(«), then

AXO=XE"D" for s=1,2,..,r(x). (5.28

Proof: For s=1 we have

AXP= X bhAGk=9)(w)

! !
Hipg T puysk=s

= X bE(3k—st+1)(u-M))

r !
pipgtu,<k—s

D> bYM(3(k—s+1)(v))

L ’ _
vivy+ vzék s+2

= > bY o 1(3(k—s+1)(»))=XE1, (5.29

L ’ _
vivy+ vzék s+1

as required. The first step involves the use of the 8df2 product rule(5.8) of KWI. Then it
should be noted that multiplication @f by M may give rise to terms in which a box has been
added to each of the first two columnsef to form F”. This is the origin of the condition on
that v;+ v,=k—s+2. However, the fact that3(k—s+1)(»))=0 if v+ vs=k—s+2 allows
this condition to be relaxed to; + v;=k—s+1=k—(s—1), thereby leading to the identification
made in the final step. O

An immediate consequence of this Lemma is:

Proposition 5.7: Let x be any patrtition, and let(«) be its Frobenius rank. Then

Ae{k}=(R)X® for s=0,1,..,r(k). (5.30

Proof: Comparing(3.10 with the s=0 case of the definitiol(5.27), and noting once again
thatb’ ;=b’, shows that
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Ae{xkt=X), (5.3

Then starting from this expressidB.31) factors of A may be extracted one-by-one through the
application of Lemma 5.6 in the cases 1,2,..,r(«) to give

Ro (i =XO=EXD= (X)X = = (K ) WX (5.32

This completes the proof of Proposition 5.7. O
This, in turn, implies the following:
Corollary 5.8: For any partition « of k with Frobenius rank r («),

= X b (o HK—T(K)) (1)) (5.33

,u:,u,i-%—,uéﬁk—r(K)

or equivalently,

| e Pl b () 2 b (X)) i k(0 =2x
I,=
(b’,j',(K)(Z;x(M)>+b’:, r(K)<Z;x(ﬂ)>*) if k—r(x)=2x+1.
i/ (p)sx '

(5.39

Proof: The result(5.33 follows immediately from Proposition 5.7 and the definitionldf
given in (4.11) together imply thaﬂ:IK=§(E<r(K)). Finally, the passage frorf6.33 to (5.39 is a
straightforward consequence of the definitiorof associate irreducible representations of
Sp(2n,R). The form(5.34) is included merely to stress once again the analogy betweemg{) 2
and SO(2), exemplified this time by the direct correspondence betwBed¥) and(5.26. [

VI. EXAMPLES

Although the formulas(5.26) and (5.34 may look formidable, they depend only on the
coefficientsby; |, . These coefficients are themselves defined®§). Fortunately, the relevant
branching rules for restrictions from ®{ 1) and Ok) to S, as well as the inverse branching
rules from Ok—s) to O(k—s+1), that are needed to expld®.8) to the full, are well under-
stood. The relevant coefficients may be found in a variety of Wagfor both Ok— 1) and Ok)

to S, and for the inverse restrictiéhfrom O(m) to O(m+1). They are implemented, for
example, in the software packageHUR?’

For low values ok even this level of sophistication is not really required. For example, in the
casek=2 the only irreducible representationg of S, are(2) and (). Each of these is such that
r(x)=1 andk—r(«)=2x+1 with x=0. With these values d&f andr («) the relevant coefficients
b’ r(«) are the branching rule coefficients associated with restriction from O(8).td'he com-
plete set of such branchings consists merely0df—(2) and[0]* — (12). Using this information
in (5.34) immediately yields

M,=(X0)=24,, Tp=(}0)*=4_. (6.1)

Similarly, for k=3 all irreducible representatiorig) of S; are such that(«)=1, and the
relevant O(2)-S; branching rules arf0]—(3), [0]* —(1%) and
(3)+(1% if m=0(mod?3)

(M= 21 i m=1.2mod3).

