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Abstract. The calculation of Kronecker products and plethysms of the infinite-
dimensional harmonic series unitary irreducible representations of the non-compact
group Sp(2n,R) is considered. The complementarity of Sp(2n,R) and O(k)
is used to define associate irreducible representations of Sp(2n,®). This leads
to simple relationships between Kronecker products and plethysms of irreducible
representations of Sp(2n,R) and those of their corresponding associate irreducible
representations. In the process of proving the validity of these previously conjectured
relationships several new identities are found for plethysms involving infinite series of
Schur functions. In addition, a general formula for plethysms of arbitrary irreducible
representations of Sp(2n,R) is derived and its implementation is illustrated with a
detailed example. A remarkable analogy is then observed between plethysms of the
basic harmonic irreducible representations of Sp(2n,R) and those of the basic spin
irreducible representations of SO(2n).

1. Introduction

The symplectic group Sp(6,R) is well-known as the dynamical group for a single
particle in an isotropic three-dimensional harmonic oscillator potential'. For N-
noninteracting particles in an isotropic three-dimensional harmonic oscillator potential
the group of interest?=% is Sp(6 N, R). In general the group Sp(2n,R) is of relevance
to symplectic models of nuclei? and certain mesoscopic systems such as quantum
dots®®. The irreducible representations of Sp(2n, R) of interest in these problems are
the infinite-dimensional harmonic series unitary irreducible representations’. Methods
of calculating their tensor or Kronecker products in terms of infinite series of Schur
functions®? (S-functions) have been developed earlier?3. The corresponding problem
of resolving symmetrised powers or plethysms of the irreducible representations has
also been tackled through the use of infinite series of Schur functions!®=15. It has
been observed that explicit calculations'® of such plethysms seemed to imply some
hitherto unnoticed conjugacy relationships'®'®. The wish to prove these conjugacy
relationships was the principal motivation for developing the content of this paper.
Central to their derivation is the use of the complementarity of Sp(2n, %) and O(k)
which is used to define associate irreducible representations of Sp(2n,%). Tt is this
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that leads to the required conjugacy relationships between both Kronecker products
and plethysms of irreducible representations and their associates in Sp(2n,R). In the
process of proving the most general possible form of these conjugacy relationships it
has been necessary to establish a number of new identities and lemmas relating to
plethysms involving infinite series of Schur functions. In addition a general formula
for the evaluation of plethysms of arbitrary harmonic series irreducible representations
of Sp(2n,R) is derived and illustrated with a detailed example. Finally detailed
consideration is given to the very striking analogy between basic spin irreducible
representations of SO(2n) and the basic harmonic irreducible representations of
Sp(2n,R). This leads to a simplification of earlier analyses'” of the symmetrised
squares and cubes of the basic harmonic irreducible representations of Sp(2n,R).
The results obtained in this paper represent a further step towards the practical
implementation of symplectic models of many-particle systems.

2. Harmonic series unitary irreducible representations of Sp(2n,R)

Following the terminology and notation of an earlier paper® the harmonic series
unitary irreducible representations” of Sp(2n,R) are specified by symbols (%k(/\))
where A = (A, A, ...) is a partition for which the conjugate partition A’ = (A}, A}, ...)
is such that A} + A, < k and A} < n. The relationship between a partition and its
conjugate is such that the parts of A and A specify the row and column lengths,
respectively, of the corresponding Young diagram F*. If A is a partition of m then
the total number of boxes in F* is m, which is sometimes referred to as the weight
of A\. By the same token the number of boxes, A}, in the first column of F* and the
number, A, in the first row are referred to as the length and width, respectively, of A.

The two basic harmonic series irreducible representations may be denoted by

A_I_ = (%(0)) and A_ = (%(1)) Their direct sum

A=A, +A_=(3(0)+(3(1) (2.1)

is the restriction to Sp(2n,R) of the defining irreducible representation of the
metaplectic group Mp(2n, R), the two-sheeted covering group of the symplectic group
Sp(2n,R). As a representation of Sp(2n,R) the basic harmonic or metaplectic
representation A is an example of the unitary ray representations introduced for
all Lie groups by Bargmann'®. More precisely it is the infinite-dimensional double-
valued projective representation of Sp(2n, R) studied in the mathematics literature by
Segal'?, Shale?® and Weil?!, and independently in the physics literature by Moshinsky
and Quesne??. The connection with the metaplectic group Mp(2n,R) is made by
Weil?!, while both Shale?® and Moshinsky and Quesne®? point out that the metaplectic
representation A is the analogue for Sp(2n,R) of the basic spin representation of
O(2n). The wider class of harmonic series irreducible representations studied here
were first introduced by Kashiwara and Vergne” as new unitary representations of the
metaplectic group Mp(2n, ) arising as irreducible components of tensor powers of A.

It 1s convenient to gather together some known facts about these harmonic
series irreducible representations: their behaviour on restriction from Sp(2n,R) to
the maximal compact subgroup U(n); the decomposition of their tensor products;
the relationship between their symmetrised products and the branching rule for the
restriction of O(k) to the symmetric group S,.



