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Abstract. In these lectures I shall discuss the basic information needed

to understand magnetic and hyperfine interactions in atoms, ions and

crystals. We start with the nuclear shell model to gain an insight into

nuclear groundstates and their interaction with magnetic fields. We then

look at the multipole magnetic and electric moments of nuclei. Then

follows some general remarks on electronic energy levels of atoms and

ions. This will then lead into our main topic, magnetic and hyperfine

interactions in atoms, ions and crystals.

... when he imagined his education was completed, it had in fact not

commenced; and that, although he had been at a public school and

a university, he in fact knew nothing. To be conscious that you are

ignorant is a great step to knowledge.

Benjamin Disraeli, Sybil or The Two Nations (1844)
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1. Introduction

The concept of quantum degeneracy and its controlled lifting by magnetic and

electric fields is perhaps the most technologically important and practical development

of the past century. It has lead to the development of lasers, NMR imaging, modern

telecommunications, the realization of Bose-Einstein condensation, and the potential

realization of quantum computing. These applications have required a detailed

understanding of the quantum theory of angular momentum in all its manifestations,

starting with the angular momentum of nuclear states, the angular momentum of

electronic states and of the coupling of angular momentum of nuclear with electronic

states. In this course we first consider the rudiments of nuclear structure.

1.1. Basic Facts of Nuclei

We first establish some basic notations.

1.2. Nucleons

The basic building blocks of nuclei (here we ignore the quark substructure of the

nucleons) are neutrons and protons. Both are spin 1
2

particles with positive intrinsic

parity, i.e. Jp = 1
2

+
. Following Heisenberg1, the proton and neutron can be regarded

as different charge states of the nucleon. The respective masses are (we will generally

put c = 1)

Mp = 938.3MeV Mn = 939.6MeV (1-1)

In free space the neutron is unstable with a half-life of t1
2

= 614.3s whereas the proton

appears to be stable with t1
2
> 1033y. Within the nucleus, as a consequence of the

Pauli exclusion principle, the proton and the neutron are stable.

Remarkably, the proton and the neutron both possess magnetic moments.

µp = 2.7928 µn = −1.9128 (1-2)

where the units are the Bohr nuclear magneton defined as

µBN
=

eh

2mp
(1-3)

An isotope of an element X having Z protons (Z is the atomic number) and N

neutrons will be designated as

A
ZX

where

A = N + Z (1-4)

with A being the nucleon number.
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1.3. The Nuclear Force

The force between nucleons is, to a good approximation, charge independent and

of a short range. Its origin is to be found in the quark model which we shall not

explore here. The basic nuclear model we shall consider is the nuclear shell model. To

a first approximation we can consider the nucleons as executing harmonic oscillations

about the nuclear centre of mass and hence as nucleons in an isotropic 3-dimensional

harmonic oscillator.

1.4. The isotropic harmonic oscillator

Recall that the energy eigenvalues of a 3-dimensional isotropic harmonic oscillator

potential containing a single particle are given by

En = (n+ 3
2
)h̄ω n = 0, 1, 2, . . . (1-5)

corresponding to an infinite series of equally spaced levels. The n−th level has an

orbital degeneracy of

(n+ 1)(n+ 2)

2
(1-6)

These are precisely the dimensions of the symmetric irreducible representations{n} of

the special unitary group SU(3). The n−th level is associated with orbitals having

the angular momentum quantum number ℓ such that

ℓ = n, n− 2, . . . ,

(

1

0

)

(1-7)

Given that the nucleons have even intrinsic parity the states associated with the n−th

level are all of the same parity which is even or odd as n is even or odd. The nucleons

have spin 1
2

and hence each orbital ℓ has a spin-orbital degeneracy of 4ℓ+ 2. NB. It is

common in nuclear physics to prefix the orbital quantum number with the number of

nodes in the single particle wavefunction. Thus the orbitals associated with n−level

are in the sequence

1s; 1p; 2s, 1d; 2p, 1f ; 3s, 2d, 1g; . . . (1-8)

Since nucleons have spin 1
2

they are fermions and hence must be associated with

wavefunctions that are totally antisymmetric. This means that in building up many-

nucleon states the Pauli exclusion principle must be followed. Many-nucleon states

may be constructed by filling the spin-orbitals with neutrons and protons up to their

maximum allowed occupancy. The building-up principle is very similar to that for

periodic table for atoms except one fills neutron and proton orbitals separately to

construct nuclei with given A,N, Z numbers.
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1.5. Magic Nuclei Numbers

Nuclei in which the proton and neutron numbers Z,N belong to the magic numbers

Nuclei Magic Numbers 2, 8, 20, 28, 50, 82, 126 (1-9)

tend to be exceptionally stable and evidently associated with the closure of shells.

The magic numbers 2, 8, 20 correspond to the closure of the shells corresponding to

the first, second and third levels of an isotropic 3-dimensional harmonic oscillator. But

closure of the fourth level would give the fourth magic number as 40 rather than 28.

This constituted a puzzle until M G Mayer introduced the spin-orbit interaction into

the nuclear shell model. In her case the spin-orbit interaction has the opposite sign to

the conventional spin-orbit interaction of electrons. This means, for example, that in

the 1p shell the 1p3
2

level is below the 1p1
2

level whereas in atoms one has the opposite

ordering. The effect of introducing the spin-orbit interaction is also to partially lift

the single particle energy degeneracies so that, apart from the case of s−states each

orbital ℓ becomes characterized by a total single particle angular momentum

j± = ℓ± s (1-10)

Henceforth, let us use n as the nodal quantum number rather than as the harmonic

oscillator level number so that a given spin-orbital is designated by the single particle

quantum numbers nℓjm. For a single nucleon moving in a nucleus we write the spin-

orbit interaction as

Vs.o = ζ(r)nℓ(s · ℓ) (1-11)

where ζ(r)nℓ is the spin-orbit coupling constant which is a radial function dependent

on the nature of the nuclear field and upon the quantum numbers nℓ. For a single

nucleon

(s · ℓ) = 1
2
[j(j + 1)− ℓ(ℓ+ 1)− 3

4
] (1-12)

The energy separation between the two components of a spin-orbit split doublet

characterized by the quantum numbers nℓ becomes

∆Enℓ = (ℓ+ 1
2
)ζ(r)nℓ (1-13)

Thus the level with j+ is lower than the level with j−. Furthermore, it is a practical

observation that states with higher values of ℓ have larger doublet splittings.

Even with the introduction of the spin-orbit interaction the single nucleon

degeneracy is only partially lifted. The degeneracy associated with the isotropic

harmonic oscillators is partially lifted so that states of a given harmonic oscillator

level are no longer degenerate with respect to ℓ while each set of states associated

with a particular orbital angular momentum ℓ is split as a doublet of degenerate

states labelled by the quantum numbers nℓjm. The degeneracy with respect to the

total angular momentum projection quantum number m remains and hence each level

with total angular momentum j is (2j + 1)−fold degenerate. The spin-orbit splitting

leads to subshells with a given j−level accommodating up to 2j+1 protons or neutrons.
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1.6. Nuclear Pairing Interactions

It is remarkable that nuclei having even numbers of protons and neutrons, so called

even-even nuclei are always found to have zero nuclear angular momentum i.e. I = 0.

NB. in nuclear physics the total angular momentum J = L+S is nevertheless usually

referred to as the nuclear spin and designated by the letter I. So called odd-even and

even-odd nuclei always have half-integer nuclear spin while odd-odd nuclei always have

integer nuclear spin. It would appear that even numbers of neutrons or protons pair to

produce a lowest energy state that has nuclear spin I = 0. Indeed, Racah, showed that

a strong short range nuclear force, such as a delta type force, leads to such a pairing.

It is this feature that is the key to predicting the nuclear spin of the groundstates of

nuclei. If there are an even number of protons or neutrons in a given orbital then those

orbitals make no contribution to the nuclear spin of the groundstate. Furthermore,

there is no nuclear spin contribution from closed shells.

1.6.1. Seniority and Pairing Interactions.

Racah introduced the concept of seniority in both atomic and nuclear physics

(and indeed also in superconductivity where pairing is also important). Racah showed

that for a strong pairing interaction such as occur in nuclei states of lowest seniority

number v lie lowest. Thus in a configuration of identical nucleons, jN , the integer,

[N−v
2

], corresponds to the number of pairs of particles that are coupled to zero angular

momentum where

v =

{

0, 2, . . . , N N even

1, 3, . . . , N N odd
(1-14)

This has the consequence that in a configuration jN if N is even then the lowest state

will have zero angular momentum whereas if N is odd the angular momentum of the

lowest state will be J = j.

NB. In the case of atoms, where there is Coulomb repulsion between pairs of

electrons, states of maximal seniority lie lowest and hence in some respects nuclear

states are simpler than electronic states!

The angular momentum states J and seniority numbers for the identical particle

configurations jN are given for j = 1
2
, 3

2
, . . . , 7

2
in Table 1. For j = 5

2
, 7

2
we list just the

states up to N = j + 1
2
.

1.7. Nuclear Spin of Nuclei Groundstates

In atomic physics interest is almost entirely restricted to atomic effects involving

nuclei in their groundstates. A given isotope is characterized by the number of

neutrons,N , and number of protons,Z. Starting with Fig. 1-1 giving the ordering

of the nℓj quantum numbers for a single nucleon in an isotropic three-dimensional

harmonic oscillator potential together with the spin-orbit interaction we can determine

the nuclear spin of the groundstates of most nuclei. Let us now consider some

examples.
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Table 1-1. Angular momentum J and seniority numbers for some jN configurations.

jN J v N−v
2

(1
2
)0 0 0 0

(1
2
)1 1

2
1 0

(1
2
)2 0 0 1

(3
2
)0 0 0 0

(3
2
)1 3

2
1 0

(3
2
)2 0 0 1

2 2 0

(3
2
)3 3

2
1 1

(3
2
)4 0 0 2

(5
2
)0 0 0 0

(5
2
)1 5

2
1 0

(5
2
)2 0 0 1

2, 4 2 0

(5
2
)3 5

2
1 1

3
2
, 9

2
3 0

(7
2
)0 0 0 0

(7
2
)1 7

2
1 0

(7
2
)2 0 0 1

2, 4, 6 2 0

(7
2
)3 7

2
1 1

3
2
, 5

2
, 9

2
, 11

2
, 15

2
3 0

(7
2
)4 0 0 2

2, 4, 6 2 1

2, 4, 5, 8 4 0

1.7.1. Nuclear Spin of H Isotopes.

Hydrogen has three well-known isotopes, hydrogen, 1
1H, deuterium, 2

1H, and

tritium, 3
1H. Hydrogen involves a single proton which may be assigned to the (1s1

2
)1
p

configuration and hence 1
1H has a nuclear spin I = 1

2
. Deuterium has a single proton

and neutron and hence the nuclear groundstate configuration is (1s1
2
)1
p(1s1

2
)1
n The

nuclear spin results from the coupling of two 1
2

spins to produce I = 0, 1. Experiment

shows that the groundstate has I = 0. Finally, tritium has a single proton and two



Magnetic and Hyperfine Interactions 7

neutrons and hence the nuclear configuration (1s1
2
)1
p(1s1

2
)2
n. The two neutrons close

the 1s1
2

shell and hence make no contribution to the nuclear spin and thus the nuclear

spin of the tritium nucleus is I = 1
2
, the same as for hydrogen. Note that in each case

the groundstate has even parity.

1.7.2. Nuclear Spin of He Isotopes.

The two principal isotopes of helium are 4
2He and 3

2He. For the more abundant

isotope, 4
2He, we have the nuclear configuration (1s1

2
)2
p(1s1

2
)2
n and both shells are closed

and hence the nuclear spin is I = 0 whereas for 3
2He we have the nuclear configuration

(1s1
2
)2
p(1s1

2
)1
n and hence a nuclear spin of I = 1

2
.

1.7.3. Silicon Isotopes.

Silicon has three stable isotopes, {2814Si (92.23%), 29
14Si (4.67%), 30

14Si (3.10%)}.
Two of the isotopes are even-even nuclei and hence both have nuclear spin and parity

I = 0+. All three isotopes have Z = 14 and hence the 14 protons occur in the proton

configuration (1s2
1
2

1p4
3
2

1p2
1
2

1d6
5
2

). In practice we will normally omit all closed shells

except for the highest and thus write the configuration as simply (1d6
5
2

)p. Since the

proton number is even it follows that the protons make no contribution to the nuclear

spin. Fourteen of the neutrons go into the same type of configuration as the protons

with the fifteenth neutron occupying the (2s1
2
)n orbital. Thus the nuclear spin of 29

14Si

is I = 1
2

+
.

The above observations are of significance in considering the possibility of using

silicon in quantum computing. Only the 29
14Si nuclei will respond to an external

magnetic field. Isotopically pure {2814Si with nuclear spin Ip = 0+ gives no response

to magnetic fields. Phosphorus has one stable isotope 31
15P with one unpaired proton

in the 2s1
2

shell and hence nuclear spin Ip = 1
2

+
. Noting these facts Kane (Nature

393,133 (1998)) has proposed building a quantum computer using 28
14Si doped with31

15P .

At the time of writing this is a very active field of research. To find out more go to

google.com and search “quantum computing”+Kane.

1.7.4. Rubidium Isotopes.

Rubidium has two stable isotopes, 85
37Rb (72.16%), 87

37Rb (27.83%)†. The two

nuclei are odd-even with the neutrons making no contribution to the nuclear spin.

The first 28 protons go into filling closed shells leaving a further nine protons to be

distributed among the 2p3
2

and 1f5
2

orbitals. Eight of the protons will pair to produce

no contribution to the nuclear spin leaving one unpaired proton. Experimentally it is

found that for 85
37Rb the nuclear spin is Ip = 5

2

−
while for 87

37Rb I
p = 3

2

−
. These results

† Actually the isotope 87
37Rb is slightly unstable with a half-life of t 1

2

= 4.75× 1010y.
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show some of the limitations of the simple nuclear shell model, but as always, final

appeal must be made to experiment. ‡
The rubidium isotopes play a key role in studies of Bose-Einstein Condensation

(BEC). Rubidium atoms behave as bosons since their nuclear spins are half-integer

but the number of electrons is odd and hence the nett electron angular momentum J

will necessarily be half-integer. The total angular momentum of the atom F comprises

the vector addition of the nuclear spin I and electronic angular momentum J such

that

F = J + I (1-15)

F is thus necessarily an integer and the rubidium atoms behave as bosons.

‡ For an excellent data base on properties of isotopes go to http://ie.lbl.gov/education/isotopes.htm or
to http://www.webelements.com/webelements/elements/text/periodic-table/isot.html, the latter gives
the Periodic Table and nuclear magnetic moments which we will need later.



Magnetic and Hyperfine Interactions 9

Lecture 2

Pure mathematics is on the whole distinctly more useful than applied. For what is

useful above all is technique, and mathematical technique is taught mainly through

pure mathematics

G H Hardy

2. Notes on the Quantum Theory of Angular Momentum

Let us review some basic aspects of the quantum theory of angular momentum which

we will need in later lectures. In making practical calculations we must ultimately be

able to calculate matrix elements of interactions in suitable angular momenta bases.

NB We shall normally put h̄ = 1.

2.1. The basic commutation relations

Consider the components, Jx, Jy and Jz of the angular momentum vector J. Under

commutation

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy (2-1)

States that are simultaneous eigenfunctions of J2 and Jz will be designated in Dirac’s

bra notation as |JM〉. We have the standard angular momentum operator relations

J2|JM〉 = J(J + 1)|JM〉 (2-2a)

Jz|JM〉 = M |JM〉 (2-2b)

J±|JM〉 = [J(J + 1)−M(M ± 1)]
1
2 |JM ± 1〉 (2-2c)

where

J± = Jx ± iJy (2-3)

are the usual angular momentum ladder operators.

Recall that for a given eigenvalue J there are 2J + 1 values of the M quantum

number

M = −J, J − 1, . . . , J − 1, J (2-4)

and that

J+|JJ〉 = 0 J−|J − J〉 = 0 (2-5)
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2.2. Coupling Angular Momentum

It is a common problem in the quantum theory of angular momentum to need to couple

together two ket states, say |j1m1〉, |j2m2〉 to produce coupled states |(j1j2)JM〉. Thus

to have

|j1m1〉|j2m2〉 =
∑

J,M

〈JM |m1m2〉|(j1j2)JM〉 (2-6a)

or inversely to uncouple coupled states via

|(j1j2)JM〉 =
∑

m1,m2

〈m1m2|JM〉∗|j1m1〉|j2m2〉 (2-6b)

The coupling coefficients or Clebsch-Gordan coefficients 〈j1m1j2m2|j1j2jm〉 represent

the elements of a unitary transformation that couples the uncoupled states

|j1m1〉|j2m2〉 to produce the coupled states |j1j2jm〉. i.e.,

|j1j2jm〉 =
∑

m1,m2

〈j1m1j2m2|j1j2jm〉|j1m1〉|j2m2〉 (2-7)

Such transformations arise, for example in relating basis states in the |SMSLML〉
scheme to the coupled basis states |SLJM〉 where M = MS +ML. Thus,

|SLJM〉 =
∑

MS ,ML

〈MSML|SLJM〉|SMSLML〉 (2-8)

Note that we shall often abbreviate the Clebsch-Gordan coefficient 〈j1m1j2m2|j1j2jm〉
to just 〈m1m2|j1j2jm〉.

2.3. An Example

Triply ionized thulium Tm3+ has as its groundstate the spectroscopic term 4f 12 3H6.

That is it has the quantum numbers S = 1, L = 5, and J = 6. The state is

(2J + 1) = 13-fold degenerate with the degenerate states being distinguished by the

quantum number M . These states could be described by the kets |SLJM〉 in so-called

Russell-Saunders or LS-coupling. Alternatively the states could be described by the

kets |SMSLMLM〉. These two sets of states correspond to two different bases that

are linked by the Clebsch-Gordan coupling coefficients as in Eq(2-8). For maximal M

we expect for the groundstate that

|(1, 5)66〉 ≡ eiφ|(1, 1)(5, 5)6〉 (2-9)

where the left-hand ket is in the |(SL)JM〉 scheme and the right-hand in the

|(SMS)(LML)M〉 scheme and eiφ is a phase factor which we will fix as unity.