(6.2

This enables us to conclude that
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ﬁ3:<1(0)>+x20 (1(3+3X)), (6.33
ﬁnzgo ((1(1+3%))+(1(2+3X))), (6.3b
I3=(1(0))* +X§=}O (1(3+3Xx)). (6.30

The casé&k=4 is more difficult. In those cases for whickk) =1 the relevant branching rules
are those for O(3)S,. These are such thf0]—(4), [1%]=[0]* —(1%) and if[r]—2, bL,l
(), then[r,1]=[r]*—=, brK,’l(K). The coefficients), ; are tabulated below:

[rIN(x) 4 @31 (2% (21%) (1%

(0] 1
(1]

(2]

(3] 1
(4]
(5]
(6]
[7]
(8]
(9]
[10]
[11]
[12]

[EnY

[EnY

1 (6.9

NRPRRPRERREPR
WWWWNNNNRE R PP
NNNRNRRP R
WWNNNNRER PR

Finally, it should be noted that
b,stiz=Db,s,+tf*,  for s=0,1,2,...,11 andt=0,1,2,.., (6.5

wheref” is the dimension of the irreducible representati@nof S, .
Using these results it6.34), with by . =D, , andb, . = b, ,forr=0,1,.., oneobtains
the following results:

o

M= 2 (3(3x+4y))+(3(6+3x+4y))"), (6.69
ﬁaﬁéo ((3(L4x+4y)) +(3(3+x+4y))*), (6.6b
ﬁ21z=xi_0 ((2(3+x+4y)) +(3(1+x+4y))*), (6.60
ﬁ14=w§0 ((3(6+3x+4y)) +(3(3x+4y))*). (6.60)

The analogy betwee(®.1), (6.3), and(6.6) and the corresponding results 1dr, in (5.1) could
not be more striking. Of course, given the validity (626 all the resultg5.1) now follow from
the information obtained here on branching rule coefficients.
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Furthermore in direct analogy ®.2) we have

- (1] -~ (1
Ro{2?-3o| O]_ A®{1 A®[O] —Zzﬁﬂ I, 6
®{}_®1O_ZOZO_()ﬁ12ﬁ1 67
®l1] 2®o
Hence,
ﬁzzzﬁnﬁl—ﬁzﬁlpgo (<1(1+3x)>+(1(2+3x)>)—g0 (1(1+2x))
= ZO ((1(2+6X)) — (1(3+ 6X)) +(L1(4+6X))). (6.8

Again the analogy t¢5.4) is clear. It should be noted that negative coefficients may and indeed do
appear inll, for somex, as in this exampl€6.8).

In this case for whichkk=4, (x)=(2?), andr(x)=2, the same result6.8) may also be
obtained directly from(5.34 and a consideration of the chain O2(3)—S,. Under the
restriction O(2)~0(3) we havg m]—[m/L]=[m]—[m—1]. Combining this with the tabula-
tion (6.4) of the branching rule multiplicities for O(3} S, it follows that we havg m|—2,

b’ 1(«) with the coefficientd] ; now given by

[rI\(x) 4 (3D (2% (21%) (1%
[0] 1

(1] -1 1

[2] 1

[3] 1 -1 1

[4] 1

(5] -1 1 (6.9
(6] 1 1
(7] 1 -1
(8] 1

[9] 1 -1 1
[10] 1

[11] 1 -1
[12] 1 1

In addition[1%]— (1% and
bSH 1 2=bS  + 5mL  for s=0,1,2,...,11 andt=12,.... (6.10

It is then easy to see th&.8) follows directly from(6.9) and (6.10. 5

A more testing example of the use of Corollary 5.8 is provided by the calculatibh;ofIn
this case we havék=9, «=(3%, and r(x)=3 so that the relevant chain of groups is
0(6)—0(7)—0(8)— Sy and the relevant coefficients ao¢ ;. Consideration of this chain for the
branching of all irreducible representatidns| of O(6) of weight|u|<10 leads to the following:

My:=(3(32))+(3(32)) +(3(3%)* —(3(3%1)) —(3(322))
+(3(3%))+(3(421)) —2(3(422)) — 2(3(43)) — 2(3(43))* + 2(3(431))
+3(3(432)—3(3(43))+3(3(4%)) + 3(3(42))* —3(3(4%1))— 2(3(4%2))
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+(3(52))+(3(52))* —(3(521)) + 2(3(52)) +(3(53))

+<3(53)>*—2(3(532))—3(3(54)}—3(3(54))*+4(3(541)>+4(3(52)>

+4(3(52))* +(3(61%))—(3(62)) —(3(62))* +(3(621)) + 2(3(62%)) + 3(3(63))

+3(3(63))* —(3(631)) —(3(64)) —(3(64))* +(3(71)) +(3(71))* —2(3(71%))

+(3(72))+(3(72))* +3(3(721))—3(3(73)) — 3(3(73))* —(3(81))—(3(81))*

+3(3(81%))+2(3(82))+2(3(82))* +(3(9)) +(3(9))* — 2(3(10)) — 2(3(10))* +- --

(6.11

for all n=6. In accordance witli5.34 the coefficients are just the multiplicities of {3in the
branching from @) to Sq. In this case we havk—r(x)=2x with x=3, so that in(5.34) the
summation is carried out only over those partitignfor which /(1) <3. In addition, the fact that
in this casex is self-conjugate, that isx=«', implies that the multiplicity of an irreducible
representatiof3(u)) is the same as that of its assoctaté3(u))*. Thus the coefficients of
(3(pq)) and(3(pqg))* =(3(pgl?)) are necessarily the same for @i=q=1, as are those of

(3(p)) and(3(p))* =(3(p1%)) for all p=1. The irreducible representatio@(pqr)) for which
p=qg=r=1 are self-associate.

This expression, when multiplied hYy? in the case Sp(® R) with n=8, yields up to weight
10 the following result:

A®{3%=(A;4(32))+(A;4(322))* +3(A;4(32°1)) + 3(A; 4(32°1))* + 5(4;4(32))
+5(A;4(32))* +(A;4(3%) +(A;4(32))* +2(A;4(3%1)) + 2(A;4(3%1))*
+(A;4(3%1%)) +(A;4(3%1%))* + 5(A;4(3%2)) + 5(A;4(3%2))* + 8(A;4(3%21))
+8(A;4(3221))* +11(A;4(3%2%)) + 11(A; 4(3%22))* +5(A;4(3%)) + 5(A;4(3%))*
+6(A;4(3%1))+6(A;4(3%1))* +(A;4(421) +(A;4(42D))* +3(A;4(421%))
+3(A;4(422))* + 4(A;4(42)) + 4(A;4(42%))* +12(A;4(42°1))
+12(A;4(4221))* +13(A;4(42%))+ 13(A;4(42°))* +(A;4(43)) +(A;4(43))*
+5(A;4(431))+5(A;4(43D)* + 10(A; 4(431%)) + 10(A; 4(431%))* + 15(A; 4(432))
+15(A;4(432))* +38(A;4(432D)) + 384 ;4(4321)* + 15A;4(4F))
+15A;4(43%))* +6(R;4(4%1)) +6(A;4(4%1))* + 184 ;4(4%17))
+18(A;4(4%212))* +18(A;4(4%2)) + 18(A; 4(4%2))* +(A;4(52)) + (A ;4(52))*
+5(A;4(521) +5(A;4(521))* + 10(A;4(5212)) + 10(A;4(521))* + 144 ;4(52))
+14A;4(522))* +35(A;4(5221)) + 35 A;4(52°1) )* + 4(A;4(53)) + 4(A;4(53))*
+18(A;4(531)) + 18(A;4(531))* + 34 A;4(531%)) + 34 A; 4(531%) )*
+49(A;4(532)+49A;4(532)* +5(A;4(54)) +5(A;4(54))* +32A;4(541))
+32(A;4(541))* +10(A;4(5%)) + 10(A; 4(5%))* +(A;4(61%)) +(A;4(61%))*
+3(A;4(61%))+3(A;4(61°%))* +2(A;4(62)) + 2(A;4(62))* + 13(A;4(621))
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+13(A;4(621))* +29(A;4(621%)) + 2K A 4(621))* +33(A;4(622))
+33(A;4(62%))* +10(A;4(63)) + 10(A; 4(63))* +4%A;4(631)) + 4K A;4(631))*
+17(A;4(64))+ 17(A; 4(64)* +(A;4(7D) +(A;4(TD)* +4(A;4(713))
+A(K ATV +T(A; 4T+ T(A; 4(T13))* + 7(A;4(72)) + T(A; 4(72))*
+34(A;4(720)) + 34A; 4(722))* + 25(A;4(73)) + 25(A; 4(73))* + 2(A; 4(81))
+2(A;4(81))* +9(A;4(81%)) +9(A;4(81%))* + 15(A;4(82)) + 15(A; 4(82) )*
+(A;4(9))+(A;4(9))* +6(A;4(91)) +6(A;4(91))* +(A;4(10)) +(A;4(10))*
- (6.12
Despite the fact that negative terms appea(6iil), the coefficients if6.12 are all positive, as
required. The same resul6.12 can also be obtained directly from Proposition 3.1 using the
branching rules for ®)— Sy to determine the relevant coefficierﬁ%.
As can be seen froif8.4) in any case for whiclk is odd and«= «’, all the terms must appear