All of these facts can be deduced by exploiting the fact that the pair of groups
Sp(2n, R) and O(k) are a dual pair with respect to Mp(2nk,R) in the sense of Howe??
or, equivalently, a complementary pair of subgroups of Sp(2nk,®) in the sense of
Moshinsky and Quesne??. This duality or complementarity is such that on restriction

from Sp(2nk,R) to Sp(2n,R) x O(k) we have the branching rule:

A= (Fk(N) x [V, (2.2)

where the summation is over all those A such that

A +2, <k and A} <n. (2.3)

Under restriction from Sp(2n, R) to its maximal compact subgroup U(n) we have??3

(5k(N) — > _ "2 R {u}, (2.4)

where the summation is over all those p such that
py < min(k,n) (2.5)

and ¢ = {1"} is the 1-dimensional irreducible representation of U(n) in which each
group element is mapped to its determinant. The coefficients Ry are defined by the
branching rule for the restriction from U (k) to O(k):

(1) — S0 RE DAL (26)
A

The particular significance of (2.4) is not just that it defines the decomposition of
the restriction of the irreducible representation (%k(/\)) of Sp(2n,R) into irreducible
representations of U(n), but that it serves to define completely the character of (%k(/\))
since Sp(2n,R) and U(n) are of the same rank, n. Furthermore since every harmonic
series representation obtained by taking some arbitrary linear combination of products
of the unitary irreducible representations (%k(/\)) Is itself unitary, it is fully reducible
and its irreducible content 1s completely determined by its character. Since this may
be evaluated at the level of U(n), as on the right-hand side of (2.4), identities between
characters at the level of U(n) imply corresponding identities, up to equivalence,
between representations at the level of Sp(2n,®). This is exploited in what follows.
In order to evaluate explicitly the branching rule coefficients in (2.6) it is convenient

to note that it can be expressed in the form?*

{n} — [/ D] (2.7)

where

D= {s}={0}+ {2} + {4} + {2} + -, (2.8)
1

in which the summation is over all partitions § having just even parts, and / signifies
an S-function quotient. This can then be used®? to rewrite the branching rule (2.4)
in the form

(5k(N) — "2 {20}" - D, (2.9)



where {),}* is the signed sequence®?

=D m {u), (2.10)

with the summation extending over all g with p) < k such that [p] = 77;‘ [A] under
the modification rules?* of O(k). The non-vanishing coefficients 77;‘ are all +1. The
symbol - in (2.8) signifies an S-function product corresponding precisely to a tensor
or Kronecker product in U(n). For given n it is only necessary to retain those terms
{v} in the products (2.8) for which /| < n.

It should be noted that in the case & = 1 the restriction from Sp(2n,R) to U(n)
is such that the basic harmonic irreducible representations decompose in accordance
with the rules:

Ay = (3(0)) — e M (2.11a)

A=) =M, (2.11b)
where

My= 3 {m}={0}+{2}+{4}+ - (2.12a)

m:im even

_ S o mp={1}+ {3} +{5}+-. (2.12b)

m:m odd

M

It has been shown? that the tensor product of a pair of unitary harmonic series
irreducible representations of Sp(2n, ) decomposes in accordance with the rule

(L)) x (30w) = 30 K2 (S (k40)(N), (2.13)

where the coefficients K}” are the branching rule coefficients appropriate to the

restriction O(k+£) — O(k) x O(¢):

A= > K [u] x [v]. (2.14)

In general it is not so straightforward to decompose symmetrised powers or
plethysms of irreducible representations of Sp(2n,3t). Let p be a partition of k. Then
in the case of the metaplectic representation A, its corresponding k-fold symmetrised
power decomposes in accordance with the rule!®!:

Ao {p} =) by (3k(), (2.15)

A

where the coefficients bp

restriction O(k) — S,:

are the branching rule coefficients appropriate to the

A= ) (p), (2.16)



where the summation is carried out over all partitions p of k. The coefficients b;‘ may

be found by noting that??

A= (k=1,1)2{)/G}, (2.17)
where

G= Z (1) (e}
= {0} 4+ {1} = {21} — {2%} 4+ {31} + {321} — - - -, (2.18)

in which the summation is over all self-conjugate partitions ¢ with e equal to the
weight of € and r equal to its Frobenius rank, that is the number of boxes on the main
diagonal of the corresponding Young diagram F*©

3. Associate irreducible representations of Sp(2n,})

It is well known®2% that corresponding to each irreducible representation [\] of
the full orthogonal group O(k) there exists an associate irreducible representation
[A]*. The relationship between these irreducible representations is such that if [A]:
A — [A](A) for each group element A of O(k), then [A]*:A — [A]"(A) = det A - [A](A4).
Since det A = £1 for all A € O(k) it follows that ([A]*)* = [A].

In terms of the partitions used to label irreducible representations of O(k), if
the partition A labelling [A] has conjugate X' = (A, A5, AL, ...) then the partition
A* labelling [A]*, which is referred to as the k-associate of A, has conjugate A*' =
(k=A1, A5, AL, .. ). Equivalently, the k-associate A* of the partition A is defined by the
Young diagram F*" obtained from the Young diagram F'* by taking the complement
of the first column with respect to a column of length k.

It should be noted that for each irreducible representation [A] of O(k) the
corresponding partition A is O(k)-standard in the sense that A] + A, < k. This
is precisely what is required to guarantee that & — A} > A, so that A* is a
partition. Similarly the fact that A is a partition guarantees that A{ > A} so that
MU+ A, =k — A + A, <k. Thus X* is also O(k)-standard.

As a special case of the above it should be noted that the associate of the identity
irreducible representation [0] is just the irreducible representation [0]* = [1*] in which
each group element A of O(k) is mapped to its determinant. More generally

(A" = W] =[] - [0 = [A]- [1°]. (3.1

Returning to Sp(2n,R), it is natural thanks to (2.2) to associate with each

irreducible representation (%k(/\)) of Sp(2n,R) an associate irreducible representation

(%k(/\))* The complementarity between Sp(2n,R) and O(k) embodied in (2.2) then
leads to:
Definition 3.1 For all k < n the associate (%k(/\))* of the irreducible representation

(2k(X)) of Sp(2n,R) s defined by
(56())" = (3k(\) (3.2)

where A" 1s the k-associate of A.