The other states in the SLJM scheme will be various linear combinations of those

in the SMSLMLM scheme. Let us determine some of these linear combinations. First

note that

J± = L± + S± (2-10)
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Let us apply the lowering ladder operator to both sides of Eq(2-9), noting Eq(2-2c),

J−|(1, 5)66〉 =
√

6(6 + 1)− 6(6− 1)|(1, 5)65〉 =
√

12|(1, 5)65〉 (2-11a)

(L− + S−)|(1, 1)(5, 5)6〉 =
√

5(5 + 1)− 5(5− 1)|(1, 1)(5, 4)5〉
+
√

1(1 + 1)− 1(1− 0)|(1, 0)(5, 5)5〉
=
√

10|(1, 1)(5, 4)5〉+
√

2|(1, 0)(5, 5)5〉 (2-11b)

Equating Eqs (2-11a) and (2-11b) gives

|(1, 5)65〉 =
1√
6

[√
5|(1, 1)(5, 4)5〉+ |(1, 0)(5, 5)5〉

]

(2-12)

2.4. Clebsch-Gordan Coefficients

Clebsch-Gordan coefficients may be expressed precisely as

〈m1m2|j1j2jm〉 = δm1+m2,m

√

(2j + 1)(j1 + j2 − j)! (j1 −m1)! (j2 −m2)! (j +m)! (j −m)!

(j1 + j2 + j + 1)! (j + j1 − j2)! (j − j1 + j2)! (j1 +m1)! (j2 +m2)!

×
∑

z

(−1)j1−m1−z (j1 +m1 + z)! (j + j2 −m1 − z)!
z! (j −m− z)! (j1 −m1 − z)! (j2 − j +m1 + z)!

(2-13)

2.5. Exercises

2-1. Obtain the expansion for |(1, 5)64〉
2-2. Use Eq(13) to obtain the values of the Clebsch-Gordan coefficients to give

an alternative derivation of Eq(2-12) via Eq(2-8).

2.6. The 3jm−Symbols

While Clebsch-Gordan coefficients possesses considerable symmetry a more symmet-

rical object was defined by Wigner and is now commonly known as the 3j−symbol or

3jm−symbol. The 3j−symbol is related to the Clebsch-Gordan coefficient by
(

j1 j2 j3
m1 m2 m3

)

= (−1)j1−j2−m3
〈m1m2|j1j2j3 −m3〉

√

(2j3 + 1)
(2-14)

The 3j−symbol is invariant with respect to an even permutation of its columns while

for odd permutations of its columns is multiplied by a phase factor equal to the sum

of the arguments in its top row. i.e.,
(

j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3
(

j2 j1 j3
m2 m1 m3

)

(2-15)

Furthermore, changing the sign of all three lower arguments results also in

multiplication by a phase factor equal to the sum of the arguments in its top row.

i.e.,
(

j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3
(

j1 j2 j3
−m1 −m2 −m3

)

(2-16)
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A 3j−symbol having all its m quantum numbers zero will be null unless j1 + j2 + j3
is even. Likewise any 3j−symbol having two identical columns will vanish unless

j1 + j2 + j3 is even.

The unitarity property of the Clebsch-Gordan coefficients lead directly to the

orthonormality conditions for the 3j−symbols

∑

j3,m3

(2j3 + 1)

(

j1 j2 j3
m1 m2 m3

)(

j1 j2 j3
m′

1 m′
2 m3

)

= δm1,m′

1
δm2,m′

2
(2-17a)

∑

m1,m2

(

j1 j2 j3
m1 m2 m3

)(

j1 j2 j ′3
m1 m2 m′

3

)

=
δj3,j′3δm3,m′

3
√

(2j3 + 1)
(2-17b)

Extensive tables exist such as those of Rotenberg, Bivins, Metropolis and Wooten,

”The 3 − j and 6 − j Symbols” Technology Press, Mass. (1959). I have a suite of

Maple programmes for evaluating 3jm−symbols as well as 6j− and 9j−symbols.

2.7. The 6j−symbols

The 6j−symbol is defined by the relation

〈(j1j2)j12, j3; jm|j1, (j2j3)j23; jm〉 =

(−1)j1+j2+j3+j
√

(2j12 + 1)(2j23 + 1)

{

j1 j2 j12
j3 j j23

}

(2-18)

The 6j−symbol may be evaluated by first expressing it as a sum over a triple product

of 3j−symbols and then using the fact that the 6j−symbol is independent of m to

produce a sum involving a single variable to finally yield
{

a b c

d e f

}

=

√

∆(abc)∆(aef)∆(dbf)∆(dec)

×
∑

z

(−1)z(z + 1)!

× [(z − a− b− c)!(z − a− e− f)!(z − d− b− f)!(z − d− e− c)!
× (a+ b+ d+ e− z)!(b+ c+ e+ f − z)!(a+ c+ d+ f − z)!]−1 (2-19)

where

∆(abc) = [(a+ b− c)!(a− b+ c)!(b+ c− 1)!/(a+ b+ c+ 1)!]
1
2 (2-19’)

etc. The 6j−symbol vanishes unless the four triangular conditions portrayed below

are satisfied.






◦
. .

. . . .

◦ ◦













◦ . . . ◦ . . . ◦










◦
. .

.

◦ . . . ◦













◦
. . .

◦ . . . ◦







(2-20)
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where for example a+ b >= c >= |a− b|.
The 6j−symbol is invariant with respect to any interchange of columns and also with

respect to the interchange of the upper and lower arguments of any two columns.The

6j−symbols satisfy the orthogonality condition

∑

j12

(2j12 + 1)(2j23 + 1)

{

j3 j j12
j1 j2 j23

}{

j3 j j12
j1 j2 j ′23

}

= δj23,j′23 (2-21)

2.8. The 9j−symbol

The 6j−symbol arose in discussing the coupling of three angular momentum. Clearly

more complex nj−symbols will arise for couplings involving more than three angular

momentum. The 9j−symbol may be defined as

〈(j1j2)j12, (j3j4)j34; j|(j1j3)j13, (j2j4)j24; j〉

=
√

(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)







j1 j2 j12
j3 j4 j34
j13 j24 j







(2-22)

The 9j−symbol may be expressed in terms of 6j−symbols as







a b c

d e f

g h i







=
∑

z

(−1)2z

{

a d g

h i z

}{

b e h

d z f

}{

c f i

z a b

}

(2-23)

The 9j−symbol is left invariant with respect to any even permutation of its rows or

columns or a transposition of rows and columns. Under an odd permutation of rows

or columns the symbol is invariant but for a phase factor equal to the sum of its

arguments. If one argument of the 9j−symbol is zero the symbol collapses to a single

6j−symbol viz.







a b c

d e f

g h 0







= δc,fδg,h
(−1)b+d+f+g

√

(2c+ 1)(2g + 1)

{

a b c

e d g

}

(2-24)

2.9. Tensor Operators

Our fundamental problem in these lectures will be to calculate matrix elements of

relevant interactions. To do this we need to be able to express the interactions in

terms of tensor operators as pioneered by Racah18−21 and outlined by Judd2 and

Edmonds17. The theory of tensor operators has a deep group theoretical basis which

we shall not consider here2,22,23. Here we follow Racah’s original introduction of tensor
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operators19. A irreducible tensor operator T(k), of rank k has (2k + 1) components

T (kq) where q = −k,−k + 1, . . . , k − 1, k which satisfy the commutation relations

[Jz, T (kq)] = qT (kq) (2-25a)

[J±, T (kq)] =
√

k(k + 1)− q(q ± 1)T (k, q ± 1) (2-25b)

Group theoretically this implies that the tensor operator components form a basis for

the (2k+ 1)−dimensional irreducible representation [k] of the rotation group in three

dimensions, SO(3). Furthermore they can be regarded as transforming like angular

momentum states |kq〉. As a result we can use standard angular momentum coupling

techniques to form coupled products of tensor operators. For a rank k = 1 tensor

operator we have, in terms of the Cartesian tensor components (Tx, Ty, Tz)

T
(1)
±1 =

∓√
2

(Tx ± iTy), T
(1)
0 = Tz (2-26)

Thus J is a tensor operator of rank k = 1 with components

J
(1)
0 = Jz, J

(1)
±1 = ± J∓√

2
(2-27)

2.10. The Coulomb Interaction and Tensor Operators

The matrix elements of the N−particle repulsive Coulomb interaction

Hc =

N
∑

i<j

e2

rij
(2-28)

play an important role in atomic physics. The interaction between each pair of

electrons may be expanded in terms of Legendre polynomials of the cosine of the

angle ωij between the vectors from the nucleus to the two electrons as

e2

rij
= e2

∑

k

rk<
rk+1
>

Pk(cos ωij) (2-29)

where r< indicates the distance from the nucleus of the nearer electron and r> the

distance from the nucleus to the further away electron. Using the spherical harmonic

addition theorem24

Pk(cos ωij) =
4π

2k + 1

∑

q

Y ∗
kq(θi, φi)Ykq(θj, φj)

=
∑

q

(−1)q(C
(k)
−q )i(C

(k)
q )j

= (C
(k)
i ·C

(k)
j ) (2-30)

where the C
(k)
q are defined in terms of the usual spherical harmonics, Ykq as

C(k)
q =

(

4π

2k + 1

)

Ykq (2-31)

The C
(k)
q are the components of a rank k tensor operator C(k).
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2.11. The Wigner-Eckart Theorem for SO(3)

The key for calculating the matrix elements of tensor operators acting between angular

momentum states comes from the Wigner-Eckart theorem as applied to SO(3). Here

we will simply state the theorem. Detailed derivations can be found elsewhere2,17,22,23.

The m−dependence of the matrix elements of the tensor operator component T
(k)
q in

the jm scheme is given by

〈αjm|T (k)
q |α′j ′m′〉 = (−1)j−m

(

j k j ′

−m q m′

)

〈αj||T (k)||α′j ′〉 (2-32)

The important point to note is that the entire dependence of the matrix element on

the m projection quantum numbers is encased in a phase factor and a 3jm−symbol.

The quantity 〈αj||T (k)||α′j ′〉 is a reduced matrix element which is independent of the

m quantum numbers. The numbers α and α′ stand for any other descriptors required

to complete the description of the states.

Note that the 3jm−symbol will vanish and hence render the matrix element null

unless

j + j ′ >= k >= |j − j ′| and m−m′ = q (2-33)

2.12. Examples of Reduced Matrix Elements

Some reduced matrix elements may be readily determined. Consider the reduced

matrix element 〈αj||J (1)||α′j ′〉. We first note that

〈αjm|Jz|α′j ′m′〉 = mδ(α, α′)δ(j, j ′)δ(m,m′) (2-34)

Choosing m = m′ = 1
2

and q = 0 we have from Eq(2-32)

〈αj 1
2
|J (1)

0 |α′j ′ 1
2
〉 = 1

2
δ(α, α′)δ(j, j ′) = (−1)j−

1
2

(

j 1 j

−1
2

0 1
2

)

〈αj||J (1)||αj〉 (2-35)

The 3jm−symbol may be expressed explicitly in terms of its arguments2,17 and the

result

〈αj||J (1)||αj〉 = δ(α, α′)δ(j, j ′)
√

j(j + 1)(2j + 1) (2-36)

obtained. In an exactly similar way

〈αL||L(1)||α′L′〉 = δ(α, α′)δ(L,L′)
√

L(L+ 1)(2L+ 1) (2-37a)

and

〈αS||S(1)||α′S ′〉 = δ(α, α
√

S(S + 1)(2S + 1) (2-37b)

With somewhat greater difficulty2

〈αℓ||C(k)||α′ℓ′〉 = δ(α, α′)(−1)ℓ
√

(2ℓ+ 1)(2ℓ′ + 1)

(

ℓ k ℓ′

0 0 0

)

(2-37c)
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2.13. Coupled Tensor Operators

We have noted the close connection between the transformation properties of tensor

operators and angular momentum states. Consider two tensor operators T(k1 and

U(k2 . We can define a coupled tensor operator X(k1k2;K) via

Xk1k2;K
Q =

∑

q1,q2

T (k1)
q1

U (k2)
q2

< k1q1k2q2|k1k2;KQ > (2-38)

Explicit evaluation of the Clebsch-Gordan coefficient for the case of K = 0 leads to

[T(k)U(k)]00 =
(−1)k

√

(2k + 1)

∑

q

(−1)−qT (k)
q U

(k)
−q (2-39)

The scalar product of two tensor operators is defined as

(T(k) ·U(k)) =
∑

q

(−1)qT (k)
q U

(k)
−q (2-40)

It follows from Eqs.(2-39) and (2-40) that

[T(k)U(k)]00 =
(−1)k

√

(2k + 1)
(T(k) ·U(k)) (2-41)

2.14. Matrix Elements of Tensor Operators

Henceforth we shall often write simply X(K) rather than X(k1k2;K) for a coupled tensor

operator. It follows immediately from the Wigner-Eckart theorem that

〈αj1j2JM |X (K)
Q |α′j ′1j

′
2J

′M ′〉

= (−1)J−M
(

J K J ′

−M Q M

)

〈αj1j2J‖X (K)‖α′j ′1j
′
2J

′〉 (2-42)

Our problem is now to evaluate the reduced matrix element in Eq.(2-42). Basically

this is done by an uncoupling of the bra and ket states and of the tensor operator

followed by appropriate recouplings and summations. For the details I refer you to

the books of Judd2 and of Edmonds17.

If T(k) and U(k) act separately on parts 1 and 2 of a system such as in spin and

orbit spaces or on different particles, or sets of particles, then we obtain the result

〈αj1j2J‖X (K)‖α′j ′1j
′
2J

′〉 =
∑

α”

< αj1‖T (k1)‖α”j ′1 > 〈α”j2‖U (k2)‖α′j ′2〉

×
√

(2J + 1)(2K + 1)(2J ′ + 1)







j1 j ′1 k1

j2 j ′2 k2

J J ′ K







(2-43)
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We can specialize the above result for K = 0 to obtain the scalar product as

〈αj1j2JM |(T(k) ·U(k))|α′j ′1j
′
2J

′M ′〉

= δJ,J ′δM,M ′(−1)j
′

1
+j2+J

{

j ′1 j ′2 J

j2 j1 k

}

×
∑

α”

〈αj1‖T (k)‖α”j ′1〉〈α”j2‖U (k)‖α′j ′2〉 (2-44)

The action of an operator T(k) acting on part 1 of a system can be found by putting

k2 = 0 in Eq.(2-43) to yield

〈αj1j2J‖T (k)‖α′j ′1j
′
2J

′〉 = δj2,j′2(−1)j1+j2+J
′+k
√

(2J + 1)(2J ′ + 1)

{

J k J ′

j ′1 j2 j1

}

× < αj1‖T (k)‖α′j ′1 > (2-45)

while the action on part 2 is found by putting k1 = 0 in Eq.(2-43) to yield

〈αj1j2J‖U (k)‖α′j ′1j
′
2J

′〉 = δj1,j′1(−1)j1+j
′

2
+J+k

√

(2J + 1)(2J ′ + 1)

{

J k J ′

j ′2 j1 j2

}

× 〈αj2‖U (k)‖α′j ′2〉 (2-46)

A weaker result applicable to both cases where the operators act either on different

parts of a system or indeed the same system may be derived to give

〈αJ‖X (K)‖α′J ′〉 = (−1)J+K+J ′
√

(2K + 1)
∑

α”,J”

{

k2 K k1

J J” J ′

}

× 〈αJ‖T (k1)‖α”J”〉〈α”J”‖U (k2)‖α′J ′〉 (2-47)

The results given by Eqs. (2-42) to (2-47) form the basis for all subsequent applications

of the theory of tensor operators.

2.15. Some Special 3nj−symbols

For subsequent work it is useful to collect together a number of special cases of

3nj−symbols. A much fuller set can be found in Edmonds17. Beware, elsewhere

some of the tabulations are erroneous!

(

j j 0

m −m 0

)

=
(−1)j−m√

2j + 1
(2-48a)

(

j k j

−j 0 j

)

=
(2j)!

√

(2j − k)!(2j + k + 1)!
(2-48b)

(

j 1 j

−m 0 m

)

= (−1)j−m
m

√

j(2j + 1)(j + 1)
(2-48c)
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{

j1 j2 j3
j2 j1 1

}

= (−1)j1+j2+j3+1 [−j1(j1 + 1) + j2(j2 + 1) + j3(j3 + 1)]
√

4j1(j1 + 1)(2j1 + 1)j2(j2 + 1)(2j2 + 1)
(2-49a)

{

j1 j2 j3
j2 − 1 j1 1

}

= (−1)j1+j2+j3

×
√

2(j1 + j2 + j3 + 1)(j1 + j2 − j3)(j2 + j3 − j1)(j1 − j2 + j3 + 1)

2j1(2j1 + 1)(2j1 + 2)(2j2 − 1)2j2(2j2 + 1)

(2-49b)

Let us now turn to some practical applications of the preceding formalism.

2.16. The Zeeman effect - Weak field case

Consider a magnetic field Bz directed along the z−axis and a set of states |αSLJM >

associated with a spectroscopic term 2S+1L. The presence of the magnetic field adds

to the Hamiltonian a term

Hmag = −Bzµz = Bzµ0[Lz + gsSz] (2-50)

where gs ∼= 2.0023. In terms of tensor operators we need to evaluate the matrix

elements of the operator L
(1)
0 + gsS

(1)
0 . Consider first the diagonal matrix elements

〈αSLJM |L(1)
0 + gsS

(1)
0 |αSLJM〉

Application of the Wigner-Eckart theorem gives

〈αSLJM |L(1)
0 + gsS

(1)
0 |αSLJM〉

= (−1)J−M
(

J 1 J

−M 0 M

)

〈αSLJ‖L(1) + gsS
(1)‖αSLJ〉

=
M

√

J(J + 1)(2J + 1)
〈αSLJ‖L(1) + gsS

(1)‖αSLJ〉 (2-51)

Use of Eq.(2-45) gives

〈αSLJ‖gsS(1)‖αSLJ〉

= gs(−1)S+L+J+1(2J + 1)

{

J 1 J

S L S

}

〈αS‖S(1)‖αS〉 (2-52a)

Use of Eq.(2-46) gives

〈αSLJ‖L(1)‖αSLJ〉

= (−1)S+L+J+1(2J + 1)

{

J 1 J

L S L

}

〈αL‖L(1)‖αL〉 (2-52b)

The reduced matrix elements follow from Eq.(2-37a,b) and the 6j−symbols may be

evaluated explicitly. Combining terms we finally obtain

〈αSLJM |Hmag|αSLJM〉 = Bzµ0Mg(SLJ) (2-53)
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where

g(SLJ) = 1 + (gs − 1)
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(2-54)

is the so-called Lande g−factor. Eq.(2-53) shows that for a weak magnetic field with

states of different J well separated the magnetic field will produce splittings linearly

dependent on the M quantum number. This is the so-called weak field Zeeman effect.