in mutually associate pairs that share the same multiplicity. This is indeed the ¢&s&3rfor all
Sp(2n,R) with n=8. However, more generally in the case Sp(R) it is necessary to delete all

those terms of the forr(ﬁ;4()\)) for which /(\)>n. Thanks to the modification rules of(9),
(A;4(p))* =(A;4(p1")), (A;4(pa))* =(A;4(pal®), (A;4(par))*=(A;4(pgr1’) and
(A;4(pqrs))* =(A;4(pgrsl)). It follows that in applying(6.12 to Sp(12R), for example, it is
necessary to drop all the terms of the fo(th;4(pq))* and(A;4(p))*, but no others.

To give just one example of the calculation 8f®{«} for SO(2n) by means of the deter-
minantal expansion of Corollary 4.2, we consider the oas€3°2). In Frobenius notation

5 _(2 1 O)
{3°2}= 3 2 o (6.13
so that

ey e g
Mgapy= T2 @ Iz, (6.14
ey s I,

where it has been typographically convenient to wrif¢ {n standard partition notationa(
+1,1°). In the case of S@), for example, evaluating the individudl ,, 1 1y by means of
Corollary 5.4 withk=(a+1,1°) andr(x)=1 and the use of the branching rules forka(1)
— S for k=1,2,..,6 gives
I 3i3)= —[A;2%]_+[A;221] +[A; 223 +[A;217], — 2[ A;21%] - —[A;21]
+[A;21]_+2[A;2], —2[A;2]-—[A;1%]_—2[A;1%], +3[A;1%]
+2[A;17], —3[A;1%] —3[A;1], +4[A;1] - +2[A;0], —2[A;0] -,

32 = +[2%]-[221] - [203] —[22%]_ + 2[212] - [ 21] + [ 2]+ [ 1*]. +[1%]-
—2[1%]+2[1%]—-2[1],

I(5)=+[1"], —[1],
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M= —[2"1]- +[2°2%] ~[20°] - +[20) ~[21]+[2]+ 2[1"] - ~2[1%] +[17]
—[1]+[0],

Meoey=+[A:1%]-~[4;17]- —[A;1], +[4;1]-+[4;0], ~[4;0], (615
g=+[A;0],,

= —[A;1*]_+[A;1]_—[A;0]_,

y3=+[1"]_—[1],
I1(3)=+[0].