As a special case of this with k& = 1 1t is clear that

(1) =A_; (3.3a)
(0)) = A, (3.3h)
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With this notation and terminology it is not difficult to establish the following:
Proposition 3.2 If under the restriction from Sp(2n,R) — U(n) each irreducible
1

representation (5k(A)) decomposes in such a way that

(5k(N) — > _ " *Ri{n}, (3.3)

then for k < n the associate irreducible representation (%k(/\)*) decomposes in
accordance with the rule:

(k)" = >R} /{11, (3.4)

where [ signifies an S-funclion quotient.

Proof In (3.3) it should be noted that R is defined by the U(k) — O(k) branching
rule (2.6). However, in U(k) for all v such that v} < k we have {v} - {1¥} = {u} with
py = k where F'* is obtained from F'” by adding a leftmost column of length £. Under
the restriction from U(k) to O(k) we have

(=} {17y =30 R -F1=) " RI[w7] =) R} [AL(3.5)
K K A

It then follows by comparison with (2.6) that

Ry = RS where {u}={v}-{1'} and {v}={u}/{1"}.  (3.6)

Hence under restriction from Sp(2n,R) to U(n), provided that n > k, we have

(k)" = (k) — D PRGAvy = Y PR}/ {17

v <k ppy =k

= Y PRI

pipy <k

where the last step follows from the fact that {u}/{1%} = 0 if 4} < k. This completes
the proof.

The consistency of Proposition 3.2 with what we know of the branching rules
(2.10) of the basic harmonic irreducible representations is easy to verify. In this
case we have & = 1 and as we have seen Ai — El/zMi. It then follows from
Proposition 3.2 that (Ai)* — e2M {1} = El/zMjF as can be seen from (2.11)
since {m}/{1} = {m — 1} for m > 0 and {0}/{1} = 0. This is in accord with (2.10)
since (Ai)* = AJF — El/zMjF.



4. Tensor products of harmonic series irreducible representations of
Sp(2n,R) and their associates

As in the previous section it is straightforward to exploit Definition 3.1 and the
Sp(2n,R) tensor product rule (2.10) to establish:

Proposition 4.1

<§koo>*x<§eoo>*=:(kék<u» x<§£oo>) (1.1)

where on the left-hand side the symbols * indicate k- and (-associates, and on the
right-hand side (k+()-associates.

Proof Tt should first be noted that under the restriction from O(k+£) to O(k) x O(£)
we have in the notation of (2.11) and (3.1)

= ] = 30 KR [ x [, (4.2)

However, (2.11) and (3.1) also imply:

) = DAL 0] = 3 A8 (< [v]) - (] < [1])
=0 K ([ 1) < ([ 1)

=> Ky [ x vt =) K}

v v
where in the first step advantage has been taken of the fact that [I¥*T¢](A) = det A =

det Bdet C' = [1¥](B) [14(C) for any A = B x C in O(k) x O(¢).
Comparing (4.2) and (4.3), we have

KIS = KB (4.4)

It then follows that

=3 K G000 = 30 K (000 = 3 K (SR
=O%MXWM0, (4.5)

as required.



5. Symmetrised powers of the basic harmonic irreducible representations

of Sp(2n,R)

First of all it should be pointed out that for the harmonic or metaplectic
representation A of Sp(2n,R) we have: R
Proposition 5.1 The k-fold symmetrised powers of A are such that

(Aoo) =Aad (5.1)

for each partition o of k.
Proof In the notation of (2.15), the branching rule for the restriction from O(k) to
Sy, 1s such that

A= > b2 (r) and [X]—> b2 (o). (5.2)

However

SR (1) = 308 () = S8 (o). (5.3)
Comparing (5.2) and (5.3) gives
B =0, (5.4)
Using this and (2.14) we then have
Aoo' =3 b (5k(V) =D by (5k(N)
=D b (RO =0 b (k) = (A o), (5.5)

as required.

This result (5.1) for the metaplectic representation A may be refined so as to
provide information on the symmetrised powers of the basic harmonic irreducible
representations Ai' It has been conjectured!®® on the basis of extensive calculations
of such symmetrised powers!'® that:

Proposition 5.2 The symmeirised k-fold powers of the basic harmonic irreducible
representations Ai of Sp(2n,R) are such that

Ay o) =Ar 0}, (5.6)

for each partition p of k.

In order to prove this result it is helpful first to establish two Lemmas. First of
all we need a generalisation of Littlewood’s conjugacy formula?® which states that for
any partition ¢ of k£ we have

{e'Y @ {p} if k is even;

(Yo i} ifkisodd. (5.7)

(o} (o) = {



The requisite generalisation of (5.7) takes the form:
Lemma 5.3 Let S be an arbitrary representation of U(n) of the form

S=> {o} (5.8)

where repetitions are allowed but each summand {o} has the same fized parity ng in
the sense that if o is a partition of k then k = ns(mod2) with ng fized to be either 0
or 1. Then

S"@ {p} if ng =0

5.9
Solf) =1, (5:9)

(S@{p}) = {

where S’ is obtained from S by conjugating each summand.
Proof The result is valid by virtue of Littlewood’s conjugacy formula (5.7) if S has
one summand {o}. We assume that it is valid for all 7" with one fewer summand, say

{c}, than S. Writing S = T + {o} we then have

(Se i) = (T +{eho{p})
S er(re{uh({or o {v})

= ch;;y(T o) (ot o {v}y
M Z o (T ooy o (v))  ifnp=0;
) %:CZV(T’@@{M})({U’}@{V’}) if n, =1,
ZV e, (T @ {uh)({e'} @ {v}) if 5y = 0;
- iCZIIUI(T'@@{ﬂ’})({U’}@{1/}) if np = 1;

_ { (T"+{o"}) @ {p}) if np = 0;
(T"+{o"}) @ {r'}) if np =1,
{ S'@{p}) if g = 0;
S @{p'}) ifng =1,

where use has been made of the fact that ng = 5. The coefficients ¢f,, are just the

Littlewood-Richardson coefficients®? determined by the tensor product rule for U(n):

(- vy => e i} (5.11)

P

(5.10)

which satisfy the conjugacy relation

i

cp,y, =c’ (5.12).