For a J = 1
2

level we obtain the pattern

MJ
1
2

. .
. ↑

J = 1
2

gµ0Bz

. . . ↓
−1

2

Note that we have not only determined the number of sublevels (two) but also the

magnitude of splitting. For a J = 1 level we obtain the pattern

MJ

1

. .
. ↑

J = 1 . . . 0
. . . ↓

−1

In this case we obtain three sublevels. In general we obtain (2J+1) sublevels. For

a system having an odd number of electrons we obtain an even number of sublevels

while for an even number of electrons we obtain an odd number of sublevels.

2.17. Off-diagonal matrix elements and the Zeeman effect

For a magnetic field in the z−direction the M−quantum number remains a good

quantum number. This is because we have preserved SO2 symmetry. However, Hmag

does not preserve SO3 symmetry - we have chosen a particular direction in 3−space.

The total angular momentum J is no longer a good quantum number. There exist

matrix elements ofHmag coupling states with ∆J = ±1. We first note that Jz = Lz+Sz
and hence Lz + gsSz = Jz + (gs − 1)Sz. But the matrix elements of Jz are diagonal in

J and hence to calculate the off-diagonal matrix elements we need only calculate the

off-diagonal matrix element of Sz as follows:

〈αSLJM |S(1)
0 |αSLJ + 1M〉

= (−1)J−M
(

J 1 J + 1

−M 0 M

)

〈αSLJ‖S(1)‖αSLJ + 1〉 (2-55)

Explicit evaluation of the 3j−symbol gives

(−1)J−M
(

J 1 J + 1

−M 0 M

)

= −
√

(J +M + 1)(J −M + 1)

(2J + 1)(J + 1)(2J + 3)
(2-56)
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Evaluation of the reduced matrix element in Eq.(2-55) using Eq.(2-37b) gives

〈αSLJ‖S(1)‖αSLJ + 1〉

= (−1)S+L+J
√

(2J + 1)(2J + 3)

{

J 1 J + 1

S L S

}

〈S‖S(1)‖S〉

= −
√

(S + L+ J + 2)(S + J + 1− L)(J + 1 + L− S)(S − J + L)

4(J + 1)
(2-57)

Combining Eqs. (2-56) and (2-57) in Eq.(2-55) finally yields

〈αSLJM |Hmag|αSLJ + 1M〉
= Bzµ0(gs − 1)

√

(J + 1)2 −M 2

×
√

(S + L+ J + 2)(S + J + 1− L)(J + 1 + L− S)(S − J + L)

4(J + 1)2(2J + 1)(2J + 3)
(2-58)

2.18. Calculation for a 3P Term

A 3P term has S = 1 and L = 1 from which we deduce that we can have

J = 0, 1and 2. In a free atom we expect the spin-orbit coupling to give rise to

the three spectroscopic levels:

3P2
3P1

3P0

For simplicity we will assume gs = 2. From Eq.(2-54) we find

g(3P2) =
3

2
g(3P1) =

3

2

(Recall the diagonal matrix element for a state with MJ = 0.) The off-diagonal matrix

elements follow from Eq. (2-58) and we can obtain separate matrices, one for each

value of MJ . The matrices for MJ and −MJ differ only in the sign of the diagonal

elements which is just the sign of MJ . In units of µ0Bz we obtain the following

matrices:

MJ = ±2
(

|3P2± 2〉
〈3P2± 2| ±3

)

(2-59a)

MJ = ±1

(

|3P2± 1〉 |3P1± 1〉
〈3P2± 1| ±3

2
1
2

〈3P1± 1| 1
2

±3
2

)

(2-59b)

MJ = 0









|3P20〉 |3P10〉 |3P00〉
〈3P20| 0

√
3

3
0

〈3P10|
√

3
3

0
√

6
3

〈3P00| 0
√

6
3

0









(2-59c)

The effect of the off-diagonal matrix elements is to mix states of different J and to

lead to level shifts non-linear in MJ .
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2.19. Strong Magnetic Fields and the Paschen-Back Effect

If the external magnetic field is strong and the energy separation of the different J

states small then there will be strong J−mixing. So far we have considered states

in an |SLJM〉 basis. The calculation of energy levels requires that we add to the

above matrices the other terms in the Hamiltonian such as the Coulomb and spin-

orbit interactions. In the event of a very strong magnetic field we may consider states

in a |SLMSML〉 basis. In that case we have the matrix elements

〈αSLMSML|Hmag|αSLMSML〉
= µ0Bz〈αSLMSML|L(1)

0 + gsS
(1)
0 |αSLMSML〉

= µ0Bz[ML + gsMS] (2-60)

where MJ = MS + ML. For the states |3PMSML〉, taking gs = 2 we have, again in

units of µ0Bz:

MJ = ±2
(

|3P ± 1± 1〉
〈3P ± 1± 1| 3

)

(2-61a)

MJ = ±1

(

|3P10〉 |3P01〉
〈3P10| 2 0

〈3P01| 0 1

)

(2-61b)

MJ = 0









|3P1− 1〉 |3P − 11〉 |3P00〉
〈3P1− 1| 1 0 0

〈3P − 11| 0 −1 0

〈3P00| 0 0 0









(2-61c)

We note, as expected these matrices are diagonal. Their eigenvalues are precisely the

eigenvalues that would be obtained if the matrices in Eq.(59) were diagonalised. This

gives a method of checking Zeeman matrices calculated in the |SLJM〉 basis. Upon

diagonalisation we must obtain the corresponding values found in the |SLMSML〉
basis.
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Lecture 3

He is rather a good mathematician, but he will never be as good as Schottky.

G Frobenius, in a letter recommending the appointment of David Hilbert at

Gottingen

3. Introduction

We now try to use the ideas introduce in the previous lecture to the calculation of

interactions in some one- and two-electron systems. Firstly, we consider the Coulomb

repulsion in two-electron systems, secondly the spin-orbit interaction in one- and

two-electron systems and thirdly, intermediate coupling and its effect on the Lande

g−factors.

3.1. States of Two-electron Systems

Before starting to calculate matrix elements we need to choose a suitable angular

momentum basis. The Coulomb repulsion operator for an N−electron system,

Hc = e2
∑

i<j

1

rij
, (3-1)

commutes with the angular momentum operators

S =

N
∑

i=1

si and L =

N
∑

i

li (3-2)

with the consequence that the matrix elements of Hc are diagonal in the SLJM and

SMSLML schemes and independent of the M quantum numbers.

For a two-electron system say nℓn′ℓ′ the total orbital quantum number L takes on

the range of values,

L = ℓ+ ℓ′, ℓ+ ℓ′ − 1, . . . , |ℓ− ℓ′|, (3-3)

while the total spin S has just the two values,

S = 1, 0. (3-4)

Thus we obtain triplet (S = 1) and singlet (S = 0) spin states. For the special case

of equivalent electrons where n = n′ and ℓ = ℓ′ we must apply the Pauli Exclusion

Principle which in this case amounts to excluding all values of S, L except those where

L+ S is even. Thus for the 4f 2 configuration we have the spectroscopic terms

3(PFH) +1 (SDGI) (3-5)

whereas for the 4f5f configuration the terms are

3,1(SPDFGHI) (3-6)
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and in the 4f5d configuration

3,1(PDFGH) (3-7)

Recall that spectroscopists use the somewhat bizarre, but historical letter notation for

orbital angular momentum integers, L,

L = 0 1 2 3 4 5 6 7 . . .

S P D F G H I K . . .

with the orbital angular momentum of single electrons being represented by the

corresponding lower case letters. In some cases we will suppress the principal quantum

number n. Thus f 2 will stand for a generic configuration involving a pair of f orbitals

having the same principal quantum number whereas ff ′ denotes a pair of f orbitals

having different principal quantum numbers.

3.2. The Central Field Approximation

For N electrons moving about a point nucleus of charge Ze we have the approximate

non-relativistic Hamiltonian

H =
N
∑

i=1

(

p2
i

2m
− Ze2

ri

)

+
N
∑

i<j

e2

rij
(3-8)

In terms of the central field approximation we may consider each electron to be moving

independently in the field of the nuclear charge and a spherically averaged potential

fields due to each of the other electrons. Hence each electron may be said to move

in a spherically symmetric potential −U(ri)/e. The Hamiltonian for the central field,

Hcf , becomes

Hcf =
N
∑

i=1

[

p2
i

2m
+ U(ri)

]

. (3-9)

The difference, H −Hcf may now be treated as a perturbation potential

H −Hcf = V =

N
∑

i=1

[

−Ze
2

ri
− U(ri)

]

+

N
∑

i<j

e2

rij
(3-10)

Schrödinger’s equation for the central field becomes

N
∑

i=1

[

p2
i

2m
+ U(ri)

]

Ψ = EcfΨ (3-11)

and can be separated by choosing a solution such that

Ψ =
N
∏

i=1

ϕi(a
i) and Ecf =

N
∑

i=1

Ei (3-12)
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Each electron moving in the central field, U(ri) will then satisfy equations of the type

[

p2

2m
+ U(r)

]

ϕ(ai) = E(ai)ϕ(ai) (3-13)

where(ai) represents a set of one-electron quantum numbers (nsmsℓmℓ) which specify

the state of the electron in the central field. A further separation of variables can

be made by introducing polar coordinates (θ, φ, r) and separating the one-electron

eigenfunctions into their angular and radial parts to give for bound states

ϕ(ai) = r−1Rnℓ(r)Yℓmℓ
(θ, φ) (3-14)

Let us introduce a spin coordinate, σ, which may equal ±1
2
, and a spin function

δ(ms, σ) satisfying the orthonormality relation

∑

σ

δ(ms, σ)δ(m′
s, σ) = δ(ms, m

′
s) (3-15)

so that (3-14) becomes

ϕ(nℓmℓms) = δ(ms, σ)r−1Rnℓ(r)Yℓmℓ
(θ, φ) (3-16)

and

Ψ =
N
∏

i=1

ϕ(αi) (3-17)

where now αi represents the quantum number quartet (nℓmlms) associated with the

i− th electron.

Taking into account the Pauli exclusion principle we must construct totally

antisymmetric wavefunctions to give

Ψ =
1√
N !

N
∑

p

(−1)pPϕ1(α
1)ϕ2(α

2) . . . ϕN(αN ) (3-18)

where P represents a permutation of the spin and spatial coordinates of a pair of

electrons and p is the parity of the permutation with the summation extending over

all N ! permutations of the N−electron coordinates. In determinantal form (3-18)

becomes

Ψ =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1(α
1) ϕ2(α

1) . . . ϕN(α1)

ϕ1(α
2) ϕ2(α

2) . . . ϕN(α2)

. . . . . . . . . . . .

ϕ1(α
N) ϕ2(α

N) . . . ϕN(αN)

∣

∣

∣

∣

∣

∣

∣

∣

(3-19)
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3.3. Two-Electron Antisymmetrized States in LS−Coupling

Starting with Eq(3-19) for N = 2 we may write the antisymmetrized eigenfunction

for two electrons whose angular momentum are LS−coupled as the bra vector

〈naℓa, nbℓb;SL| =
1√
2

(〈na1ℓa1, nb2ℓb2;SL| − 〈na2ℓa2, nb1ℓb1;SL|) (3-20)

where the indices 1 and 2 refer to the coordinates of the first and second electron

respectively and for brevity we have suppressed the spin angular momenta. The

second eigenstate in (3-20) differs from that of the first by an odd permutation of the

electron coordinates relative to the quantum numbers. We can recouple the angular

momenta of the second eigenstate to produce

〈naℓa, nbℓb;SL| =
1√
2

(

〈na1ℓa1, nb2ℓb2;SL| − (−1)sa+sb+ℓa+ℓb+S+L〈nb1ℓb1, na2ℓa2;SL|
)

(3-21)

If naℓa = nbℓb = nℓ the antisymmetric bra vector may be taken as

〈nℓ, nℓ;SL| = 〈(nℓ)2;SL| S + L even (3-22)

Likewise for the antisymmetrized ket vector of another two-electron configuration

we may write the analogue of (3-21) as

|ncℓc, ndℓd;SL〉 =
1√
2

(

|nc1ℓc1, nd2ℓd2;SL〉 − (−1)sc+sd+ℓc+ℓd+S+L|nd1ℓd1, nc2ℓc2;SL〉
)

(3-23)

and of (3-22) as

|nℓ, nℓ;SL〉 = |(nℓ)2;SL〉 S + L even (3-24)

3.4. Two-Electron Coulomb Matrix Elements

For a two-electron system we have from (3-21) and (3-23)

〈naℓa, nbℓb;SL|e2/r12|ncℓc, ndℓd;SL〉
= 1

2
[〈naℓa, nbℓb;SL|e2/r12|ncℓc, ndℓd;SL〉+ 〈naℓa, nbℓb;SL|e2/r12|ndℓc, ncℓc;SL〉

+(−1)ℓa+ℓb+S+L
(

〈naℓa, nbℓb;SL|e2/r12|ndℓc, ncℓc;SL〉+ 〈nbℓb, naℓa;SL|e2/r12|ncℓc, ndℓd;SL〉
)]

(3-25)

Owing to the symmetry of e2/r12 (3-25) simplifies to

〈naℓa, nbℓb;SL|e2/r12|ncℓc, ndℓd;SL〉
= 〈naℓa, nbℓb;SL|e2/r12|ncℓc, ndℓd;SL〉+ (−1)ℓa+ℓb+S+L〈naℓa, nbℓb;SL|e2/r12|ndℓc, ncℓc;SL〉

(3-26)
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We can now write (3-26) in tensorial form as

〈naℓa, nbℓb;SL|e2/r12|ncℓc, ndℓd;SL〉

= e2
∑

k

[

〈naℓa, nbℓb;SL
∣

∣

∣

∣

rk<
rk+1
>

(C
(k)
1 · C

(k)
2 )

∣

∣

∣

∣

ncℓc, ndℓd;SL〉

+(−1)ℓa+ℓb+S+L〈naℓa, nbℓb;SL
∣

∣

∣

∣

rk<
rk+1
>

(C
(k)
1 · C

(k)
2 )

∣

∣

∣

∣

ndℓd, ncℓc;SL〉
]

(3-27)

=
∑

k

[

fk(ℓa, ℓb; ℓc, ℓd)R
k(naℓa, nbℓb;ncℓc, ndℓd) + gk(ℓa, ℓb; ℓd, ℓc)R

k(naℓa, nbℓb;ncℓc, ndℓd)
]

(3-28)

where fk and gk represent the angular parts of the matrix elements and the Rk′s the

Slater radial integrals. The angular factors can be evaluated by application of (2-44),

〈αj1j2JM |(T(k) ·U(k))|α′j ′1j
′
2J

′M ′〉

= δJ,J ′δM,M ′(−1)j
′

1
+j2+J

{

j ′1 j ′2 J

j2 j1 k

}

×
∑

α”

〈αj1‖T (k)‖α”j ′1〉〈α”j2‖U (k)‖α′j ′2〉 (2-44)

to give

fk(ℓa, ℓb; ℓc, ℓd) = (−1)ℓa+ℓb+L〈ℓa‖C(k)
1 ‖ℓc〉〈ℓb‖C

(k)
2 ‖ℓd〉

{

ℓa ℓc k

ℓd ℓb L

}

(3-29a)

and

gk(ℓa, ℓb; ℓd, ℓc) = (−1)S〈ℓa‖C(k)
1 ‖ℓd〉〈ℓb‖C

(k)
2 ‖ℓc〉

{

ℓa ℓd k

ℓc ℓb L

}

(3-29b)

with the reduced matrix elements being given by (2-37c),

〈αℓ||C(k)||α′ℓ′〉 = δ(α, α′)(−1)ℓ
√

(2ℓ+ 1)(2ℓ′ + 1)

(

ℓ k ℓ′

0 0 0

)

(2-37c)

The Slater radial integrals are defined by

Rk(naℓa, nbℓb;ncℓc, ndℓd) = e2

∫ ∞

0

∫ ∞

0

rk<
rk+1
>

Rnaℓa(r1)Rnbℓb(r2)Rncℓc(r1)Rndℓd(r2)dr1dr2 (3-30)

When naℓa = ncℓc and nbℓb = ndℓd (3-28) simplifies to

〈naℓa, nbℓb;SL|e2/r12|naℓa, nbℓb;SL〉
=
∑

k

[

fk(ℓa, ℓb)F
(k)(naℓa, nbℓb) + gk(ℓa, ℓb)G

k(naℓa, nbℓb)
]

(3-31)

whereas

F (k)(naℓa, nbℓb) = Rk(naℓa, nbℓb;naℓa, nbℓb) (3-32a)
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and

G(k)(naℓa, nbℓb) = Rk(naℓa, nbℓb;nbℓb, naℓa) (3-32b)

The F (k)′s are known as direct integrals and are necessarily positive and decreasing

functions of k while the G(k)′s are known as exchange integrals and are positive and

G(k)/(2k + 1) is necessarily a decreasing function of k.

To avoid large denominators appearing in explicit calculations Condon and

Shortley24 have redefined the radial F (k) and G(k) integrals in terms of reduced radial

integrals Fk and Gk where

Fk =
F (k)

Dk

and
G(k)

Dk

(3-33)

where the Dk′s are given in their tables 16 and 26.