Each of the above expansionsldf, . ; 1 may be set irscHURas an rvar and the determinant

rvl rv2 ruv3
rv4d rvd5 rvb6 (6.16
ro7 rv8 rv9

evaluated inscHUR to yield the result:

Mg3,= —[43]+[4217], +[421%]  —[42]+[423] —[41]+[3%1%]_—[3%1]—-[3%]-[32°]_
—[322]+[321%] . +[321%]_ +[321]— 3[32] + 2[ 313] . +[31%]_ —[31%]— 2[31] —[2%]_
—[2%1]_+2[2%1%], +3[2212]_—[22]+[22%], +[21%]_+[21%] - 3[21] +[ 2] +[1%]-
—2[1%]-[12]+[1]+2[0]. (6.17

The dimension is checked by noting that

—216 125 2
—125 —-64 8|=3924. (6.18
-64 27 1

Finally, sincex=(3%2) has Frobenius rani{ x) =3, multiplication of(6.17 by (A")® gives

A"®{3%2}=—[A;541%], +[A;541%]_+3[A;541], —3[A;541]_ —5[A;54] . +5[A;54]_
+[A;532], —[A;532]_—3[A;5321], +3[A;5321]_ +4[A;532] . —4[A;532]_
+8[A;531%], —8[A;537%]_— 17 A;531], +17A:531]_+19A;53].
—19A;53]_—2[A:;52%], +3[A;528]_+6[A:52°1], —9[A;52%1]_—9[A;52°] .,
+11[A;522]_— 13 A;521?], + 19 A;5212]_+ 29 A;521], — 33 A;521] _
—26(A;52], +29A;52]_+6[A;51%], —16A;513]_ — 17 A;51%], + 26 A;51%] _
+17[A;51], —24 A;51]_—6[A;5]. +10A;5]_—[A;4%222]_—[A:4%21],
+4[A;4221]_+4[A;4%2], —6[A;422]_+5[A;4%12], —11[A;4%1%]_
—1gA;4%1], +23 A;4%1]_+21[A;4%], — 24 A:4%]_+[A;433]_—3[A;43°2]
—[A;43%1], +4[A;43%1]_+3[A;43%] . —4[A;43]_—2[A;432%],
+11[A;432]_+13A;4321), —30 A;4321)_ — 32 A;432], +41[A;432]_
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—33A;431%] +57A;431%]_+ 94 A;431], — 11 A;431]_ — 92 A;43] .
+107A;43]_+5[A;42°], — 20 A;42°]_ —28(A;42°1] . + 59 A;42°1]
+64A;422], —80 A;42%]_+66A;4217], — 11T A;4212]_— 179 A;421] .
+217A;421]_+16(A;42), — 179 A;42]_ — 48 A;41°%], + 84 A;41%]_

+13q A;41%], — 169 A;41%]_ — 137 A;41], + 157 A;:41]_+ 5 A;4],
—61[A;4]_—2[A;3*]_+7[A;3%2]_+3[A;3%1],.—17A;3%1]_—104;3%],
+14A;3%]_+2[A;3%22], —24 A;3%2%]_— 24 A;3%21], + 70 A;3%21] _
+72[A;3%2],.—99A;3%2]_+55A;3%1%], —117A;3%1%]_—179A;3%1].
+227A;3%1]_+156 A;3%], —181A;3%]_—8[A;32%], +49 A;32°]_
+63A;32°1], — 144 A;32°1]_— 166 A;32%] . +217 A;32%]_—151[A;321%],
+269 A;321%]_+439A;321], —529 A;321]_— 383 A;32], + 429 A;32]_

+141A;31%] . —209A;313]_ — 396 A;31%], + 449 A;31%]_ + 409 A;31]
—439A;31]_—179A;3], +18GA;3]_+9[A;2%], —39A;2%]_—64A;2%1],
+140A;2%1]_+ 169 A;2%], —219A:2%]_+ 15 A;2%1%], —273 A;2%1%]_

— 459 A;2%1], +544 A;221]_+399A;2%], — 447 A;22]_— 19 A;21%],
+287A;21%]_+547A;21%], — 620 A;21%2]_ — 589 A;21], +629 A;21]
+307A;2],—313A;2]_+109A;14), —166A;14]_—323A;1%],
+379A;1%]_+376A;12], —417A;12]_— 267 A;1].+280A;1]_+ 99 A;0],
—107A;0]_. (6.19

This may also be checked, or arrived at very tediously, through the use of Proposition 3.2 and the
branching rules for O(15>Sy4.