I By

This completes the inductive proof of Lemma 5.3.



Our second Lemma takes the form:
Lemma 5.4 For each partition p of k

(Mg @ {p})/{1"} = Mz 0 {4} (5.13)

Proof The branching rule for the restriction from U(n) to U(1) x U(n — 1) takes the
form:

Hi

{n} = =“ui/{a (5.14)

a=0

where it has been convenient to denote the character {1} of U(1) simply by z, and
{a} by z®. In the special case {u} = {1™} this gives

{17y = =1 {ay = (1™ + {17 (5.15)

a=0

Taking the k-fold symmetrised power specified by a partition p of & gives

k
{1y o {py =D {1 @ {p}) /{b}
b=0
= ({1"}+={1"7')) @ {p}. (5.16)
Equating the coefficients of the terms in z* gives
{1y @ {ph)/{k} = 1"} @ {p}. (5.17)
Applying Littlewood’s conjugacy formula (5.7) to both sides of (5.17) gives
({m} @ {o})/{1*} = {m -1} @ {o'}. (5.18)
All this can be generalised. If we set @, = M} so that
Qe= D (M ={0+{"+ {1+ (5.19a)
Q.= > (M= {}+{P +{1"+-, (5.19b)
m:m odd

then under the restriction U(n) — U(1) x U(n — 1)

1
Qe — ) #Qu/{a} = Qu +2Q< (5.20)

a=0
and hence

k

Ry ©{p} — Zzb(Qi @ {p})/{t} = (Qr +2Q3)) @ {p}. (5.21)

b=0



Once again equating the coefficients of the terms in 2* gives

(Qe® ()] (k) = (@5 © {p). (5.22)

Our required result (5.13) then follows from our conjugacy Lemma 5.3 since the terms
of (), are of parity ng, = 0 and those of @ _ are of parity ng_ =1, while QL =M,.

Armed with Lemma 5.4 we are now in a position to prove Proposition 5.2:
Proof For any partition p of k all the irreducible representations in the k-fold
symmetrised power Ai ® {p} are of the form (%k(/\)) It then follows from (2.10),
Proposition 3.2 and Lemma 5.4 that

(AL @ {p})" — (V" My) @ {p})/{1"}
=" (My @ {p}) /{1F} = 2 (Mg @ {p'}) (5.23)

Comparing this with
Br@ip} — (V2My) @ {p'} = /2 (Mz @ {0')) (5.24)

suffices to prove (5.6).
Remarkably, as indicated through the calculation of numerous examples!'®.
Proposition 5.2, may be generalised to give:
Proposition 5.5 For any partition p of r, the corresponding r-fold symmetrised
1

power of the associate irreducible representation (5k(A))* of Sp(2n,R) is such that

(k) @ {p})” if & is even;
(L)) @ {p'))"  ifkis odd,

on the left signifies a k-associate, while those on the right signify kr-

{(3kN)" @ {p} = { (5.25)

where the *

associates.
To prove this Proposition the first task is to generalise Lemma 5.4:
Lemma 5.6 Let S be an arbitrary representation of U(n) of the form

S= > Ao} (5.26)

o:0) <k

where repetitions are allowed but each summand {c} has the same fized parity ns and
o) < k. Then for each partition p of r:

(S @ {ph)/{1F"} if k is even;

(Se{ph/{1F} if k is odd. (5.27)

(S/{14)) © {p} = {

Proof Let {u} be an irreducible representation of U(n) with p; < k and p a partition
of m. Then taking the r-fold symmetrised power of {u} specified by p and restricting
from U(n) to U(1) x U(n — 1) as in (5.14) gives

kr k

S (fu) o (0))/ () = (Z Z“{u}/{a}) @ (). (5.2)

b=0 a=0



kr

Comparing terms in z*” on both sides of this equation gives the identity

{ud/{k}) @ {p} = {u} @ {p})/{kr}. (5.28)

Taking the conjugate of the left hand side gives:
LU @ Lot ifm— ks even;

Ay D @ {e}) = { 'y ) @ {0} if m —k is odd, (5:29)

while the conjugate of the right hand side gives:
[y e /1y if m is even;
kr}) = .
e B G E N CE )

Comparing (5.29) and (5.30) and setting o = p’ gives the conjugate of (5.28), namely

({oe} @ {ph/{1F} if k is even;
{oy o {1/ {1F} if k is odd.

It should be recalled that this only applies if ¢f = p; < k. However, by hypothesis
all the summands {o} of S in (5.26) are of this type. Moreover all the summands are
of the same parity ng. This allows us to replace {u} = {¢'} by S in both (5.27) and
(5.28) to give

{0}/ (1) & {5} = { (5.31)

kr k
S 0 /0 = (5 1)) @ o) (532
b=0 a=0
and
(/D) © {0} = (5" @ (o)) (hr). (539

Setting T'= S"/{k} so that n;, = ng if k is even and n; = 1 — ng if k is odd, it then
follows from Lemma 5.3 that taking the conjugate of the left hand side of (5.33) gives:

(S/{1*}) @ {r} if np = 0;

S e ) i1 (5.34)