3.5. Exercises

3-1. Show that the electrostatic interaction between the configurations (nℓ)2 and

(naℓa, nbℓb) is given by

〈(nℓ)2;SL|e2/r12|naℓa, nbℓb;SL〉 =
√

2
∑

k

〈nℓ, nℓ;SL
∣

∣

∣

∣

rk<
rk+1
>

(C
(k)
1 · C

(k)
2 )

∣

∣

∣

∣

naℓa, nbℓb;SL〉

=
∑

k

fk(ℓ, ℓ; ℓa, ℓb)R
k(nℓ, nℓ;naℓa, nbℓb) (3-34)

where

fk(ℓ, ℓ; ℓa, ℓb) = (−1)ℓ+ℓa+L
√

2〈ℓ‖C(k)‖ℓa〉〈ℓ‖C(k)‖ℓb〉
{

ℓ ℓa k

ℓb ℓ L

}

(3-35)

3-2. Show that the electrostatic interaction between the configurations (nℓ)2 and

(n′ℓ′)2 is given by

〈(nℓ)2;SL|e2/r12|(n′ℓ′)2;SL〉 =
∑

k

fk(ℓ, ℓ; ℓ
′, ℓ′)Rk(nℓ, nℓ;n′ℓ′, n′ℓ′) (3-36)

where

fk(ℓ, ℓ; ℓ
′, ℓ′) = (−1)ℓ+ℓ

′+L〈ℓ‖C(k)‖ℓ′〉2
{

ℓ ℓ′ k

ℓ′ ℓ L

}

(3-37)

and

Rk(nℓ, nℓ;n′ℓ′, n′ℓ′) = G(k)(nℓ, n′ℓ′) (3-38)
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3.6. Coulomb Matrix Elements for the f 2 Electron Configuration

In the case of all the electrons being equivalent we have for the two-electron

configuration (nℓ)2

〈(nℓ)2;SL|e2/r12|(nℓ)2;SL〉 =
∑

k

fk(ℓ, ℓ)F
(k)(nℓ, nℓ) (S + L) even (3-39)

with

fk(ℓ, ℓ) = (−1)L〈ℓ‖C(k)‖ℓ〉2
{

ℓ ℓ k

ℓ ℓ L

}

(3-40)

For the f 2 configuration we have ℓ = 3 and the triangular conditions on the relevant

3jm− and 6j−symbols limit k to k = 0, 2, 4, 6. For the particular case of fN

configurations we also have

F0 = F (0)

F2 =
F (2)

225

F4 =
F (4)

1089

F6 =
25F (6)

184041
(3-41)

The following short MAPLE programme f2.map can evaluate (3-40)

read”njsym”;

fk:=proc()

local result,L;

for L from 0 to 6 do;

result:=CLS(3,0,L)*F0+CLS(3,2,L)*225*F2+CLS(3,4,L)*1089*F4

+CLS(3,6,L)*184041/25*F6;

lprint(‘L =‘,L,result);

end do;

end;

which may be run in MAPLE as

> read”f2.map”;

> fk();

‘L =‘, 0, F0+60*F2+198*F4+1716*F6

‘L =‘, 1, F0+45*F2+33*F4-1287*F6

‘L =‘, 2, F0+19*F2-99*F4+715*F6

‘L =‘, 3, F0-10*F2-33*F4-286*F6

‘L =‘, 4, F0-30*F2+97*F4+78*F6

‘L =‘, 5, F0-25*F2-51*F4-13*F6

‘L =‘, 6, F0+25*F2+9*F4+F6
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Let us write our Coulomb matrix elements in the form

E =
6
∑

k=0

fkF
(k)(nf, nf) =

6
∑

k=0

f kFk(nf, nf) (3-42a)

Racah21 has given a group-theoretical analysis of the Coulomb interaction for the fN

configurations rewriting the Coulomb matrix elements in the form

E =
3
∑

k=0

ekE
k (3-42b)

where

e0 = f 0

e1 =
9f 0

7
+
f 2

42
+
f 4

77
+

f 6

462

e2 =
143f 2

42
− 130f 4

77
+

35f 6

462

e3 =
11f 2

42
+

4f 4

77
− 7f 6

462
(3-43)

and

E0 = F0 − 10F2 − 33F4 − 286F6

E1 =
70F2 + 231F4 + 2002F6

9

E2 =
F2 − 3F4 + 7F6

9

E3 =
5F2 + 6F4 − 91F6

3
(3-44)

Conversely, we have

F0 =
7E0 + 9E1

7

F2 =
E1 + 143E2 + 11E3

42

F4 =
E1 − 130E2 + 4E3

77

F6 =
E1 + 35E2 − 7E3

462
(3-45)

We can readily change the f2.map programme to
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read”njsym”;

fk:=proc()

local result,L,F0,F2,F4,F6;

F0:=(7*E0+9*E1)/7;

F2:=(E1+143*E2+11*E3)/42;

F4:=(E1-130*E2+4*E3)/77;

F6:=(E1+35*E2-7*E3)/462;

for L from 0 to 6 do;

result:=CLS(3,0,L)*F0+CLS(3,2,L)*225*F2+CLS(3,4,L)*1089*F4

+CLS(3,6,L)*184041/25*F6;

lprint(‘L =‘,L,result);

end do;

end;

which may be run to give the output:-

> fk();

‘L =‘, 0, E0+9*E1

‘L =‘, 1, E0+33*E3

‘L =‘, 2, E0+2*E1+286*E2-11*E3

‘L =‘, 3, E0

‘L =‘, 4, E0+2*E1-260*E2-4*E3

‘L =‘, 5, E0-9*E3

‘L =‘, 6, E0+2*E1+70*E2+7*E3

Thus for the spectroscopic terms of the f 2 configuration we have for the triplet states

E(3H) = E0 − 9E3

E(3F ) = E0

E(3P ) = E0 + 33E3 (3-46a)

and for the singlets

E(1G) = E0 + 2E1 − 260E2 − 4E3

E(1D) = E0 + 2E1 + 286E2 − 11E3

E(1I) = E0 + 2E1 + 70E2 + 7E3

E(1S) = E0 + 9E1 (3-46b)

Note that the relative Coulomb energies of the triplets depends only on the coefficient

e3 of E3. This is indeed the case for the states of maximum multiplicity in all fN

configurations.
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3.7. The Spin-Orbit Interaction

The Coulomb interaction results in different SL terms having different energies but

does not depend on the total angular momentum J of the electron states. The spin-

orbit interaction,Hs−o, is a one-electron type operator of the form

Hs−o =
N
∑

i=1

ξ(ri)(si · li) (3-47)

where

ξ(ri) =
h̄2

2m2c2ri

dU(ri)

dri
(3-48)

The spin-orbit interaction is diagonal in the one-electron orbital quantum number ℓ

but not in the principal quantum number n. Hs−o commutes with J2 and Jz and is

thus diagonal in J and independent of MJ . It does not commute with L2 or S2 and

hence can couple states of different SL quantum numbers leading to a breakdown of

LS−coupling.

The spin-orbit coupling constant ζnℓ is constant for the states of a given

configuration and is defined as

ζnℓ =

∫ ∞

0

R2
nℓξ(r)dr (3-49)

For a single electron we have from (2-44)

〈sℓjm|ζnℓ(s · l)|sℓjm〉 = ζnℓ(−1)j+l+s
{

ℓ ℓ 1

s s j

}

〈sℓ‖(s · l)‖sℓ〉 (3-50)

The reduced matrix element can be evaluated by noting that

〈sℓ‖(s · l)‖sℓ〉 = 〈s‖s(1)‖s〉〈ℓ‖l(1)‖ℓ〉
=
√

s(s+ 1)(2s+ 1)ℓ(ℓ+ 1)(2ℓ+ 1) (3-51)

Explicit evaluation of the 6j−symbol in (3-50) combined with (3-51) leads to

〈sℓjm|ζnℓ(s · l)|sℓjm〉 = ζnℓ
j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)

2
(3-52)

Noting that j = ℓ± s leads to

〈sℓjm|ζnℓ(s · l)|sℓjm〉 =











ζnℓ
ℓ

2
j = ℓ+ s

−ζnℓ
ℓ+ 1

2
j = ℓ− s

(3-53)

Thus for a single electron we obtain a doublet with the lowest j lowest and a splitting

∆E of

∆E = ζnℓ
2ℓ+ 1

2
(3-54)
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For a two-electron configuration (nℓ)2 we can write, making use of (2-44),

〈(nℓ)2SLJM |Hs−o|(nℓ)2S ′L′JM〉

= 〈(nℓ)2SLJM |
2
∑

i=1

ζnℓ(s
(1)
i · l

(1)
i )|(nℓ)2S ′L′JM〉

= (−1)S
′+L+J

{

S S ′ 1

L′ L J

} 2
∑

i=1

〈s1s2S‖s(1)
i ‖s1s2S

′〉〈ℓ1ℓ2L‖l(1)i ‖ℓ1ℓ2L′〉 (3-55)

The reduced matrix elements may be evaluated by successive use of (2-45) and (2-46)

followed by (2-37a,b) and remembering that for two equivalent electrons S + L and

S ′ + L′ must be even to finally yield

〈(nℓ)2SLJM |Hs−o|(nℓ)2S ′L′JM〉
= (−1)S

′+L+J+12ζnℓ

×
√

s(s+ 1)(2s+ 1)ℓ(ℓ+ 1)(2ℓ+ 1)(2S + 1)(2S ′ + 1)(2L+ 1)(2L′ + 1)

×
{

S S ′ 1

L′ L J

}{

S 1 S ′

s s s

}{

L 1 L′

ℓ ℓ ℓ

}

(3-56)

3.8. Exercises

3-3. Write out a full derivation of (3-54) starting with (3-50).

2. Give all the steps in deriving (3-56).

3.9. Spin-orbit Matrices for f 2

We can implement (3-56) for the f 2 configuration by writing the MAPLE programme

spinorbit.map as

read”njsym”;

so:= proc(S, L, Sp, Lp, J)

local result;

result := combine(simplify(6*sqrt(14)*(-1)ˆ (Sp + L + J + 1)*

sqrt((2*S + 1)*(2*Sp + 1)*(2*L + 1)*(2*Lp + 1))*sixj(S, Sp, 1, Lp, L, J)*

sixj(S, Sp, 1, 1/2, 1/2, 1/2)*sixj(L, Lp, 1, 3, 3, 3)))

end proc

Thus to compute the matrix element 〈f 23P2|Hs−o|f 21D2〉 we have, after reading in

spinorbit.map,

> so(1,1,0,2,2);

3/2 21/2

By repeatedly running the above programme we can construct the spin-orbit

matrices for the f 2 configuration in terms of the spin-orbit coupling constant ζnf
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to obtain

(

J = 0 3P 1S

3P −1 −2
√

3
1S −2

√
3 0

)

(

J = 1 3P

3P −1
2

)









J = 2 3P 1D 3F

3P 1
2

3
2

√
2 0

1D 3
2

√
2 0 −

√
6

3F 0 −
√

6 −2









(

J = 3 3F

3F −1
2

)









J = 4 3F 1G 3H

3F 3
2

√
33
3

0

1G
√

33
3

0 −
√

30
3

3H 0 −
√

30
3

−3









(

J = 5 3H

3H −1
2

)

(

J = 6 3H 1I

3H 5
2

√
6

2

1I
√

6
2

0

)

3.10. Exercise

3-5 If you diagonalise the above matrices you obtain just three distinct eigenvalues

3 (4), −4 (3), −1
2

(4) where the bracketed numbers are the number of times each

eigenvalue occurs. Explain!

Hint:- You will need to think about (3-54) and jj−coupling.

3.11. Intermediate Coupling

To compute the combined effect of the Coulomb and spin-orbit interactions we need

to construct the energy matrices for Hc + Hs−o using the results of (107a,b) for the

Coulomb matrix elements and the above spin-orbit matrices to give:-

(

J = 0 3P 1S

3P E0 + 33E3 − ζ −2
√

3ζ
1S −2

√
3ζ E0 + 9E1

)

(

J = 1 3P

3P E0 + 33E3 − 1
2
ζ

)









J = 2 3P 1D 3F

3P E0 + 33E3 + 1
2
ζ 3

2

√
2ζ 0

1D 3
2

√
2ζ E0 − 2E1 + 286E2 − 11E3 −

√
6ζ

3F 0 −
√

6ζ E0 − 2ζ








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(

J = 3 3F

3F E0 − 1
2
ζ
)









J = 4 3F 1G 3H

3F E0 + 3
2
ζ

√
33
3
ζ 0

1G
√

33
3
ζ E0 + 2E1 − 260E2 − 4E3 −

√
30
3
ζ

3H 0 −
√

30
3
ζ E0 − 9E3 − 3ζ









(

J = 5 3H

3H E0 − 9E3 − 1
2
ζ
)

(

J = 6 3H 1I

3H E0 − 9E3 + 5
2
ζ

√
6

2
ζ

1I
√

6
2
ζ E0 + 2E1 + 70E2 + 7E3

)

Let us choose the following values (in cm−1) :=

E0 = 6501, E1 = 4882, E2 = 21, E3 = 454, ζ = 737

and diagonalize the above matrices. We obtain the following eigenvalues and

eigenvectors

−3 − 0.0282|3F4〉+ 0.1523|1G4〉+ 0.9879|3H4〉
2057 |3H5〉
4209 0.9985|3H6〉 − 0.0540|1I6〉
4764 .01321|3P2〉 − 0.1444|1D2〉 − 0.9894|3F2〉
6132 |3F3〉
6799 − 0.8634|3F4〉+ 0.4943|1G4〉 − 0.1009|3H4〉
10004 0.5037|3F4〉+ 0.8558|1G4〉 − 0.1175|3H4〉
17040 − 0.3059|3P2〉+ 0.9415|1D2〉 − 0.1415|3F2〉
20528 0.9964|3P0〉+ 0.0850|1S0〉
20962 0.0540|3H6〉+ 0.9985|1I6〉
21114 |3P1〉
22351 0.9520|3P2〉+ 0.3046|1D2〉 − 0.0317|3F2〉
50656 − 0.0850|3P0〉+ 0.9964|1S0〉

The above energy levels are in reasonable agreement with experiment though the
1I6 level is predicted significantly lower than observed. This observation led to the

introduction of the effective operator αL(L+1) for the lanthanides26. The explanation

of the origin of that operator was to come later27−29.
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3.12. Exercises

3-6. Calculate the correction to the groundstate Lande g−factor for Pr3+ due to

intermediate coupling.

3-7. Likewise calculate the correction for the level at 10004cm−1.
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Lecture 4

I find television very educating. Every time somebody turns on the set, I go into

the other room and read a book

Groucho Marx

4. Introduction

In this lecture I would like to discuss several coupling schemes that will be relevant

for subsequent discussions on hyperfine structure. The choice of a coupling scheme

amounts to a choice of a particular basis in which to describe efficiently, and simply,

the structure of a particular atomic configuration. Different coupling schemes are often

appropriate to different regions of the periodic table. Thus for light elements where

the Coulomb interactions dominant over the spin-orbit interaction the LS−coupling

scheme (or Russell-Saunders coupling) is favoured. In such a scheme the Coulomb

interactions are diagonal whereas the spin-orbit interactions can couple different LS

terms. For heavy elements the spin-orbit interaction becomes comparable, or greater

than, the Coulomb interaction and jj−coupling may be relevant. In other situations

the relevant strengths of various interactions may favour other coupling schemes which

we shall shortly explore.

4.1. Notes on jj−coupling

For a single electron, ℓ, the spin-orbit interaction follows from (3-53) and for ℓ = 3 we

have, in terms of ζnf , the two values

{

3
2

j = 7
2

−2 j = 5
2

(4-1)

The spin-orbit interaction commutes with j2 and jz and hence is diagonal in any

N−electron jj−coupled configuration jN leading to, for N = N+ +N− with

N+ <= j+ + 1
2
, N− <= j− + 1

2
,

〈jN+

+ j
N−

− JM |Hs−o|jN+

+ j
N−

− J ′M ′〉 = δJ,J ′δM,M ′ζnℓ

(

N+
ℓ

2
−N−

ℓ+ 1

2

)

(4-2)

For two f−electrons we have the three possible jj−coupled configurations

7
2

2
(+3), 5

2

2
(−4), 7

2
5
2

(−1
2
) (4-3)

where we have encased the corresponding spin-orbit interaction matrix elements, in

units of ζnf , in curved brackets (, ).
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Any jj−coupling ket |(s1ℓ1)j1(s2ℓ2)j2JM〉 may be expanded as a linear

combination of LS−coupled states |(s1s2)S(ℓ1ℓ2)LJM〉 by noting that

|(s1ℓ1)j1(s2ℓ2)j2JM〉 =

p×
∑

S,L

〈(s1s2)S(ℓ1ℓ2)LJ |(s1ℓ1)j1(s2ℓ2)j2J〉|(s1s2)S(ℓ1ℓ2)LJM〉 (4-4)

where the recoupling coefficients are given by

〈(s1s2)S(ℓ1ℓ2)LJ |(s1ℓ1)j1(s2ℓ2)j2J〉 =
√

[S, L, j1, j2]







s1 s2 S

ℓ1 ℓ2 L

j1 j2 J







(4-5)

and

p =

{

1 if j1 = j2 and ℓ1 = ℓ2√
2 otherwise

(4-6)

(cf. the modification of (3-22) and (3-23) for jj−coupling). The expansion coefficients

appearing on the rhs of (4-5) may be readily evaluated using the Maple programme

below

read”njsym”;

jjSL:=proc(j1,j2,S,L,J)

local result,p;

p:=1;

if (j1 <> j2) then p:=sqrt(2);

end if;

result:=simplify(p*sqrt((2*j1+1)*(2*j2+1)*(2*S+1)*(2*L+1))

*ninej(1/2,1/2,S,3,3,L,j1,j2,J));

end proc

leading to the transformation coefficients:-

(

J = 0 |3P0〉 |1S0〉
|(7

2
)2
0〉 −

√
21
7

2
√

7
7

|(5
2
)2
0〉 2

√
7

7

√
21
7

)

(

J = 1 |3P1〉
|(7

2
5
2
)1〉 1

)









J = 2 |3P2〉 |1D2〉 |3F2〉
|(7

2
)2
2〉 3

√
2

7
5
7

−
√

6
7

|(5
2
)2
2〉 −2

7
3
√

2
7

3
√

3
7

|(7
2

5
2
)2〉 3

√
3

7
−

√
6

7
4
7









(

J = 3 |3F3〉
|(7

2
5
2
)3 1

)









J = 4 |3F4〉 |1G4〉 |3H4〉
|(7

2
)2
4〉 2

√
66

21
3
√

2
7

−
√

15
21

|(5
2
)2
4〉 −2

√
3

21

√
11
7

√
330
21

|(7
2

5
2
)4〉

√
165
21

−2
√

5
7

4
√

6
21









(

J = 5 |3H5〉
|(7

2
5
2
)5〉 1

)
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(

J = 6 |3H6〉 |1I6〉
|(7

2
)2
6〉

√
42
7

√
7

7

|(7
2

5
2
)6〉

√
7

7
−

√
42
7

)

Suppose AJ is the jj → LS transformation matrix for a given J and BJ is a

matrix corresponding to some interaction calculated in a LS−coupling basis, then the

corresponding matrix CJ in the jj−coupling basis is given by the matrix multiplication

CJ = AJ ×BJ ×A−1
J (4-7)

For example, consider the spin-orbit matrix for the J = 2 states of f 2 that we found

earlier,

B2 =









J = 2 3P 1D 3F

3P 1
2

3
2

√
2 0

1D 3
2

√
2 0 −

√
6

3F 0 −
√

6 −2









and the jj → LS transformation matrix A2 for J = 2,

A2 =









J = 2 |3P2〉 |1D2〉 |3F2〉
〈(7

2
)2
2| 3

√
2

7
5
7

−
√

6
7

〈(5
2
)2
2| −2

7
3
√

2
7

3
√

3
7

〈(7
2

5
2
)2| 3

√
3

7
−

√
6

7
4
7









The triple product given in (4-7) may be readily evaluated in Maple using the

command “simplify(evalm(A&∗ C&∗ Aˆ (-1)))” to give









3
√

2
7

5
7

−
√

6
7

−2
7

3
√

2
7

3
√

3
7

3
√

3
7
−

√
6

7
4
7









×









1
2

3
2

√
2 0

3
2

√
2 0 −

√
6

0 −
√

6 −2









×









3
√

2
7

−2
7

3
√

3
7

5
7

3
√

2
7

−
√

6
7

−
√

6
7

3
√

3
7

4
7









=









3 0 0

0 −4 0

0 0 −1
2









which is exactly the result we found earlier in diagonalising the J = 2 spin-orbit

matrix.