VII. BASIC TENSOR DIFFERENCE CHARACTERS OF SO(2n) AND SP(2N,R)

Basic tensor sum], and difference[1”, characters of SO(2 are specified most conve-
niently by writing®

O=0,+0_=[1"],+[1"]_, (7.1a
O"=0,+0_=[1"], —[1"]_. (7.1b

Likewise, we may specify analogous basic tensor diimand differenceC])” characters of
Sp(2n,R) by writing

O=0.+0_=(1(0))+(1(0))*, (7.23
07=0,+0_=(1(0))—(1(0))*. (7.2b

It follows from (1.1) and (1.5 that
0"=[1"], ~[1"]-=(A,)%~(A)?=AA", 73

Similarly, it follows from (1.2) and(1.12 that
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a//:<1(0)>_<1(0)>*:(ZJF)Z—(Z,)ZZZZ”. (74)

Hence, from(1.1) and (1.2 we have

n
D"=Hl (xi—x %) (7.5)
=
and
n
O=T1 (=%, (7.6
i=1
respectively.

Turning to plethysms of the basic tensor sum and difference characters, the (@digsand
(8.10b of Ref. 16 can be rewritten in the following form:

D+®{2}=X§:‘,O [2"71%], +Xéo [2M/(22Y+21%)], (7.7a
D+®{12}=X§:‘,O [2"/2%F2], +xéo [2"(22Y1214¢+2)], (7.7
D®{2}=§o [2"/1%]_ +X’y§_0 [2"/(22YF21%)], (7.79
D_®{12}=§0 [2"/1%4+2]_ +Xé0 [2"/ (22 T214+2)], (7.70

By the adaptation of a proceddPedeveloped for the evaluation of symmetrized products of
SO*(2n) to the case of Sp(2R) one obtains the following minor modification of the results
(6.29 and(6.2b of Ref. 29:

(3k(0))®{2}=(k(D )n), (7.8a

(3k(0)y@{1%}=(k(D_)n), (7.8b

whereN=min(k,n) and O )y is the infinite series of partitions with parts all even, of weight
0(mod 4) and number of partsN while (D _)y is similar except that now the partitions are of
weight 2(mod 4). Specializing7.89 and(7.8b) to the case&k=2 then leads to

(10)y®{2} =0, ®{2}=(2(D,),), (7.93
(10)){1% =0, {12 =(2(D_),). (7.9b)

Sincell_ = (1(0))y* = ﬁ’; we may use the conjugacy theorém?25) of Ref. 11 to write down the

corresponding symmetrized powers @f_ . This allows us to summarize the results in a form
analogous td7.7), namely:

© oo

ﬁ+®{2}:x§=}0 <2(4x)>+xy2=0 (2(4x+ 2y +2,4X)), (7.10a
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0, e{1%}= EO (2(4x+2))+ 20 (2(4x+2y+4,4x+2)), (7.10B
X= X,y=

i,®{2}=20<2(4x)>*+ 20<2(4x+2y+2,4x)>, (7.100
X= X,y =

0 {12 = ZO (2(4x+2))* + 20 (2(4x+2y+4,4x+2)), (7.109
X= X,y=

where it should be recalled that the irreducible representatidysq)) of Sp(2nR) with p=q
=1 are self-associate, whil@ (p))* =(2(p1?)) for p=1, and(2(0))* =(2(1%).