(' /{kD) @ {p}) = {

Similarly from Lemma 5.3 taking the conjugate of the right hand side of (5.33) gives:

kr i —0-
oy ={IMES Il o
Comparing (5.34) and (5.35) gives the conjugate of (5.33), namely
kr if k is even;
s/ e ) = { Ei . z}}))/ /{{11“}} s e (5:36)

as required in order to prove Lemma 5.6
This now allows us to prove Proposition 5.5



Proof First of all, under the restriction Sp(2n,R) — U(n) we have from (2.4)

{

[N

k(A) = > PR puy = /28 (5.37)

with S as in Lemma 5.6. It follows that
(5k(V) @ {p} = ("%5) @ {p} = """*5 @ {p}) (5.38)

Taking the k-associate of (5.37) and using Proposition 3.2 then gives under the same
restriction from Sp(2n,R) — U(n):

(5RO = D PRy {17} = €25/ {17y, (5.39)

Taking the r-fold symmetrised product of (5.39) specified by the partition p and using
Lemma 5.6 then gives

(5k(N)" @ {p} =72 (5/{1"}) @ {p}

_ { 125 @ {p})/{1F} if k is even;

M 12(S @ {p' /{1y if kis odd. (5.40)

On the other hand taking the kr-associate of (5.38) and using Proposition 3.2 gives

(2R @ ()" — £7/2(5 @ {ph)/ (177}, (5.41)
Replacing p by p’ then gives
((3k(A) © {p"))" — 25 @ {p /1) (5.42)

Hence comparing (5.40) with (5.41) and (5.42) it follows that

1 * ((%k(A» ® {p})* if k 1s even,;
k(A = 5.43
e { (RkV)) @ ') if k is odd, (5:43)

as required.

6. Symmetrised powers of arbitrary harmonic series irreducible represen-
tations of Sp(2n,R)

It is possible to exploit the remarks following (2.6) and the branching rule (2.9)
from Sp(2n, R) to U(n) to derive the following general formula for symmetrised powers
or plethysms of arbitrary harmonic series irreducible representations of Sp(2n,R):
Proposition 6.1 Let the partition A be such that X} + A, < k and M| < n and let p
be an arbitrary partition of r, then

(5k(V) @ {p} =D o4, (Fhr(n), (6.1)



where the summation is over all partitions p satisfying the constraints p) + phy < kr
and py < n, and the coefficients xﬁp are determined by the expansion

(A D)y @ {p}) -0 = af dn " (6.2)

with C = D1,
Proof Under the restriction from Sp(2n,R) to U(n) the branching rule (2.9) takes
the form:

(Fk(N)) — 2 (A0 D (6.3)

Hence, for each partition p of r, the corresponding r-fold symmetrised power of this
irreducible representation decomposes in accordance with the formula

(3O @ {p} — (57 A} D) @ {p}

= F2 (A D) @ o))
= (YD) @ {ph) - DD
=2 (Y- D) @ {p}) -D7Y) - D. (6.4)

However, in the notation of (6.2), it follows once again from the branching rule (2.9)
that

(5k(N) @ {p} =Y _ o}, (Ghr(p)) — */* (Z l‘ﬁp{ﬂs}’”) D (6.5)

Comparison of (6.4) and (6.5) then completes the proof since, as noted following (2.6),
identities at the level of their U(n) content is sufficient to imply identities between
representations of Sp(2n, R).

In making use of the formula (6.2) to evaluate the plethysm coefficients in (6.1) it is
possible to make one or two simplifications. While the product of the signed sequence
and D-series appearing in the branching rule (2.9) is a product of two infinite series,
all surviving terms {v} in the product will automatically be such that v < k. Since
the products are carried out in U(n) all the surviving terms are also automatically
such that v] < n. It follows that (2.9) is equivalent to®

(5E(A) — "2 (AR D)y (6.6)

where N = min(n, k), with the various series and products all being evaluated in
U(N). In precisely the same way the plethysm and subsequent product with C' in
(6.2) may be evaluated in U(M) where M = min(kr, n) so that (6.2) may be replaced
by

(A5 D)y @ 4ol Car) = D ah Vi (6.7)

Finally, it should be noted that in order to read off the required plethysm coefficients
from the expansion (6.7) it is only necessary to look at the leading term {yg} in each



signed sequence {p, }%7 since it is only the leading term of each signed sequence which
satisfies the required O(kr)-standardness condition pf + pfy, < kr.

We illustrate the diverse features of such calculations by the evaluation of the
plethysm (2(21)) ® {21} for Sp(24,R) as an explicit expansion in terms of irreducible
representations of the form (6(p)) with the partition p restricted, for convenience,
to have weight < 18 and width < 3. Here we have ¥ = 4 and n = 12 so that
N = min(k,n) = 4. Hence the signed sequence, evaluated using the modification rules
of O(4), but restricted to terms standard in U(4), has just the two terms

{2145 = {21} - {2°1}, (6.8)
both of which have width < 3. The terms in the D-series restricted to width < 3 and
length < 4 are

{0} + {2} + {2} + {2°} + {2} (6.9)

Evaluation, in U(4), of the tensor product of (6.8) with (6.9) yields the terms of width
<3 as

A= {21} + {221} + {317} + {32} + {3217} + {32} + {371} + {3%21}. (6.10)

The plethysm of A ® {21} is now to be evaluated in the group U(12) since k = 4,
r =3 and n = 12 so that M = min(kr,n) = 12. Keeping all terms of width < 3 and
of weight < 18 gives:

{241} + {2*13} + 2{251} + {2°13} + 2{2°1}

+ {271} + {3211} + 2{32%1%} + 3{3221%} + {323}

+ 9{3231%} + 5{3231%} + 6{321} + 15{32%12}  + 4{32"1%}
+ 10{32%} + 11{32%1%}  + {32°1} + 7{32°} + 3{32°1%}
+ 2{327} + {3%1°} + 2{3%1%} + 3{3%21} + 12{3%213}
+ 7{3%21°} + 18{37271}  + 33{3%2213} 4+ 9{3%221°}  + 45{3%231}
+40{322313} £ 5{32231°} 4 54{3%2%1}  + 23{3%2*13}  + 31{3%2°1}
+ 12{3%1%} + 20{3%1*} + 5{331°} + 10{332} + 60{3%217}
+ 51{3%21%}  + 7{33215} + 40{3%2%} + 117{33221%2}  + 51{3%2%1%}
+ 71{3323} + 111{33231%2} + 67{3%2%} + 32{3%1} + 70{3%1%}
+ 31{3%1%} +120{3%21}  + 137{3%213}  + 181{3%2%1} + 28{3°}

+ 116{3°1%}  + 92{3°2} (6.11)

We now form the tensor product, in U(12), of the above terms with the following
terms of width < 3 of the C-series:

{0} — {2} + {31} — {37} (6.12)
Keeping only terms in the tensor product up to width 3 and weight 18 yields
{241} + {2413} + {2°1} — {2613} — {271}
— {281} + {321} + 2{3271%} + 2{3221%} + {323}
+ 6{3231%} + {32314} + 4{32%} + 4{32%1%} — {32%1%}
+ 3{32%} — 4{32%1%} — 2{32°1%} — 3{32%} — 6{32°12%}
— 4{327} + {3213} + {321°} + 3{3%21} + 8{3%2213}
+ 3{3%221%} + 12{3%2221} + 12{322213}  + 16{3%2%1} — 3{32231%}
— 12{322*13} - 16{3%22°1} + 8{331%} + 8{331%} + 7{332}
+ 24{3321%} + 7{3321%} + 16{3322} + 16{332212} - 7{33221%}
+ 9{3323} — 16{332312} - 9{332%} + 13{3%1} + 13{3*13}
+ 25{3%21} + 6{3°} + 6{3°1%} + 6{3°2} (6.13)



The terms may now be grouped together into sets of O(12) signed sequences. Thus,
for example, {2%1,}12 = {2*1} — {2%1}. Alternatively, bearing in mind that for the
purposes of determining plethysm coefficients it is only necessary to retain the leading
0O(12)-standard term in each such signed sequence, (6.13) may simply be restricted to
those terms {u} for which g} + pb < 12. The surviving terms are

{241} + {2413} + {2°1} + {3214} + 2{32%17}

+ 2{3271%} + {323} + 6{3231%} + {32311} + 4{32%}

+ 4{32%1%} + 3{32°} + {3213} + {3215} + 3{3%21}

+ 8{37213} + 3{3721°} +12{3%221} 4+ 12{3%2%13}  + 16{3%2%1}

+ 8{3%1%} + 8{3311} + 7{3%2} +24{33%21?}  + 7{3%21%}

+ 16{3%2%} + 16{332212}  + 9{3323} + 13{3%1} + 13{3%13}

+ 25{3%21} + 6{3°} + 6{3°17} + 6{3°2} (6.14)

These irreducible representations of U(12) can now be converted back into the
irreducible representations of Sp(24,R), to which they correspond in a one-to-one
manner, by the simple insertion of a 6 and a change to Sp(24, ) notation to give

< 6(2'1) > + < 6(2%1%) > + < 6(2°1) > + < 6(321%) >
+2<6(3221%) > 4+ 2<6(3221%) >+ <6(32%) > + 6 < 6(32%12) >
+ <6(32%1%) > +4<6(32%) > +4<6(3241%) > +3<6(32%) >
+ < 6(3%1%) > + < 6(3%1°) > +3< 6(3221) > + 8 < 6(37213) >

+3<6(3%21°%) >+ 12<6(3%2°1) > + 12 < 6(3%2%1%) > + 16 < 6(372°1) >
+8<6(3%1%) >  +8<6(3%1Y) > +7<6(3%2) > + 24 < 6(3%217%) >
+7<6(3%21%) > +16<6(3°2%) >+ 16 < 6(3%221%) > + 9 < 6(3°2%) >
+13<6(3*) > 4+ 13<6(3*1%) >  +25<6(3*21) >  +6<6(3%)>
+6<6(3°1%) >  +6<6(3°2) > (6.15)

It follows that up to weight 18 and width 3 the required plethysm takes the form:

(2(21) @ {21}
=< 6(21) > + < 6(2'1)* > + <6(2°1) >
+ 2 < 6(32212) +2<6(3221%)" >+ < 6(32%) >
+6<6(32%1%) >  +4<6(32% > +4<6(3
+ < 6(3%21%) > + <6(3213)* >  +3<6(3
+8< 6(32213) > +12<6(32221) > + 12 < 6(
+8<6(3%12) > +8<6(3%12) > +7<6(3%2) > +7<6(3%2)" >
+24<6(3%212) > 4+ 16<6(3%2%) > 4+ 16<6(3%22)* > +9< 6(3323)
+13<6(3*) > +13<6(3%)* > +25<6(3%21)>  +6<6(3%) >

+ 6 < 6(3%)" > + 6 < 6(3°2) > + - (6.16)

) + < 6(321%) >

+ < 6(32%) >
24)* +3<6(32°) >
221 + 3 < 6(3%21)* >
32271 ) + 16 < 6(372%1) >

where the terms have now been arranged in mutually associated pairs of irreducible
representations together with self-associate irreducible representations, so as to
illustrate in accordance with Proposition 5.5 the self-associate nature of this particular
plethysm.