It is perhaps interesting to consider the J = 2 energy matrix constructed in S3.11

as

B2 =









J = 2 3P 1D 3F

3P E0 + 33E3 + 1
2
ζ 3

2

√
2ζ 0

1D 3
2

√
2ζ E0 − 2E1 + 286E2 − 11E3 −

√
6ζ

3F 0 −
√

6ζ E0 − 2ζ








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If we now repeat the transformation (4-7) we obtain the transformation of the energy

matrix into the jj−coupling basis as





















J = 2 |(7

2
)22〉 |(5

2
)22〉 |(7

2

5

2
)2〉

〈(7

2
)22| E0 + 1

49
(−50E1 + 7150E2 + 319E3) 3

√
2

49
(−10E1 + 1430E2 − 121E3) 2

√
6

49
(5E1 − 715E2 + 176E3)

+3ζ

〈(5

2
)22| 3

√
2

49
(−10E1 + 1430E2 − 121E3) E0 + 6

49
(−6E1 + 858E2 − 11E3) 12

√
3

49
(E1 + 143E2 − 11E3)

−4ζ

〈(7

2

5

2
)2| 2

√
6

49
(5E1 − 715E2 + 176E3) 12

√
3

49
(E1 + 143E2 − 11E3) E0 + 3

49
(−4E1 + 572E2 + 275E3)

− 1

2
ζ





















Notice that whereas in the LS−basis the energy matrix had the electrostayic

interaction in diagonal form and the spin-orbit interaction had off-diagonal matrix

elements in the jj−coupling basis we have the opposite situation.

4.2. J1j−coupling

While most are familiar with the LS−coupling of Russell-Saunders and to a lesser

extent jj−coupling there are other important coupling schemes that find significant

applications in atomic physics. Here we consider the case of J1j−coupling. This

scheme is particulary relevant for electron configurations involving a core of the generic

type ℓN to which an inequivalent electron orbital ℓ′ is weakly coupled. In this case the

core is coupled to form states characterised by a set of quantum numbers, say S1L1J1.

The spin and orbital angular momentum quantum numbers of the inequivalent electron

(sℓ′) are coupled together to form states characterised by a total angular momentum

j. Finally,the angular momenta J1 and j are coupled together to form states of total

angular momentum J . The manner in which the electrons of the core are coupled to

form J1 need not be restricted to LS−coupling, although for the purposes of making

calculations in the J1j−coupling scheme it is usually simplest to consider the states

of the core in theLS−coupling basis.

For the purposes of labelling energy levels it is usual to give the designation of the

core level and the quantum numbers J1jJ . This coupling scheme may be considered

as a direct consequence of the strong binding of the core electrons and the weak

electrostatic interaction of the added electron with the core electrons. The separation

of the levels of a given J1j is a measure of the closeness of the physical coupling scheme

to that of J1jJ−coupling.

4.3. NdI and NdII energy levels and J1j−coupling

The low-lying energy levels of neutral neodymium, NdI, and singly ionised neodymium,

NdII, provide a good illustration of J1j−coupling †. The ground configurations are,

4f 46s2 and 4f 46s, respectively. The ground term of the 4f 46s2 configuration is 5I

with J1 = 4, . . . , 8. The energies, in cm−1, are given in Table4-1.

† There is a comprehensive data base at http://physics.nist.gov/cgi-bin/AtData/main asd which
provides lists of atomic energy levels, transition probabilities etc.
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Term J1 Level

(cm−1)
5I 4 0.000

5 1128.056

6 2366.597

7 3681.696

8 5048.602

Table4-1. The energies of the ground term 5I of NdI(4f 46s2).

Term J1 Level

(cm−1)
6I 7

2
0.000

9
2

513.322
11
2

1470.097
13
2

2585.453
15
2

3801.917
17
2

5085.619

4I 9
2

1650.199
11
2

3066.750
13
2

4512.481
15
2

5985.572

Table4-2. The energies of the ground terms, 6I and 4I of NdII(4f 46s).

Inspection of Table4-2 has been arranged to display the levels as grouped into

two separate LS−coupled multiplets which clearly overlap. An alternative would

be to note the levels appearing in Table4-1 and to consider the weak coupling of a

6s electron to the 4f 4(5IJ1) core to give the arrangement given in Table4-3. This

appears to give strong evidence that for these energy levels the description in terms

of J1j−coupling is closer to the physical situation than LS−coupling. To confirm this

suspiscion let us try to make an approximate, though realistic calculation. To do this

we need to be able to calculate the relevant matrix elements of the electrostatic and

spin-orbit interactions in a J1j−coupling basis.∗

In J1j−coupling the treatment of the spin-orbit interaction is much simpler than

in LS−coupling. Making the abbreviations

ψ1 = ℓNα1S1L1 and ψ2 = ℓNα2S2L2

∗ Many technical details of such calculations can be found in B R Judd, Low-Lying Levels in Certain
Actinide Atoms, Phys. Rev.125, 613 (1962)
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5IJ1 J1sJ level

(cm−1)
5I4 4s7

2
0.000

4s9
2

513.322

5I5 5s11
2

1470.097

5s9
2

1650.199

5I6 6s13
2

2585.453

6s11
2

3066.750

5I7 7s15
2

3801.917

7s13
2

4512.481

5I8 8s17
2

5085.619

8s15
2

5985.572

Table4-3 The low-lying levels of NdII(4f 46s) ordered in J1j−coupling.

we can write the spin-orbit interaction matrix elements for the states of the

configuration ℓNℓ′ in J1j−coupling as

〈ψ1J1, sℓ
′, j; JM |Hs−o|ψ′J ′

1, sℓ
′j ′; JM〉

= δJ1,J ′

1
δj,j′

[

δψ1,ψ′

1
ζ ′ℓ〈sℓ′j|(s · l)|sℓ′j ′〉+ ζℓ〈ψ1J1|

N
∑

i=1

((si · li))|ψ′J ′
1〉
]

(4-8)

where

〈sℓ′j|(s · l)|sℓ′j〉 = 1
2

[j(j + 1)− ℓ′(ℓ′ + 1)− s(s+ 1)] (4-9)

whereas for the second part of the right-hand-side of (4-8) the spin-orbit matrix

elements are just those calculated for the ℓN core.

The treatment of the spin-orbit interaction in J1j−coupling has the considerable

advantage of being diagonal in J1 and j. Thus the spin-orbit interaction is taken into

account by simply adding the first term in the right-hand-side of (4-8) to the diagonal

of the spin-orbit matrices calculated for the ℓN core.

In general the ease of calculating the spin-orbit matrix elements is offset by the

difficulty of calculating the electrostatic matrix elements. Fortunately that is not a

problem for the special case of the ℓNs configurations. Let us calculate the matrix

elements for the electrostatic interaction between the core and the s-electron. For

J1 = J ′
1 we obtain

〈ψ1J1s; J |Hel|ψ′
1J1s; J〉 = ±δψ1,ψ′

1
Gℓ(ℓ, s)

L1(L1 + 1)− S1(S1 + 1)− J1(J1 + 1)

(2ℓ+ 1)(2J + 1)
(4-10)
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The plus sign is taken for J = J1 + 1
2

and the minus sign for J = J1 − 1
2
. The

off-diagonal matrix elements are given by

〈ψ1J ± 1
2
, s; J |Hel|ψ′J ∓ 1

2
, s; J〉

=
δψ1,ψ′

1
Gℓ(ℓ, s)

(2ℓ+ 1)(2J + 1)

×
[

(S1 + L1 + J + 3
2
)(S1 + L1 + 1

2
− J)(L1 + J + 1

2
− S1)(S1 + J + 1

2
− L1)

]

1
2

(4-11)

Explicit calculation for the case of NdII 4f 4(5IJ1
)6s; J we obtain the matrices

(

J = 7
2

|(5I4)s; 7
2
〉

〈(5I4)s; 7
2
| 2

7
G3(f, s)− 7

2
ζf

)





J = 9
2

|(5I4)s; 9
2
〉 |(5I5)s; 9

2
〉

〈(5I4)s; 9
2
| 8

35
G3(f, s)− 7

2
ζf

4
√

7
35
G3(f, s)

〈(5I5)s; 9
2
| 4

√
7

35
G3(f, s) −3

35
G3(f, s)− 9

4
ζf





(

J = 11
2

|(5I5)s; 11
2
〉 |(5I6)s; 11

2
〉

〈(5I5)s; 11
2
| 1

14
G3(f, s)− 9

4
ζf

5
14
G3(f, s)

〈(5I6)s; 11
2
| 5

14
G3(f, s) 1

14
G3(f, s)− 3

4
ζf

)





J = 13
2

|(5I6)s; 13
2
〉 |(5I7)s; 13

2
〉

〈(5I6)s; 13
2
| −3

49
G3(f, s)− 3

4
ζf

4
√

15
49
G3(f, s)

〈(5I7)s; 13
2
| 4

√
15

49
G3(f, s) 10

49
G3(f, s) + ζf









J = 15
2

|(5I7)s; 15
2
〉 |(5I8)s; 15

2
〉

〈(5I7)s; 15
2
| −5

28
G3(f, s) + ζf

√
187
56
G3(f, s)

〈(5I8)s; 15
2
|

√
187
56
G3(f, s) 9

28
G3(f, s) + 3ζf





(

J = 17
2

|(5I8)s; 17
2
〉

〈(5I8)s; 17
2
| −2

7
G3(f, s) + 3ζf

)

where we have included the spin-orbit interaction for the f 4 core. We can estimate

the value of the spin-orbit coupling constant ζ4f from the width of the 5I multiplet

of NdI as ∼ 782cm−1. We can then adjust the value of G3(f, s) to optimise the

separations of the pairs of levels for each value of J . Finally we add to the matrices

a common term to match the ground state. The matrices may be readily set up

as a Maple programme and the matrices diagonalised giving their eigenvalues and

eigenvectors. We have made no attempt to include intermediate coupling in the f 4

core, configuration interaction etc. Nevertheless with our very simple calculation with
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no sophisticated fitting procedure we obtain a reasonably satisfying result as shown in

Table 4-4 using G3(f, s) = 1300cm−1, ζ4f = 800cm−1 and a constant term of 3130cm−1

.

J1sJ Expt. Calc. Eigenvector

4s7
2

0 29 |(5I4)s;
7
2
〉

4s9
2

513 496 0.890|(5I4)s;
9
2
〉 − 0.456|(5I5)s;

9
2
〉

5s11
2

1470 1321 0.948|(5I5)s;
11
2
〉 − 0.317|(5I6)s;

11
2
〉

5s9
2

1650 1464 0.456|(5I4)s;
9
2
〉+ 0.890|(5I4)s;

9
2
〉

6s13
2

2585 2363 0.970|(5I6)s;
13
2
〉 − 0.243|(5I7)s;

13
2
〉

6s11
2

3066 2785 0.317|(5I5)s;
11
2
〉+ 0.948|(5I6)s;

11
2
〉

7s15
2

3802 3633 0.990|(5I7)s;
15
2
〉 − 0.139|(5I8)s;

15
2
〉

7s13
2

4512 4106 0.243|(5I6)s;
13
2
〉+ 0.970|(5I7)s;

13
2
〉

8s17
2

5086 5099 |(5I8)s;
17
2
〉

8s15
2

5985 5933 0.139|(5I7)s;
15
2
〉+ 0.990|(5I8)s;

15
2
〉

Table4-4 Calculated and experimental low-lying energy levels of NdII.

4.4. J1j−coupling in GdIII levels of 4f 7(8S7
2
)6p

A bra state 〈(S1L1)J1, (sℓ)j; J | may be expanded as a sum of LS−coupled states by

writing

〈(S1L1)J1, (sℓ)j; J |
=
∑

S,L

〈(S1L1)J1, (sℓ)j; J ||(S1s)S, (L1ℓ)L; J〉〈(S1s)S, (L1ℓ)L; J | (4-12)

The transformation coefficients follow from (2-22). Using this result we can transform

matrix elements of an operator, Ho calculated in a LS−coupling basis into matrix

elements appropriate to J1j−coupling basis, in particular

〈ψ1, J1, (sℓ)j; J |Ho|ψ′
1, J

′
1, (sℓ)j

′; J ′〉

= ([J1, J
′
1, j, j

′])
1
2
∑

S,L

([S, L, S ′, L′])
1
2







S1 s S

L1 ℓ L

J1 j J













S ′
1 s S ′

L′
1 ℓ L′

J ′
1 j ′ J ′







× 〈ψ1, sℓ;SLJ |Ho|ψ′
1, sℓ;S

′L′J ′〉 (4-13)

In the particular case of the states of 4f 7(8S7
2
)6p considerable simplification is possible

leading to the J1j−coupling result

〈f 7(8S7
2
)6pj; J |Hel|f 7(8S7

2
)6p′j; J〉

= −56([j, j ′])
1
2







7
2

J j ′

1
2

j 1

3 7
2

1
2







∑

k

(

3 k 1

0 0 0

)2

Gk(f, p) (4-14)
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This formula may be further simplified and the electrostatic interactions expressed in

terms of a single parameter, G, by defining

G(f, p) = 5G2(f, p) + 4G4(f, p) (4-15)

where the Condon and Shortley denominator factors have been used,

175G2(f, p) = G2(f, p) 189G4(f, p) = G4(f, p) (4-16)

The relevant J1j−coupled matrix elements may be evaluated using a simple Maple

programme to yield

(

J = 5 |(7
2
, 3

2
)5〉

〈(7
2
, 3

2
)5| F − 21G+ ζp

2

)

(

J = 4 |(7
2
, 3

2
)4〉 |(7

2
, 1

2
)4〉

〈(7
2
, 3

2
)4| F − 11G+ ζp

2
−2
√

35G

〈(7
2
, 1

2
)4| −2

√
35G F − 7G− ζp

)

(

J = 3 |(7
2
, 3

2
)3〉 |(7

2
, 1

2
)3〉

〈(7
2
, 3

2
)3| F − 3X + ζp

2
−6
√

(3)G

〈(7
2
, 1

2
)3| −6

√

(3)G F − 15G− ζp

)

(

J = 2 |(7
2
, 3

2
)2〉

〈(7
2
, 3

2
)2| F + 3G+ ζp

2

)

where we have added a constant term F to the diagonal of each matrix. The parameter

G may be fixed by noting that independently of the coupling

7P2 −9 P5 = 24G

leading to the trial value of G = 82cm−1. Then to fix the centre-of-gravity of the

states we fix F = 47424cm−1 and adjust the spin-orbit coupling constant ζp to give a

best fit to the levels leading to ζp = 3050cm−1. Diagonalisation of the matrices yields

the results shown in Table4-5.
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J1jJ Expt. Calc. Eigenvector

(7
2
, 1

2
)3 43019 43022 −0.1477|(7

2
, 3

2
)3〉 − 0.9890|(7

2
, 1

2
)3〉

(7
2
, 1

2
)4 43612 43593 −0.2118|(7

2
, 3

2
)4〉 − 0.9773|(7

2
, 1

2
)4〉

(7
2
, 3

2
)5 47234 47234 |(7

2
, 3

2
)5〉

(7
2
, 3

2
)4 48339 48260 −0.9773|(7

2
, 3

2
)4〉+ 0.2118|(7

2
, 1

2
)4〉

(7
2
, 3

2
)3 48860 48831 −0.9890|(7

2
, 3

2
)3〉+ 0.1477|(7

2
, 1

2
)3〉

(7
2
, 3

2
)2 49195 49194 |(7

2
, 3

2
)2〉

Table 4-5 Calculated and experimental energy levels for 4f 7(8S7
2
)6p

Inspection of the eigenvectors shows clearly that in this case J1j−coupling gives

an excellent account of the complete set of states.