All this suggests as a strong possibility the existence of analogies between symmetrized tensor
powers of the difference charactérs of SO(2n) with those oft1” for Sp(2n,R) that are similar
to those found betweeA” and A. Indeed, building on previously established restifisfor
plethysms of SO(8) and Sp(2,R) it is not too difficult to show that

D”®{2}=D”(D+—ZO (—1)*[1“—2X-2]), (7.11a
D"®{12}=D"(—D+ZO (—1)*[1“—%2]) (7.11h

and
ﬁ”@{2}=|i”(i]+—20 (—1)X1(2x+2)) |, (7.123
i”@{lz}:i"<—ﬁ_+20 (—1)X(1(2x+2)) |. (7.12b

Comparison of7.11) with (7.12 shows not only a striking analogy between the two pairs of
plethysms, but also the existence of explicit factorization of these plethysmg a@ind (1" that

are analogous to the factorizations &f and A given in (1.3) and (1.4). That this is not an
accident may be seen by noting more generally that the factorization of the plethysgs«<}

and ﬁ”@{x} essentially parallels that given in Sec. IV by changikyto (0” and A to 0"
throughout and replacing2 by x; for all i in (4.3), (4.5), (4.13, and (4.15. To present this

formally, we note from(2.12 and the various definition&l.1b), (1.1, (7.5), and(7.6) that

O'=a"0p,, D"=Eep,, (7.13

wherep, is the elementary power sum function of degree 2. It then follows from the algebra of
plethysm that

O"@{x}=(A"®p,) ®{k}=A"®(p,@{k})=A"@({x}®p,) =(A"®{k})®p,
= (A" I @ pa=(A"®py) (1T, @ py) = (O") (I, @ py) (7.14

and
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O"@{x}=(Aepy)e{xt=Ae(pe{x)=Re({x}op,)=(RAa{x)ep,

=((B) ™I ) @p,=(R@py) (1,8 py)=(0") (I, 8py). (719
This gives
O"@{k}=(0")"Ws ., where, =II,®p, (7.16
and
O'e{xt=(0")'WS,, whereS, =1I,8p,. (7.17

Finally, from (4.6), (4.7), and(4.14) we have the determinantal expansions

EK=HK®|02=IH(§§)®pzlrxr=|E‘giIm (7.18

and
§K=ﬁx®pz=Iﬁ(g§)®pzlrxr=|§\;f o (7.19

with
dim3 , =dimIl, =(—1)P1" P2 *br|(a+ b+ 1)" Y, . (7.20

To illustrate the outcome of calculations Bf. we quote the following two results calculated
in the case of Sp(®) up to terms of weight 12 in the first example and weight 10 in the second:

$5=(2(0))—(2(2)) +(2(29)—(2(3)) +(2(4)) —(2(5D) +(2(53)) —(2(52)) +(2(612))
+(2(6%)—(2(73))—(2(81%)) +(2(82)) +(2(84)) — (2(86)) — (2(93)) +(2(10 12))
—(2(11 D)+(2(12)+- -+, (7.20

and

S 2= (2(22)) —(2(31)) + 2(2(3%) +(2(4)) +(2(41%)) — 2(2(42)) + 3(2(42)) +(2(51))
—3(2(53))+3(2(52)) — 2(2(6) ) — 2(2(612)) + 4(2(62)) — 3(2(64)) — (2(71))
+2(2(73))+3(2(8)) +3(2(812)) — 5(2(82)) ++ - . (7.22

From these, through multiplication lﬁ” and (ﬁ”)z, respectively, we can recover;
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O"®{3}=(3(0))—(3(12)) +(3(21%)) +(3(2%)) — (3(2%)) —(3(3D)) — 2(3(3?)) +(3(3%2))
+(3(4))+2(3(42)) —(3(43D)) — (3(43%)) +3(3(4%)) +(3(4%)) — 2(3(51))
—2(3(53))+(3(532) —4(3(5%)) —(3(5°2)) +(3(6)) +(3(61%)) + 2(3(62))
—(3(62%)) +3(3(64)) — (3(642) +(3(651) ) + 4(3(62)) — 2(3(71)) — 3(3(73))
—5(3(75))+(3(8)) +(3(812)) + 3(3(82)) + 4(3(84)) — 2(3(91)) — 3(3(93))
+(3(10)) +(3(1012)) +3(3(102)) — 2(3(11 1)) +(3(12)) + - -- (7.23