7. The analogy between Sp(2n,R) and SO(2n)

In SO(2n) there exists the basic spin representation A = A, + A_ which is a
direct sum of the two irreducible representations A_I_ and A_ whose branchings from



SO(2n) to U(n) take the form
_1/2 Z{ln 21:} (71&)
_1/2 Z{ln 1- 217} (71b)

As we have seen for Sp(2n,R) there exists the basic harmonic representation A =
A + A_ which is a direct sum of the two irreps A and A_ whose branchings (2.10)
from Sp(2n,R) to U(n) can be written in a form strlkmgly similar to (7.1):

A_I_ — gl/? 2{21‘}; (7.2a)
r=0

A=y {241} (7.2b)
r=0

Moving to symmetrised squares, for SO(2n) we have?":

Ay e{2} =", + Zo[l”“‘““]; (7.3a)
Ay o{1%) = Z%[l”‘;‘_“]; (7.3b)
A {2} = Fl_”]_ + Z_:[l”“*““]; (7.3¢)
A_o{1?} = 2)[1"—;—_;], (7.3d)

while for Sp(2n,R) the analogous symmetrised squares take the form!*:

Ay @{2) = (10) + ) (1(4 + 42)); (7.4a)
Ay o {17 =) (12 +_4x>; (7.4b)
A_o{2} = §<1(2 + 4z); (7.4c)
A_ ®{1}—x0 +Z (4 + 4)) (7.4d)

Moving to symmetrised cubes for SO(2n) it is straightforward to show from
previously published results®” that we have

11
Ay @ {3} =D > (my42)[A 1"V with m = (100010101110);  (7.5a)
z=0y=0
5
Ay @ {213 =) (my4a)[A; 1775, with m = (0010111); (7.5b)

z=0y=0



11
Ay @ {17} =30 (my4)[A; 177712, with m = (000100110111);  (7.5¢)

z=0y=0

11
A_@ {3} =D > (my42)[A; 1"V ), with m = (100010101110);  (7.5d)

z=0y=0

A @ {21} =) (my4)[A; 1777 ), with m = (0010111); (7.5e)

z=0y=0

11
A_@{1%) =3 (my42)[A; 177V ), with m = (000100110111).  (7.5)

z=0y=0

Encouraged by the analogy between (7.1) and (7.2), and that between (7.3) and (7.4),

it seems appropriate to ask if there is a corresponding Sp(2n,R) analogue of (7.5).

The existence of such an analogue appears to be borne out by recent calculations'”.

As a warming up exercise we consider the symmetrised squares of the metaplectic
representation A. Tt follows from (2.14) with £ = 2 that:

Aofor=30 (00 (7.6)

where p = (2) or (1%) and A is necessarily constrained to be either (0), (12) = (0)*, or
(m) = (m)* for m > 1, where * signifies 2-associates so that (im) is self-associate. The
Coefficients b;‘ are determined by the branching rule (2.16) applied to O(2) — S,:

[0]—(2), [0]"—(1%), and [m]—(2)+(1?), (7.7)
where these branchings can be obtained by noting from (2.17) that:
[m] — (1) @ {m/G} = (1) @ ({m} + {m —1}) = (17)" + (1*)"7{7.8)

and the fact that (12)" = (0) for n even and (12)* = (1?) = (0)* for n odd.
It then follows from (2.14) that

Ao {2} = (10)+ Y (L(m)); (7.92)

A {17} = (1(0))" + > _(1(m).) (7.9b)

The problem of evaluating symmetrised cubes of A may be tackled in the same way.
For this case k£ = 3 and it is only necessary to consider only the O(3) irreps [A] = [0],
[13] = [0]* and [m] and [m, 1] = [m]* = [m][0]* with m = 1,2,... and their branching
to S;. Under the restriction O(3) — S5 we have [0] — (0) and [0]* = [1%] — (1),
while the analogue of (7.8) is

[m] — (21) @ {m/G} = (21) @ ({m} + {m — 1})
=2 {m}+ 2 {m-1} (7.10)



However

(1H4).(3) 4 2.(21) + =.(1%) for n=0+6x
2.(3) + (1422).(21) + =.(1%) for n=1+46x
(1) & {n) = (142).(3) + (1422).(21) + 2.(1%) for n=2+6x
(14).(3) + (1422).(21) + (14=).(1°) for n=3+6x
(14).(3) + (2422).(21) + =.(17) for n=4+46x
(14).(3) + (2422).(21) + (14=).(17) for n=5+61x,
so that
(1422).(3) + 4a.(21) + 22.(17) m=0+6x
(1422).(3) + (144x).(21) + 22.(1%) m=14+6x
) (H22).(3) 4 (2+42).(21) + 22.(1%) m=246x
EDOUAmI M =ID= 0 0001, 3) + (2H0).21) + (422).1%)  m=3tbe )
(2422).(3) + (3H4x).(21) + (1422).(1%) m=46x
(2422).(3) + (442).(21) + (142z).(1%) m=5+6.
Hence:
] — (14 [5)03) + (m = [5D2D) + (5D (1), (7.12)

Since [0]* — (1%) and multiplication by (1®) in S5 simply involves conjugation, we
have

[m]” — ([

DG+ (m = [5DED + 1L+ (5D, (7.13)

This completes the derivation of the O(3) D S5 branching rules:

0] —(3); (7.14a)

[0]* — (17); (7.14b)

] — (L + ) + m = (2DED + ()07 (7.140)

[m]" — ([%D( )+ (m=[F)EL+ (1 + [ D) (7.14d)
It then follows from (2.14) that

Aofs) = 300+ (EE0m) + (2)Eem) (7.150)

Ae{21}=> (m—]

rt 3
Ao {17y = 3 ((ENEm) + 1+

m=0



However

A@{3} = (A+®{3}+A+(A_ ®{2}))
+ (A_ @ {3} + (A, ®{2})A_); (7.16a)
Ao {21} = <A+®{21}+A (A_o{2h+A (A @{12}))