4.5. J1ℓ−coupling

The J1ℓ−coupling scheme has had considerable success in the interpretation of noble

gas spectra and in lanthanides and actinides where configurations such as fNg arise.

J1ℓ−coupling arises in ℓNℓ′ configurations when the electrostatic interaction of the

outer ℓ′ electron with the ellN core is weak compared to the spin-orbit interactionof

the external electron ℓ′. Here the orbital angular momentum ℓ′ is first coupled to the

total angular momentum J1 of the core to give a resultant angular momentum K;

then K is coupled to the spin of the external electron ℓ′ to yield the total angular

momentum J .

For the angular momentum K to be a good quantum number it is necessary that

both the electrostatic and spin-orbit interactions of the external electron ℓ′ be very

weak. In the absence of spin-dependent interactions with the outer electron, each

level, classified according to its K−value, will be two-fold degenerate. The effect of

weak spin-dependent interactions is to remove this two-fold degeneracy, giving rise to

the appearance of pairs of levels.

A J1ℓ bra vector 〈(S1L1)J1ℓ
′;Ks; JM | may be expanded as a sum of LS states by

writing

〈(S1L1)J1ℓ
′;Ks; JM |

=
∑

S,L

〈(S1L1)J1ℓ
′;Ks; JM ||(S1s)S, (L1ℓ

′)L; JM〉〈(S1s)S, (L1ℓ
′)L; JM |

=
∑

S,L

(−1)S1+L1+s+ℓ′+S+L+2K ([J1, S, L,K])
1
2

×
{

S1 L1 J1

ℓ′ K L

}{

S L J

K s S1

}

〈(S1s)S, (L1ℓ
′)L; JM | (4-17)

The matrix elements for the electrostatic interaction of an electron n′ℓ′ with a nℓN

core becomes
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〈ℓN(S1L1)J1ℓ
′;Ks; J |Hel|ℓN(S ′

1L
′
1)J

′
1ℓ

′;K ′s; J〉
=
∑

k

[

δS1,S1′δK,K ′fk(J1, J
′
1, K)F k(nℓ, n′ℓ′) + gk(J1, J

′
1, K

′, K, J)Gk(nℓ, n′ℓ′)
]

(4-18)

where

fk(J1, J
′
1, K) = (−1)J

′

1
+K+ℓ′〈ℓ‖C(k)‖ℓ〉〈ℓ′‖C(k)‖ℓ′〉

×
{

J1 J ′
1 k

ℓ′ ℓ′ K

}

〈ℓNS1L1J1‖U (k)‖ℓNS1L
′
1J

′
1〉 (4-19)

and

gk(J1, J
′
1, K

′, KJ) = −N ([J1, J
′
1, S1, S

′
1, L1, L

′
1, K,K

′])
1
2 〈ℓ‖C(k)‖ℓ′〉2(−1)L1+L′

1

×
∑

ψ̄

(ψ{|ψ)(ψ̄|}ψ′)
∑

t

[t]

{

S1 L1 J1

ℓ′ K t

}{

S ′
1 L′

1 J ′
1

ℓ′ K ′ t

}

×







S̄ s S1

s J K

S ′
1 K ′ t













L̄ ℓ L1

ℓ k ℓ′

L′
1 ℓ′ t







(4-20)

The expression for the exchange interaction is rather formidable. Fortunately,

where J1ℓ−coupling is most appropriate the exchange interactions are negligible and

frequently need not be calculated.

The matrix elements of the spin-orbit interaction within the ℓN core are just

those computed in the absence of the added electron and are diagonal in J1. The

corresponding matrix elements for the added electron n′ℓ′ are

〈ℓN(S1L1)J1ℓ
′;Ks; J |H(s·l)|ℓN(S ′

1L
′
1)J

′
1ℓ

′;K ′s; J〉

= (−1)K+K ′+J1+J+ℓ′+sζn′ℓ′ ([K,K ′, s, ℓ′])
1
2 [s(s+ 1)ℓ′(ℓ′ + 1)]

1
2

×
{

K K ′ 1

s s J

}{

K K ′ 1

ℓ′ ℓ′ J1

}

(4-21)

Again, where J1ℓ−coupling is valid these matrix elements will be negligible. In

fact, for fN configurations containing an outer electron with ℓ′ >= 3 the spin-

orbit interaction, to a very good approximation, maybe neglected and only the spin-

dependent electrostatic interactions need be considered in calculating departures from

J1ℓ−coupling.

Since the direct electrostatic interaction leaves K as a good quantum number, we

may calculate the energies of the two-fold degenerate levels characterised by different

K values in pure J1ℓ−coupling by simply adding the matrix elements of the direct

electrostatic interaction between the added electron, n′ℓ′ and the nℓN core to the

energy matrices of the nℓN core.The direct interactions will normally be very weak
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because of the external nature of the added electron and consequently if the terms in

the nℓN core are well separated we may, to a good approximation, neglect the matrix

elements that couple the different terms. For g−electrons the direct interaction is

nonnegligible only for the F 2(nℓ, n′g) integral and as an added approximation we may

neglect all other terms. Within this approximation we may write out explicitly the

6− jsymbol of (4-19) to obtain the coefficients of F 2(nℓ, n′ℓ′) as

f2(J1, K) = 〈ℓ‖C(2)‖ℓ〉〈ℓ′‖C(2)‖ℓ′〉〈ℓNS1L1J1‖U (2)‖ℓNS1L
′
1J

′
1〉

× (J1(2J1 − 1)(J1 + 1)(2J1 + 1)(2J1 + 3)(2ℓ′ − 1)ℓ′(ℓ′ + 1)(2ℓ′ + 1)(2ℓ′ + 3))
−1

2

× [3h(2h+ 1)− 2J1(J1 + 1)ℓ′(ℓ′ + 1)] (4-22)

where

h =
K(K + 1)− J1(J1 + 1)− ℓ′(ℓ′ + 1)

2
(4-23)

Thus for a particular term α1J1 of the nℓN core the energies E(α1J1K) of the levels

formed by adding an electron ℓ′ in pure J1ℓ−coupling will be given by

E(α1J1K) = aJ1
h(2h+ 1) + bJ1

(4-24)

where bJ1
is a constant and aJ1

is the coefficient of the quantity h(2h + 1) in (4-

22). Notice that (4-24) is quadratic in h and hence for perfect J1ℓ−coupling plotting

E(α1J1K) against h will yield a parabola whose minima is at h = −1
4

regardless of

the term being studied. The levels of different J1 will lie on different parabolas.

J1ℓ−coupling is well seen in the spectra of the noble gases and in rare earth spectra

such as in the 4f5g configuration of doubly ionised cerium Ce III. We will now apply

the results just developed to the analysis of J1ℓ−coupling in Ce III. The energy levels

of the 4f5g configuration are given in Table 4-6. Note the occurrence of close pairs of

almost degenerate levels which is exactly what one expects in J1ℓ−coupling. We give

the mean energy for each pair. The 4f gives rise to two terms, 2F5
2

and 2F7
2

with,

as expected, the J1 = 5
2

being of lower energy than the J1 = 7
2

due to the spin-orbit

interaction given by (3-53) as 7
2
ζ4f . The angular momentum ℓ of the 5g electron is

coupled to J1, in each case, to yield the various values of the quantum number K

and we designate a particular J1ℓ−coupling term by the quantum numbers (J1ℓK.

Coupling the spin s of the added 5g electron then gives rise to the total angular

momentum J given in the second column. In pure J1ℓ−coupling the mean energy

levels, E(J1K), are given by (4-24), in terms of the parameters aJ1
and bJ1

. It follows

from (4-22) that aJ1
is directly related to the radial integral F 2(4f5g) and furthermore

that, by explicit calculation, that

a5
2

a7
2

=
9

5
(4-25)
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Term J Level mean
(5

2
5g)9

2
4 122905.69

122907.3
5 122908.89

(5
2
5g)11

2
6 122919.83

122921.1
5 122922.37

(5
2
5g)7

2
4 122932.21

122932.8
3 122933.38

(5
2
5g)5

2
2 122976.30

122977.3
3 122978.36

(5
2
5g)13

2
6 123010.29

123013.7
7 123017.02

(5
2
5g)3

2
2 123028.39

123028.7
1 123029.01

(7
2
5g)11

2
6 125155.89

125157.4
5 125158.97

(7
2
5g)9

2
4 126164.86

125166.6
5 125168.37

(7
2
5g)13

2
6 125181.54

125184.1
7 125186.61

(7
2
5g)7

2
4 125193.91

125195.0
3 125196.03

(7
2
5g)5

2
2 125230.90

125123.8
3 125232.67

(7
2
5g)3

2
2 125268.40

125268.9
1 125269.29

(7
2
5g)15

2
8 125270.97

125275.3
7 125279.58

(7
2
5g)1

2
0 125295.21

125295.9
1 125296.65

Table 4-6 Experimental levels for the Ce III 4f5g configuration in J1ℓ−coupling.

Using (4-24) we obtain the values of E(J1K) for the 4f5g J1ℓ−coupling levels as

shown in Table 4-7.
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Term h (E(J1K)

(5
2
5g)13

2
10 210a5

2
+ b5

2

(5
2
5g)11

2
7
2

28a5
2

+ b5
2

(5
2
5g)9

2
−2 6a5

2
+ b5

2

(5
2
5g)7

2
−13

2
78a5

2
+ b5

2

(5
2
5g)5

2
−10 190a5

2
+ b5

2

(5
2
5g)3

2
−25

2
300a5

2
+ b5

2

(7
2
5g)15

2
14 406a7

2
+ b7

2

(7
2
5g)13

2
13
2

91a7
2

+ b7
2

(7
2
5g)11

2
0 b7

2

(7
2
5g)9

2
−11

2
55a7

2
+ b7

2

(7
2
5g)7

2
−10 190a7

2
+ b7

2

(7
2
5g)5

2
−27

2
351a7

2
+ b7

2

(7
2
5g)3

2
−16 496a7

2
+ b7

2

(7
2
5g)1

2
−35

2
595a7

2
+ b7

2

Table 4-7 Values of E(J1K) for the 4f5g J1ℓ−coupling levels.

Noting that the position of the (7
2
5g)11

2
level depends only upon b7

2
, that the

separation of the two levels (7
2
5g)1

2
and (7

2
5g)11

2
is 595a7/2 and (4-25) leads to the

parameter set (in cm−1)

a5
2

= 0.419, a7
2

= 0.233, b5
2

= 122903.8, b7
2

= 125157.4 (4-26)

Using these values in Table 4-7 leads to the results displayed in Table 4-8.

Term Experimental Calculated
(5

2
5g)9

2
122907.3 122906.3

(5
2
5g)11

2
122921.1 122915.5

(5
2
5g)7

2
122932.8 122936.5

(5
2
5g)5

2
122977.3 122983.4

(5
2
5g)13

2
123013.7 122991.8

(5
2
5g)3

2
123028.7 123029.5

(7
2
5g)11

2
125157.4 125157.4

(7
2
5g)9

2
125166.6 125170.2

(7
2
5g)13

2
125184.1 125178.6

(7
2
5g)7

2
125195.0 125201.7

(7
2
5g)5

2
125231.8 125239.2

(7
2
5g)3

2
125268.9 125273.0

(7
2
5g)15

2
125275.3 125252.0

(7
2
5g)1

2
125296.0 125296.0



50 Brian G Wybourne

Table 4-8 Experimental and calculated 4f5g mean energy levels in J1ℓ−coupling.

Considering that we have totally ignored configuration interaction and have assumed

pure J1ℓ−coupling the agreement between experiment and theory is surprisingly good.

4.6. Exercises

4-1 Given that

(

j1 j2 j3
0 0 0

)

= (−1)
1
2
J
[

(J − 2j1)!(J − 2j2)!(J − 2j3)!

(1
2
J − j1)!(1

2
J − j2)!(1

2
J − j3)!

]

1
2

(4-28)

where J = j1 + j2 + j3, show that

(

a a 2

0 0 0

)

= (−1)a+1

[

a(a+ 1)

(2a+ 1)(2a− 1)(2a+ 3)

]

1
2

(4-29)

and

〈a‖C(2)‖a〉 = −
[

a(a+ 1)(2a+ 1)

(2a+ 3)(2a− 1)

]

1
2

(4-30)

4-2 Show that for N = 1 or N = 4ℓ+ 1 that

〈sℓj‖U (2)‖sℓj〉 = ±(−1)s+ℓ+j(2j + 1)

{

2 j j
1
2

ℓ ℓ

}

(4-31)

where the sign is + if N = 1 or − if N = 4ℓ+ 1.

4-3 Use your results to put (4-22) into as simple a form as possible.

4-4 Use the NIST data base to obtain a list of the energy levels of neutral neon Ne I

and make a list of configurations that could be best described in (a) LS−coupling,

(b) J1j−coupling and (c) J1ℓ−coupling.
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Lecture 5

Some people think that physics is over once the equation is found which governs

some phenomena. To me this seems as foolish as somebody who says English is

over once he has learned the words and the grammar and never goes on to read

and understand Shakespeare. Physics is not the equation but the multitude of

phenomena which result from it. To know the equation is not the end but the

beginning and to deduce from it the physics is an unending quest.

(W. E. Thirring 1987)

5. Introduction

In this lecture we will first discuss the intermediate coupling corrections to the Lande

g−factors and the g−sum rule. Then we will start to consider some of the properties

of alkali atoms in magnetic fields leading up to an exploration of the combined effects

of their fine structure, Zeeman effect and hyperfine structure. Later in the course, if

time permits, we will return to higher-order corrections to the Lande g−factors.

5.1. Intermediate coupling and g−factors

The effect of diagonalizing the combined Coulomb and spin-orbit interaction energy

matrices is to yield eigenstates that are independent of the M quantum number and

for which the total electronic angular momentum J remains a good quantum number.

A typical eigenstate will be of the form

|aJ〉 =
∑

α,S,L

〈αSLJ |aJ〉|αSLJ〉 (5-1)

where the 〈αSLJ |aJ〉 are the eigenvector components. For example, we found for the

groundstate of Pr3+ the linear combination

|a4〉 = −0.0282|3F4〉+ 0.1523|1G4〉+ 0.9879|3H4〉 (5-2)

Recall that the diagonal matrix elements of the Zeeman Hamiltonian, Hmag for a state

|αSLJM〉 are given by

〈αSLJM |Hmag|αSLJM〉 = Bzµ0Mg(SLJ) (2-53)

In intermediate coupling, we have from (5-1)

〈aJM |Hmag|aJM〉 =
∑

α,S,L

〈aJ |αSLJ〉〈αSLJM |Hmag|αSLJM〉〈αSLJ |aJ〉

= Bzµ0M
∑

α,S,L

〈aJ |αSLJ〉g(SLJ)〈αSLJ |aJ〉 (5-3)

Thus, from (5-2) we have for the groundstate of Pr3+

〈a4M |Hmag|a4M〉 = Bzµ0M

×
[

(−0.0282)2g(3F4) + (0.1523)2g(1G4) + (0.9879)2g(3H4)
]

= Bzµ0M(0.8045) (5-4)
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where

g(3F4) = 1.2506 g(1G4) = 1.0000 g(3H4) = 0.79954 (5-5)

Thus the effect of intermediate coupling has been to change from the pure 3H4

g−factor of 0.7995 to the intermediate coupling corrected g−factor of 0.8045. Here

the correction is rather small. As a second example consider the level calculated at

10, 004cm−1 with the eigenstate

|b4〉 = 0.5037|3F4〉+ 0.8558|1G4〉 − 0.1175|3H4〉 (5-6)

leading to an intermediate coupling corrected g−factor of 1.0607 compared with that

of the pure 1G4 g−factor of 1.0000. Finally, consider the third J = 4 eigenstate

|c4〉 = −0.8634|3F4〉+ 0.4943|1G4〉 − 0.1009|3H4〉 (5-7)

where the intermediate coupling corrected g−factor is 1.1847 compared with that for

a pure 3F4 g−factor of 1.2506. Adding the three intermediate coupling corrected

g−factors gives

3
∑

i=1

gi = 0.8045 + 1.0607 + 1.1847 = 3.0499

whereas the sum of the three LS g−factors gives

3
∑

i=1

gi = 0.7995 + 1.0000 + 1.2506 = 3.0501

The two values are the same to within the precision of the calculation. This is an

example of the g-sum rule.

5.2. The g Sum Rule

Where the states differing in J are well separated and only the diagonal elements need

be calculated, the intermediate coupling g−value becomes

g(γJ) =
∑

αSL

g(SLJ)〈αSLJ |γJ〉2 (5-8)

If we sum over the variable γ for a given J−value then
∑

γ

g(γJ) =
∑

αSL

g(SLJ) (5-9)

since
∑

αSL

〈αSLJ |γJ〉2 = 1 (5-10)

since the transformation is necessarily unitaryy for a complete set of states. Equation

(5-9) is the statement of the g-sum rule. Note the important qualification for a

complete set of states.
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5.3. Fine Structure in Alkali Atoms

The alkali elements appear, along with hydrogen, in the first column of the Periodic

table. The groundstate of the n−th alkali element is, apart from closed shells, ns(2S1
2
).

The first excited multiplet is np(2P ). There is no spin-orbit interaction associated

with the groundstate whereas in the first excited multiplet the effect of the spin-orbit

interaction is to split the 2P into two states 2P1
2

and 2P3
2

with the 2P1
2

state lying

below the 2P3
2

as follows from Eq. (3-53).

Table 1. Energy levels of the lowest states of alkali atoms.