and

D" ®{22}=(4(22)) +(4(2%)) — (4(31)) — 2(4(32)) — (4(3%2)) + (4(4)) — (4(412)) + 2(4(42))
+2(4(42%))—(4(431))— (4(43)) + 2(4(4%))+(4(4%2))— 2(4(51)) — 3(4(53))
—(4(532)—2(4(5%))+ 3(4(62)) + 3(4(62%)) + 4(4(64)) — 3(4(71)) — 4(4(73))
—(4(8))+(4(81%))—(4(82))— 4(4(91)) — 2(4(10)) + - --. (7.24

VIIl. CONCLUSION

In this pair of papers, KWl and the present one, an attempt has been made to establish
explicit analogies between character theoretic results for finite-dimensional irreducible represen-
tations of SO(2) and infinite-dimensional irreducible representations of &pk2. This has
involved spelling out in detail a range of corresponding results for these two groups: on their
characters and products in part |, and on symmetrized powers or plethysms here in part II.

The most striking feature of these results is that the correspondence always involves, as in
Propositions 3.1 and 3.2, for example, an infinite sequence of terms of the(fa()) for
Sp(2n,R) and[m"/\’"] for SO(2n). In both cases the terms are indexed by partitionshose
length//(\) is finite. In fact/(\)<m, wherem may be as large as one likes but is determined by
the necessarily finite tensor power or degree of plethysm under consideration. However, their
breadth/’(\") is, in principle, unbounded in both cases. The fact that the 8D¢ase is rendered
finite dimensional, whereas the Sp(&) case is infinite dimensional, is a consequence of the
dependence of the former an"/\’ rather than jush. As a result all summations ovarin the
SO(2n) case are finite. This trivial looking distinction places an effective upper bound asf
/Z(N\") in the case of SO(®). Fortunately, the unified approach adopted here allows both Propo-
sitions to be treated on an equal footing.

In deriving Propositions 3.1 and 3.2 a noteworthy theorem from the pure mathematics litera-
ture, due to Scharf and Thibdhhas been brought to bear in such a way as to provide a proof of
a result of considerable significance in the study of symplectic models of nuclei that was first
stated and indeed used by CarvafhBy exposing and exploiting the analogy between S)(2
and Sp(2,R) the problem of decomposing tensor powers of hbtrandA has thus been reduced
to that of evaluating the branching rule multiplicities associated with the group—subgroup restric-
tion O(k)— Sy.

However, it has proved possible to go further. The factorizations of the pleth&ém$«}
andA®{«}, which have been identified in Propositions 4.1 and 4.3, were hitherto unexpected.
Although of interest in their own right, it is perhaps more important that they contribute to the
study in hand in two distinct ways. First, as indicated4t6) and(4.14), the resulting factor$l
andII, possess determinantal expansions which allow them to be calculated from special cases
involving only partitions of the form g+ 1,1°). Second, it has been shown not only that these
factorslIl, andII, belong to the rings of characters of S@(2and Sp(2,R), respectively, but
also that they possess explicit expansions in terms of such characters involving integer coefficients
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that are amenable to calculation through Corollaries 5.4 and 5.8. Both these propettigsiod

IT, serve to make tractable the evaluation of the plethyaths {«x} andA®{«} themselves, as
illustrated here through the presentation of some substantial examples.

It is hoped, therefore, that the present work will have gone a long way toward dispelling any
gualms researchers in the field might have quite naturally held regarding the difficulties of work-
ing with infinite-dimensional representations of the noncompact grouprSpgj2 They are really
no more difficult to deal with than the finite-dimensional representations of 8)0(2
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