(A ® {21} + (A ®{2})
+ (AL @ {17HA_ (7.16b)

A {1® = <A+®{13}—|—A A_o{1? })

(A 2 {17} 4 (A, & {17))A ) (7.16¢)

where each expression has been separated into the sum of two parts, the first of which
consists of even weight terms and the second of odd weight terms. Moreover

AA_e{2h) = D (32+2i+47) + (23 +2i+45))"; (7.17a)

i>0,j>0

AA_ {1’y = D (3(4+2i+44) + (3(1 +2i+45))"; (7.17b)
i>0,j>0

ALA_o{2}) = D (B0 +2i+4) + (2(A+2i+4j))"; (T.17¢)
i>0,j>0

ALA_o{1P)= D (3B+2i+4)) + (2(2+2i+45))". (7.17d)

Since

Y Getriva)= Y [PEEEm) @

120,520 m>a,m=amod2

1t then follows that

AAagy = 3 P2 Em) + 3 (2 Gy (70
AA o= Y G+ X @y ram)
AByopn = X ME0Emm)+ X [F1Em): @19



Combining the results (7.16), (7.17) and (7.19) and taking care to distinguish even

and odd weight terms (7.16) we then have

+ 3 (- D ey
modd
Ao = X a+15- ") Em)
modd
+ 3 - [3hEm)”
meven m " m+2

3
modd
Alop= Y m-- -2 o)
modd
T Dt I Y i E TR

Since
(y+122). y+1224a _  y.  y+a
[ 3 1-1 2 ]—1+[§]—[4]
and
(y+122), y+12z4+a,  y+12z+b
(y+120) - ] = [ - ]
=y + [0 -2FY - Y

for 0 < y < 11 these results (7.20) can be rewritten in the form

11
Ao {3} =3 (my ) (E(y+122))*)” with m = (100010101110);

z=0y=0

(7.20a)

(7.20D)

(7.20¢)

(7.20d)

(7.20e)

(7.20f)

(7.21a)

(7.21b)

(7.22a)



A_o {3} ZZ my ) (2(y122)) " with m = (000100110111);  (7.22b)

r= Oy 0

AL @ {21} = ZZ (my+22)(3(y+122)))" with m = (001011112122); (7.22¢)

z=0y=0

11
Al @ {21} = 373 (my422) (3 (yH122)))" with m = (001011112122);  (7.22d)

x—Oy—O

Ao {1?} = ZZ (my+2)(2(yH122)) )" with m = (000100110111); (7.22¢)

z=0y=0

11
AL @ {17 = 373 (my ) (3 (yH120)) " with m = (100010101110).  (7.22f)

z=0y=0

where (%)? is to be ignored if z is even and set to be * if z is odd.

Clearly, just as (7.4) is analogous to (7.3), so the results (7.22) for Sp(2n,R) are
analogous to the results (7.5) for SO(2n). However, the analogy may not be quite
what one might have expected. For p any partition of £ < 3 the correspondence takes
the form:

AL @ {p} = A+ ® {p}; (7.23a)
A_o{p} = A_o{/}). (7.23D)

To be more precise all our results support the validity of the following closing
conjecture:

Conjecture 7.1 Let p be an arbitrary partition of k and let t take values in the set
{=1,0,1}. For SO(2n) let

Z 12 t m" /N'] n(t) for k = 2m even,;
A, ©{p)= (7.24)
’ Z Pi,t [Asm™ /X ]n(t) for k = 2m+1 odd,
At

where if k = 2m and X = m then t = 0 and 1n(0) is to be omitted, while otherwise

t =41 with n(1) = + and n(—1) = —. Similarly, for Sp(2n,R) let
Z 4 Mt C(t) for k = 2m even,
Ay o= (7.25)
Z 4 + (5 C(t) for k = 2m+1 odd,

where if (%k(/\)) is self-associate so that k = 2m and X| = m then t = 0 and ((0) s
to be omitted, while otherwise t = +1 and ((1) is to be omitted while ((—1) is set to
be x. Then

pi,t = qf\,t' (7.26)



It should be stressed that the non-zero terms of (7.24) are necessarily finite in
number by virtue of the requirement that {m"/A’'} be non-vanishing. The same is not
true of (7.25) which, as in (7.4) and (7.20), is expected to always involve an infinite
number of terms.

While the corresponding formula for A_ ® {p} is obtained from (7.24) merely by
replacing every surviving n(£1) = + by T, the corresponding formula for A_ @ {p}
is obtained from (7.25) through the use of the conjugacy formula (5.6) of Proposition
5.2:

A_a{pr= (A, 0" (7.27)

This is well illustrated not only by (7.4) but also by (7.20).

8. Concluding remarks

In deriving the results obtained in this paper we have had two objectives in mind.
Firstly, to gain further understanding of the properties of the unitary irreducible
representations of the non-compact group Sp(2n, %) and in particular their Kronecker
products and plethysms. Secondly, to produce results and techniques aimed at
eventual application in symplectic models of many-particle systems. The first objective
has been achieved through an understanding, and proof, of hitherto conjectured
properties of Kronecker products and plethysms of irreducible representations of
Sp(2n,R). That process has also generated a number of new identities involving
plethysms of infinite series of S-functions. Progress with respect to the second
objective has been advanced not only through the derivation of a highly efficient
general formula for the evaluation of arbitrary plethysms, as well as specific results
pertaining to symmetrised squares and cubes, but also through the introduction
of associate irreducible representations of Sp(2n,®R) which allow one to compute
Kronecker products and plethysms for particular irreducible representations and then
to obtain additional results for the associate irreducible representations by a simple
replacement process, at far less computational cost than that involved in repeating
the entire calculations.
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