Element State Energy(cm−1) ∆E ζnp
H 1s 2Se1

2

0

2p 2P o
1
2

82258.9206

2p 2P o
3
2

82259.2865 0.3659 0.244

2s 2Se1
2

82258.9559

Li 2s 2Se1
2

0.0

2p 2P o
1
2

14903.66

2p 2P o
3
2

14904.00 0.34 0.226

Na 3s 2Se1
2

0.000

3p 2P o
1
2

16956.172

3p 2P o
3
2

16973.368 17.20 11.47

K 4s 2Se1
2

0.000

4p 2P o
1
2

12985.170

4p 2P o
3
2

13042.876 57.72 38.48

Rb 5s 2Se1
2

0.000

5p 2P o
1
2

12578.96

5p 2P o
3
2

12816.56 237.60 158.38

Cs 6s 2Se1
2

0.000

6p 2P o
1
2

11178.2

6p 2P o
3
2

11732.3 554.1 369.4

The splitting

∆E = E(2P3
2
)−E(2P1

2
) = 3

2
ζnp (5-11)
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is commonly referred to as the fine structure and is seen, for example, in the Sodium D

lines which at sufficient spectroscopic resolution appear as the famous yellow Sodium

D doublet. Knowing the value of the fine structure splitting we can deduce a value

for the spin-orbit coupling constant ζnℓ as shown in Table I above.

5.4. Zeeman Effect in Alkali Atoms

The alkali atoms, particularly Rubidium (Rb), play an important role in Bose Einstein

Condensation (BEC) and the interplay of the fine structure, Zeeman effect and

hyperfine structure are of major significance. For the groundstate ns(2S1
2
) the effect

of an external magnetic field Bz is to lift the two-fold degeneracy to produce a doublet

with a Zeeman splitting of

∆E = E(2S1
2
, 1

2
)− E(2S1

2
,−1

2
) = gsµ0Bz (5-12)

The behaviour of the np(2P ) term is more complicated, especially if the magnetic

field is sufficiently strong as to produce Zeeman splittings comparable with those of

the fine structure. It is necessary then to include the off-diagonal Zeeman matrix

elements introduced in Eq.(2-58) in addition to the diagonal matrix elements given by

Eq. (2-53). The states with M = ±3
2

there are no off-diagonal matrix elements and

we have for the Hamiltonian

H = Hs−o +Hmag (5-13)

〈np 2P 3
2
,±3

2
|H|np 2P 3

2
,±3

2
〉 = 1

2
ζnp ± 3

2
g(2P3

2
)µ0Bz (5-14)

whereas for the states with M = ±1
2

we must consider the rank 2 matrices







|2P 1
2
,±1

2
〉 |2P 3

2
,±1

2
〉

〈2P 1
2
,±1

2
| −ζnp ± 1

2
g(2P1

2
)µ0Bz 0.4714(gs − 1)µ0Bz

〈2P 3
2
,±1

2
| 0.4714(gs − 1)µ0Bz

1
2
ζnp ± 3

2
g(2P3

2
)µ0Bz






(5-15)

where

g(2P1
2
) = 0.6659 and g(2P3

2
) = 1.3341 (5-16)

Note that the groundstate exhibits a Zeeman splitting that is linear in the magnetic

field Bz as do the states np(2P 3
2
, 3

2
) whereas the states np(2P 3

2
,±1

2
) and np(2P 1

2
,±1

2
)

will be mixed and the splittings of those states will no longer be linear in Bz. The

amount of mixing will depend on the size of the fine structure splitting. However, the

situation will change when we take into account the hyperfine splitting as we shall see

shortly.
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5.5. Introductory Remarks on Magnetic Hyperfine Structure

The nucleus possesses a total angular momentum I, often referred to as nuclear

spin and the electron system a total angular momentum J with the total angular

momentum of the atom F being

F = I + J (1-15)

where the magnitude of F is given by

F = I + J, I + J − 1, . . . , |I − J | (5-17)

Thus the number of hyperfine sublevels arising from a level of a given J will be the

minimum of {(2J + 1), (2I + 1)}. States of a given F will be 2F + 1-fold degenerate

with respect to the quantum number MF

MF = F, F − 1, . . . , −F + 1, −F (5-18)

This degeneracy may be lifted by an applied external magnetic field or partially or

completely by external electric fields. Whether the electric field will completely lift

the degeneracy depends on symmetry considerations. Of that more later.

5.6. Magnetic Hyperfine Structure in Hydrogen

In the case of the groundstate 1s(2S1
2
) of atomic hydrogen 1

1H the nuclear angular

momentum is I = 1
2

and the electronic angular momentum is J = 1
2

and hence

F = 0, 1 and thus we get two hyperfine sublevels, a singlet with F = 0 and a triplet

with F = 1. Experimentally, the energy separation between the states is

∆E = E(F = 1)− E(F = 0) = 5.9× 10−6eV (5-19)

The frequency ν and wavelength λ associated with this transition are

ν = 1420.4057517667(10)MHz and λ = 21.1cm (5-20)

This is the origin of the well-known 21cm line of radio astronomy associated with

interstellar hydrogen. The transition is too slow to be seen in the laboratory by

spontaneous emission but can be measured by stimulated emission to an extraordinary

degree of accuracy. In the case of the interstellar medium the enormous amounts of

hydrogen make the transition readily observable.

5.7. Magnetic Hyperfine Structure in 85
37Rb and 87

37Rb

The rubidium isotopes, 85
37Rb and 87

37Rb, have nuclear spins of I = 5
2

and I = 3
2

respectively. In both cases the electronic groundstate is 5s(2S1
2
) and hence J = 1

2

and the two allowed values of F are

85
37Rb 5s(2S1

2
) F = 2, 3 87

37Rb 5s(2S1
2
) F = 1, 2 (5-21)
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The first two excited electronic states of rubidium are the two fine structure levels

5p(2P1
2
) and 5p(2P3

2
), separated by 158.38cm−1. The hyperfine sublevels will occur

with the following values of the total angular momentum F

85
37Rb 5p(2P1

2
) F = 2, 3 5p(2P3

2
) F = 1, 2, 3, 4 (5-22a)

87
37Rb 5p(2P1

2
) F = 1, 2 5p(2P3

2
) F = 0, 1, 2, 3 (5-22b)

That gives a qualitative description of the magnetic hyperfine structure but tells us

nothing about the ordering of the hyperfine sublevels of their separations.

5.8. Magnetic Hyperfine Structure

The nuclear magnetic-dipole moment vector µI for a nucleus may be written as

µI = gIβNI (5-23)

where gI is the nuclear g−factor and βN is the nuclear magneton, which is defined as

βN =
eh̄

2Mp

=
meβ

Mp

(5-24)

where Mp is the proton mass, me the electron mass and β is the Bohr magneton. The

magnetic-moment vector of the nucleus can be taken as proportional to its angular

momentum I and written as

µI =
µII

I
(5-25)

where µI is the nuclear magnetic moment expressed in units of nuclear magnetons.

Each electron i in an unfilled shell will produce a magnetic field Bi at the nucleus

resulting in an interaction with the nuclear magnetic moment vector µI adding to the

Hamiltonian a term

Hhfs = −
N
∑

i=1

Bi · µI (5-26)

For an electron in an orbital with (ℓ 6= 0) the magnetic field B produced at the nucleus

is30−32

B = −2β
[l− s + 3r(s · r)/r2]

r3
(5-27)

For N electrons we obtain2,17,23

Hhfs = 2ββNgI

N
∑

i=1

Ni · I
r3
i

(5-28)

where

Ni = li − si +
3ri(si · ri)

r2
i

(5-29)
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Ni may be put into tensor operator form to yield2

Ni = li −
√

10(sC(2))
(1)
i (5-30)

and finally

Hhfs = aℓ

N
∑

i=1

[li −
√

10(sC(2))
(1)
i ] · I (5-31)

with

aℓ = 2ββNgI < r−3 > =
2ββNµI < r−3 >

I
(5-32)

where < r−3 > is the expectation value of the inverse-cube radius of the electron

orbital.

Note that the matrix elements of Ni vanish for s−orbitals. However, for unpaired

s−orbitals Fermi33 showed that there is, what is now known as the Fermi contact

term, such that

N′
i = Ni +

8

3
π|Ψs(0)|2si (5-33)

where Ψs(0) is the value at the nucleus of the normalized Schrödinger eigenfunction of

the s−orbital. Thus for (ℓ >= 1) only the first term, Ni, is non-zero while for (ℓ = 0)

only the second term is non-zero.

Matrix elements of Hhfs may be taken as diagonal in the nuclear spin I since states

of different nuclear spin are usually separated by MeV compared with eV separations

of electronic states. In the absence of external electric or magnetic fields the matrix

elements are diagonal in F,MF and independent of MF . In such a situation it is

convenient to work in a JIFMF scheme whereas if large external fields are present

it is more realistic to work in a JMJIMIMF scheme. If the fine structure is small it

may be necessary to consider matrix elements that are off-diagonal in J . In the case

of intermediate coupling it may be necessary to consider matrix elements coupling

different SL terms.

For simplicity let us first consider the matrix elements of Hhfs diagonal in J though

not necessarily diagonal in other quantum numbers α, α′. We have, after recalling Eq.

(2-44) and that I is a rank k = 1 tensor operator

〈αJIFM |Hhfs|α′JIFM〉 = (−1)J+I+Faℓ

{

J J 1

I I F

}

〈I‖I(1)‖I〉

× 〈αJ‖
N
∑

i=1

N
(1)
i ‖α′J〉 (5-34)

The 6j−symbol can be evaluated explicitly to yield

〈αJIFM |Hhfs|α′JIFM〉 = 1
2
[F (F + 1)− J(J + 1)− I(I + 1)]

× aℓ
〈αJ‖

∑N
i=1N

(1)
i ‖α′J〉

√

J(J + 1)(2J + 1)
(5-35a)

= 1
2
AK (5-35b)
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where

K = F (F + 1)− J(J + 1)− I(I + 1) (5-35c)

and

A = aℓ
〈αJ‖∑N

i=1N
(1)
i ‖α′J〉

√

J(J + 1)(2J + 1)
(5-35d)

The measured value of A is known as the magnetic hyperfine structure constant and

may be positive or negative. The quantity aℓ will be a constant for all the states of

a given electron configuration. The second factor in A will be different for each of

the states of the configuration and constant within the hyperfine splittings of a given

level. If A > 0 then the lowest F−value lies lowest in energy whereas if A < 0 it lies

highest. Knowing A from experiment it is possible to deduce a value for the nuclear

magnetic moment if we can calculate < r−3 > and the angular part of (5-35d). Note

that the reduced matrix element 〈I‖I(1)‖I〉 will vanish unless I > 0.

5.9. Exercises

1. Show that

〈SLJ‖L(1)‖SLJ〉
√

J(J + 1)(2J + 1)
=
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)

= 2− g(SLJ) (5-36)

2. Show that

〈ℓ‖C(2)‖ℓ〉 = −
√

ℓ(ℓ+ 1)(2ℓ+ 1)

(2ℓ− 1)(2ℓ+ 3)
(5-37)

3. Show that for a single electron in an orbital with (ℓ >= 1)

−
√

10〈sℓj‖(s(1)C(2))(1)‖sℓj〉
√

j(j + 1)(2j + 1)
= (2j + 1)

√

30s(s+ 1)(2s+ 1)ℓ(ℓ+ 1)(2ℓ+ 1)

j(j + 1)(2j + 1)(2ℓ− 1)(2ℓ+ 3)

×







s s 1

ℓ ℓ 2

j j 1







(5-38)

4. Show that






ℓ+ 1
2

ℓ+ 1
2

1

ℓ ℓ 2
1
2

1
2

1







= −
√

10ℓ(2ℓ− 1)

30(ℓ+ 1)(2ℓ+ 1)
(5-39a)

and






ℓ− 1
2

ℓ− 1
2

1

ℓ ℓ 2
1
2

1
2

1







= +

√

10(2ℓ+ 3)(ℓ+ 1)

30ℓ(2ℓ+ 1)
(5-39b)
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5. Show that for a single electron in an orbital with (ℓ >= 1) that

A =















aℓ
4ℓ(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
j = ℓ+ 1

2

aℓ
4ℓ(ℓ+ 1)

(2ℓ+ 1)(2ℓ− 1)
j = ℓ− 1

2

(5-40)

6. Show that for a J = 1
2

electronic level of an atom with a nuclear spin I >= 1
2

and magnetic hyperfine structure constant A a pair of sublevels is formed with an

energy separation of

∆E = 1
2
(2I + 1)A (5-41)



60 Brian G Wybourne

Lecture 6

The road ahead can hardly help being strewn with many a mistake. The main

point is to get those mistakes made and recognized as fast as possible!

John A Wheeler

6. Introduction

In this lecture we shall first consider the magnetic hyperfine structure in the

JMJIMI scheme which will later be needed when we consider external magnetic or

electric fields. The latter case will assume particular importance in considering ions in

crystal fields. Afterwards we take up consideration of hyperfine structure associated

with nuclear possessing electric quadrupole moments.

6.1. Experimental Data

An excellent compilation of data on the Sodium D lines and on Caesium D lines has

been given by Steck34. He has also given a similar database on the Rubidium 87 D

lines39. The collection includes an excellent set of references. From his Table 5 we

have for 133
55 Cs the magnetic dipole hyperfine structure constants

A(6p 2P1
2
) = 291.920(19)MHz

A(6p 2P3
2
) = 50.275(3)MHz

and hence for their ratio

A(6p 2P1
2
)

A(6p 2P3
2
)

= 5.8064

which may be compared with the ratio 5 coming from Eq. (5-40). Likewise one finds

for 23
11Na and 87

37Rb the respective ratios

A(3p 2P1
2
)

A(3p 2P3
2
)

= 5.005 and
A(5p 2P1

2
)

A(5p 2P3
2
)

= 4.82

6.2. Magnetic Hyperfine Structure in the JMJIMI Basis

In the JIFMF scheme we used the operator

Hhfs = aℓ(N
(1) · I(1)) (6-1)
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Noting Eq. (2-40) we can write the scalar product in terms of tensor operator

components to give

Hhfs = aℓ

1
∑

q=−1

N (1)
q I

(1)
−q (6-2)

The matrix elements of Hhfs in the JMJIMI scheme then become

〈αSLJMJIMI |Hhfs|α′S ′L′JM ′
JIM

′
I〉 = aℓ

1
∑

q=−1

(−1)J−MJ

(

J 1 J

−MJ q M ′
J

)

× (−1)I−MI

(

I 1 I

−MI −q M ′
I

)

〈αSLJ‖N (1)‖α′S ′L′J〉〈I‖I(1)‖I〉 (6-3)

Explicit evaluation of the 3jm−symbols then allows us to write the diagonal matrix

elements (q = 0) as

〈αSLJMJIMI |Hhfs|α′S ′L′JMJIMI〉 = AMJMI (6-4a)

and the off-diagonal matrix elements as

〈αSLJMJIMI |Hhfs|α′S ′L′JMJ ± 1IMI ∓ 1〉
= 1

2
A
√

(J ∓MJ)(J ±MJ + 1)(I ±MI)(I ∓MI + 1) (6-4b)

where A is the magnetic hyperfine structure constant defined in (5-35d).

6.3. Zeeman Effect in the JIFMF Basis

Let us consider a weak external magnetic field Bz acting on hyperfine levels in a

JIFMF basis. The term in the Hamiltonian may be written in terms of the electron

spin, orbital and nuclear g−factors as

Hmag = µBBz(L
(1)
0 + gsS

(1)
0 + gII

(1)
0 ) (6-5)

In general the nuclear Zeeman effect, given by the third term, is more than three

orders of magnitude less than that of the electronic Zeeman effect and as such is often

ignored. We shall retain it as it can lead to a direct method of determining nuclear

magnetic moments. The diagonal matrix elements of Hmag may be determined using

the tensor operator formalism developed in Eqs. (2-42) - (2-46) together with explicit

forms for the relevant 3jm− and 6j−symbols. The Wigner-Eckart theorem (2-42)

taken with (2-48c) gives

〈αJIFMF |Hmag|α′JIFMF 〉 = µBBz
MF

√

F (F + 1)(2F + 1)

× [〈αJIF‖(L(1) + gsS
(1))‖α′JIF 〉+ 〈αJIF‖gII(1)‖α′JIF 〉] (6-6)
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The first reduced matrix element can be developed using (2-45) and the second using

(2-46) and the explicit form of the 6j−symbol to give

〈αJIFMF |Hmag|α′JIFMF 〉

= µBBzMF

[

gJ
[F (F + 1)− I(I + 1) + J(J + 1)]

2F (F + 1)
+ gI

[F (F + 1) + I(I + 1)− J(J + 1)]

2F (F + 1)

]

(6-7)

In the case of intermediate coupling the electronic Lande g−factor g(J) may be

replaced by its intermediate coupling corrected value. For experimental convenience

Eq. (6-7) is often rewritten as

〈αJIFMF |Hmag|α′JIFMF 〉 = µBBzMFgF (6-8)

with

gF = gJ
[F (F + 1)− I(I + 1) + J(J + 1)]

2F (F + 1)
+ gI

[F (F + 1) + I(I + 1)− J(J + 1)]

2F (F + 1)
(6-9)

In the case of a weak magnetic field the energy shifts will be linear in the magnetic

field Bz. For fields that produce splittings comparable with the hyperfine splittings,

or greater it is necessary to consider matrix elements that are off-diagonal in F . In

that case is is usually simplest to work in the JMJIMIMF scheme but let us first

continue in the JIFMF scheme.

6.4. Off-Diagonal Zeeman Matrix Elements in the JIFMF Scheme

Let us assume that the fine structure splitting is sufficiently large that we can ignore

J−mixing and just consider the matrix elements that couple states differing in F by

one unit.

〈αJIFMF |Hmag|α′JIF + 1MF 〉

= µBBz(−1)F−MF

(

F 1 F + 1

−MF 0 MF

)

(−1)J+I+F+1
√

(2F + 1)(2F + 3)

×
[{

F 1 F + 1

J I J

}

〈αJ‖(L(1) + gsS
(1))‖α′J〉 −

{

F 1 F + 1

I J I

}

〈αI‖gII(1)‖α′I〉
]

(6-10)

Explicit evaluation of the 3jm− and 6j−symbols using (2-56) and (2-49b) respectively

leads to

〈αJIFMF |Hmag|α′JIF + 1MF 〉

= µBBz(gJ − gI)
√

(F + 1)2 −M 2
F

×
√

(F + J + I + 2)(F + J − I + 1)(F − J + I + 1)(I + J − F )

4(F + 1)2(2F + 1)(2F + 3)
(6-11)
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6.5. Strong Zeeman Effect in the JMJIMIMF Basis

The Zeeman matrix elements in the JMJIMIMF basis are particularly simple. We

shall assume that the fine structure is very much larger than the hyperfine structure,

a good approximation for the heavier alkali atoms such as Rb and Cs. In that case

we can ignore matrix elements that are non-diagonal in J and obtain

〈αJMJIMIMF |Hmag|α′JMJIMIMF 〉 = µBBz(gJMJ + gIMI) with MJ +MI = MF

(6-12)

Note that MF remains a conserved quantum number.

6.6. Example of a J = 1
2

Electronic Level

The particular case of a J = 1
2

electronic level is relatively simple and of great practical

importance. Of considerable interest are the ground and first excited states of the alkali

atoms34,35. To construct a very specific example let us consider an atom with nuclear

spin I = 7
2

and J = 1
2

as is indeed the case for the ground state of 133
55 Cs. Ultimately

we want to compare our calculations with known experimental data34,35 Clearly, there

are two hyperfine sublevels with

F = 3 with MF = ±3, ±2, ±1, 0 (6-13a)

F = 4 with MF = ±4, ±3, ±2, ±1, 0 (6-13b)

To simplify matters let us assume that the J = 1
2

level has a Lande g−factor gJ and

that the nuclear g−factor gI is very small compared with gJ and can be ignored. The

magnetic field matrix elements, in terms of µBBz can be evaluated in the JIFMF

scheme using (6-7) for the diagonal elements and (6-11) for the elements coupling the

two F values. We find the matrices

(

MF = ±4 |1
2

7
2
4,±4〉

〈1
2

7
2
4,±4| ±gJ

2

)





MF = ±3 |1
2

7
2
3,±3〉 |1

2
7
2
4,±3〉

〈1
2

7
2
3,±3| ∓3gJ

8

√
7gJ

8

〈1
2

7
2
4,±3|

√
7gJ

8
±3gJ

8









MF = ±2 |1
2

7
2
3,±2〉 |1

2
7
2
4,±2〉

〈1
2

7
2
3,±2| ∓gJ

4
gJ

√
3

4

〈1
2

7
2
4,±2| gJ

√
3

4
±gJ

4









MF = ±1 |1
2

7
2
3,±1〉 |1

2
7
2
4,±1〉

〈1
2

7
2
3,±1| −gJ

8
gJ

√
15

8

〈1
2

7
2
4,±1| gJ

√
15

8
gJ

8





(

MF = 0 |1
2

7
2
3, 0〉 |1

2
7
2
4, 0〉

〈1
2

7
2
3, 0| 0 gJ

2

〈1
2

7
2
4, 0| gJ

2
0

)

Diagonalisation of the above matrices yields just the two eigenvalues ±gJ

2
each

with a degeneracy of 5. This is exactly what would be expected if we had calculated

in the JMJIMIMF scheme.
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However, to complete the calculation we must include the magnetic hyperfine

matrix elements calculated in the same basis. These follow from Eq.(5-35b) giving

〈1
2

7
2
4MF |Hhfs|12 7

2
4MF 〉 =

7

4
A (6-14a)

〈1
2

7
2
3MF |Hhfs|12 7

2
3MF 〉 = −9

4
A (6-14b)

where A is the magnetic hyperfine structure constant. To calculate the Zeeman effect

on the two hyperfine levels associated with a J = 1
2

level we must combine the matrices

of Hmag and Hhfs in consistent units and then diagonalize them. Experimentalists

commonly express their measurements of hyperfine constants in terms of MHz since

many of their measurements involve microwave techniques. Thus in the data tables34

for caesium we find the Bohr mangeton given as

µB = h · 1.399 624 624(56)MHz/G (6-15)

which implies the magnetic field being measured in Gauss. The magnetic hyperfine

structure constant A for the 6p 2P1
2

state is given as

A62P1
2

= h · 291.920(19)MHz (6-16)

6.7. The Secular Equation for J = 1
2

levels

If J = 1
2

then necessarily F = I ± 1
2
. Let us put

k =
µbBzgJ
2I + 1

(6-17)

Then for MF = ±(I + 1
2
) we have

(

|1
2
II + 1

2
,±(I + 1

2
)〉

〈1
2
II + 1

2
,±(I + 1

2
)| 1

2
IA± k(2I + 1)

)

(6-18)

For all other values of MF we have the rank two matrices







|MF | <= I − 1
2

|1
2
II − 1

2
,MF 〉 |1

2
II + 1

2
,MF 〉

〈1
2
II − 1

2
,MF | −1

2
(I + 1)A− kMF k

√

(I + 1
2
)2 −M 2

F

〈1
2
II + 1

2
,MF | k

√

(I + 1
2
)2 −M 2

F
1
2
IA+ kMF






(6-19)

Taking the determinant of (6-19)) we can evaluate the eigenvalues λ± by solving the

secular equation

λ2 + 1
2
Aλ− 1

4
[A2I(I + 1) + 2kAMF (2I + 1) + k2(2I + 1)2] (6-20)
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Solving for the roots of the quadratic equation gives

λ± = −A
4
± A

4

√

1 + 4I(I + 1) +
8

A
kMF (2I + 1) +

k2

A2
(2I + 1)2 (6-21)

Putting

x =
k

A
(6-22)

leads finally to

λ± =
1

4
A

(

−1± (2I + 1)

√

1 +
8x

2I + 1
MF + x2

)

(6-23)

Eqs.(6-17) and (6-23) allow one to describe the behaviour of any J = 1
2

level for any

nuclear spin I having magnetic hyperfine structure in a magnetic field. Eq.(6-23) is

related to the celebrated Breit-Rabi equation36.

6.8. Example of 133
55 Cs

In the case of 133
55 Cs we have I = 7

2
and (6-23) becomes

λ± =
1

4
A
(

−1± 8
√

1 + xMF + x2
)

(6-24)

The case x = 0 corresponds to Bz = 0 and gives just the two hyperfine levels

found in (6-14a,b). Given that the experimental value of A is positive we have the

F = 3 state of 6p(2P1
2
) below that of F = 4 with a separation of 4A. For small x i.e

1 >> x >> x2 we have from (6-24)

λ± = λ± =
1

4
A
(

−1± 8
√

1 + xMF

)

(6-25)

Expanding the square root to first-order in x, noting (6-22) and (6-17) and that for

6p(2P1
2
) gj = 2

3
we find that the states with F = 3 and F = 4 splitting in a magnetic

field Bz as

E(F = 4) =
9

4
A+

µB
12
BzMF MHz (6-26a)

E(F = 3) = −7

4
A− µB

12
BzMF MHz (6-26b)

relative to the centre of gravity of the 6p(2P1
2
) state. Thus in a weak magnetic field the

two hyperfine levels split into 2F + 1 equi-spaced Zeeman sublevels. The separation

of consecutive Zeeman sublevels being

∆E =
µB
12
Bz = 0.1166Bz (6-27)

where in (6-26a,b) and (6-27) we have put h = 1 and Bz is in Gauss to give

measurements of E and ∆E in MHz as is common in such experiments34,35.

In the case of a very strong magnetic field and gJ >> gI , such that the Zeeman

splittings are very much greater than the hyperfine splitting, the Zeeman levels will

coalesce to give two levels corresponding to MJ = ±1
2

each having a degeneracy of

2I + 1.
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6.9. The Clock Correction Equation

The groundstate of an alkali atom has J = 1
2

and just the two hyperfine levels

with F = I ± 1
2
. These two hyperfine levels are separated by

∆Ehfs = 1
2
A(2I + 1) (6-28)

It follows from (6-23) that there can be no first-order Zeeman shift for the Zeeman

sublevels with MF = 0 and (6-23) simplifies to

λ± =
A

4

(

−1± (2I + 1)
√

1 + x2
)

MF = 0 (6-29)

The difference in the two levels with MF = 0 becomes

∆λ = 1
2
A(2I + 1)

√
1 + x2

≈ A

4
(2I + 1)x2

=
k2

A
(2I + 1)

=
µ2
BB

2
z(g

2
J − g2

I )

A(2I + 1)
(6-30)

where we have included, in this case, the nuclear g−factor, gI . Using (6-28) we obtain

the change ∆ω in angular frequency ω for the clock transitions as

∆ω =
µ2
BB

2
z(g

2
J − g2

I)

2h̄∆Ehfs

(6-31)

6.10. Electric Quadrupole Hyperfine Structure

Nuclei with I >= 1 may exhibit deformation from spherical symmetry. The

interaction between the charged nucleons and electrons may be written as

HEQ = −e2

∫

τe

∫

τn

ρe(re)ρn(rn)dτedτn
|re − rn|

(6-32)

where eρe(re) and eρn(rn) are the electron and nucleon charge densities and re and rn
are measured relative to the nuclear centre. Expanding the denominator of (6-32) in

spherical harmonics (as in S2.10) gives

1

|re − rn|
=
∑

k

rkn
rk+1
e

(

C(k) ·C(k)
)

(6-33)

Parity considerations allow us to drop all terms with odd k. The k = 0 term

corresponds to a monopole, or single charge and may also be dropped. The k = 2 term

corresponds to an electric quadrupole interaction. Higher electric multipole terms will
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not be considered here. Thus for the electric-quadrupole interaction we will take the

Hamiltonian term

HEQ = −e2

∫

τe

∫

τn

ρe(re)ρn(rn)
r2
n

r3
e

(

C(2) ·C(2)
)

dτedτn (6-34)

The matrix elements of HEQ may be evaluated to give for the diagonal elements

〈αJIF |HEQ|α′JIF 〉 = −e2(−1)J+I+F

{

J J 2

I I F

}

〈αJ‖r−3
e C(2)

e ‖α′J〉

〈I‖r2
nC

(2)
n ‖I〉 (6-35)

The nuclear quadrupole moment Q is commonly defined as the matrix element over

the space of the nuclear coordinates evaluated when I has its largest component in

the z−direction, that is,

Q = 〈II|r2
n(3cos

2θ − 1
2
)|II〉av = 2〈II|r2

nCn
(2)
0 |II〉

= 2

(

I 2 I

−I 0 I

)

〈I‖r2
nC

(2)
n ‖I〉 (6-36)

Evaluating the 3jm−symbol explicitly we obtain

Q = 2

√

I(2I − 1)

(I + 1)(2I + 1)(2I + 3)
〈I‖r2

nC
(2)
n ‖I〉 (6-37)

Inserting (6-37) into (6-35) and evaluating the 6j−symbol explicitly leads to

〈αJIF |HEQ|α′JIF 〉

=
−e2Q < r−3 >

I(2I − 1)
〈αJ‖C(2)

e ‖α′J〉

×
[

3
4
K(K + 1)− I(I + 1)J(J + 1)

]

√

(2J − 1)J(2J + 1)(J + 1)(2J + 3)

= bℓXJ

[ 3
4
K(K + 1)− I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)

]

(6-38)

where

bℓ = e2Q < r−3 > (6-39)

The electric quadrupole hyperfine constant B is usually defined as

B = bℓXJ (6-40)

and K is defined as in (5-35c). XJ will be different for different electronic states while

bℓ is a constant over the states of a given configuration. Specifically,

XJ = −
√

J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
〈αJ‖C(2)

e ‖α′J〉 (6-41)
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Thus for nuclei with I >= 1 we have

Hhfs = 1
2
AK +B

[

3

4
K(K+1)−I(I+1)J(J+1)

I(2I−1)J(2J−1)

]

(6-42)

In the JMJIMI scheme the matrix elements of the nuclear electric quadrupole

interaction becomes

〈αJMJIMI |HEQ|α′JMJ ± qIMI ∓ q〉

= (−1)J−MJ

(

J 2 J

−MJ ∓q MJ ± q

)

(−1)I−MI

(

I 2 I

−MI ±q MI ∓ q

)

× B

2

√

(2I + 1)(I + 1)(2I + 3)(2J + 1)(J + 1)(2J + 3)

I(2I − 1)J(2J − 1)
(6-41)

where q is limited to the values of 0, 1, 2. Note MF = MJ + MI remains a good

quantum number. The matrix elements that are diagonal in MJ and MI may be

found by explicit evaluation of the two 3jm−symbols to give

〈αJMJIMI |HEQ|α′JMJIMI〉 =
B

2

[

3M 2
I − I(I1)

IJ(2I − 1)(2J − 1)

]

× [3M 2
J − J(J + 1)] (6-42)

Thus, in the approximation that the off-diagonal matrix elements may be ignored we

have in the JMJIMI scheme

〈αJMJIMI |HEQ|α′JMJIMI〉 = MJMIA

+
B

2

[

3M 2
I − I(I1)

IJ(2I − 1)(2J − 1)

]

[3M 2
J − J(J + 1)]

(6-43)
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Lecture 7

When the great innovation appears, it will almost certainly be in a muddled, incomplete

and confusing form. To the discover himself it will be only half-understood; to

everybody else it will be a mystery. For any speculation which does not at first glance

look crazy, there is no hope. The reason why new concepts in any branch of science

are hard to grasp is always the same; contemporary scientists try to picture the new

concepts in terms of ideas which existed before

(Freeman J Dyson)

7. Introduction

In this lecture we will look at questions relating to intensities of electronic

transitions, first in the absence of hyperfine structure and then with it. Our emphasis

will be on relative intensities rather than absolute intensities. The latter are difficult

to reliably compute and to measure. Two distinct types of transitions arise (1.)

Parity allowed transitions that require a change of parity of the one-electron orbitals

and parity forbidden transitions which occur when there is no change in the parity

of the one-electron orbitals. Recall that the parity, P, of the states of an electron

configuration is

P = (−1)
∑

ℓ (7-1)

where the summation is over all one-electron orbitals of the configuration. The parity

is said to be even or odd as P is even or odd. Closed shells are necessarily of even

parity and may be omitted in the summation.

Electric dipole transitions occur between states of opposite parity and are

commonly referred to as allowed transitions whereas magnetic dipole and electric

quadrupole transitions only occur between states of the same parity and are referred

to as forbidden transitions in the sense that they are forbidden as electric dipole

transitions. In general the allowed transitions are orders of magnitude more intense

than the forbidden transitions. We start by considering electric dipole transitions.

7.1. Electric Dipole Transitions in Atoms

In the absence of perturbing fields each energy level characterised by a total

angular momentum J will be 2J+1−fold degenerate, each of the different states being

characterised by a different value of MJ . A spectral line is defined as the radiation

associated with all possible transitions between the states belonging to two levels. The

radiation resulting from a transition between a particular pair of states will be called

a component of the line.
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Electric dipole transitions are induced by the electric dipole operator

P = −e
∑

i

ri = −e
∑

i

q=1
∑

q=−1

riC
(1)
q i

(7-2)

where q = −1, 0, 1. The intensities of a given transition will be proportional to the

absolute square of the matrix element of P coupling the two states. Applying the

Wigner-Eckart theorem (2-32) we have

〈αJMJ |P |α′J ′M ′
J〉 = (−1)J−MJ

(

J 1 J ′

−MJ q M ′
J

)

〈αJ‖P‖α′J ′〉 (7-3)

The triangular condition on the top row of the 3jm−symbol gives us the selection rule

∆J = 0,±1 (7-4a)

while the requirement that the arguments of the bottom row sum to zero gives the

selection rule

∆MJ = 0,±1 or MJ →MJ − q (7-4b)

If the light, absorbing or emitting, is polarised in the z direction then only q = 0

is active while if the light is right circularly polarised, σ+, q = +1 while if it is left

circularly polarised, σ−, q = −1. This, as we shall see later, assumes great importance

in laser cooling down to nanoKelvin temperatures. Using laser beams left or right

circularly polarised one can selectively induce transitions between different hyperfine

levels which themselves have been split in a magnetic field, an important feature of

magneto-optical traps and in Bose-Einstein-Condensation.

If the light is unpolarised and we observe from an initial state withMJ the complete

set of transitions to the levels with M ′
J then the intensity will involve

∑

M ′

J
,q

|〈αJMJ |P |α′J ′M ′
J〉|2 = |〈αJ‖P‖α′J ′〉|2/(2J ′ + 1) (7-5)

which follows from the orthogonality property of 3jm−symbols. The quantity

S(αJ ;α′J ′) = |〈αJ‖P‖α′J ′〉|2 (7-6)

is commonly referred to as the line strength of the transition. Often one is interested

in first computing the square root of the line strength, S
1
2 (αJ ;α′J ′), that being the

relevant term to compute if one wishes to make corrections for intermediate coupling

etc where preservation of phase information must be retained. After making the

corrections the resultant square root of the line strength is squared.



Magnetic and Hyperfine Interactions 71

7.2. Ratio of the line strengths for the D lines of alkali atoms

Expanding the state description for an alkali atom we have, noting (2-46),

〈sℓj‖P‖sℓ′j ′〉
= −e < r >ℓℓ′ 〈sℓj‖C(1)‖sℓ′j ′〉

= −e < r >ℓℓ′ (−1)s+ℓ
′+j+1

√

(2j + 1)(2j ′ + 1)

{

j 1 j ′

ℓ′ s ℓ

}

〈ℓ‖C(1)‖ℓ′〉

(7-7)

Using this result in (7-6) we have for the ratio of the line strengths of the D2 : D1

transitions

S(ns 2S1
2
;np 2P3

2
)

S(ns 2S1
2
;np 2P1

2
)

= 2 (7-8)

which may be compared with the experimental value37 of 1.9809(9) found for 133
55 Cs.

7.3. Line Strengths for Many-Electron Atoms

In LS−coupling we can enlarge our state description and obtain the J−dependence

of the line strengths as

S
1
2 (αSLJ ;α′S ′L′J ′)

= (−1)J+L′+S+1
√

(2J + 1)(2J ′ + 1)

{

J 1 J ′

L′ S L

}

×−e〈αSL‖
∑

i

riC
(1)
i ‖α′S ′L′〉 (7-9)

The triangular conditions on the arguments of the 6j−symbol lead to the selection

rules

∆J = 0, ±1 ( 0 6↔ 0) (7-10a)

∆L = 0, ±1( 0 6↔ 0) (7-10b)

∆S = 0 (7-10c)

The J selection rule is, in the absence of hyperfine interactions and external fields,

independent of the coupling scheme. Recall that the spin-orbit interaction may

mix states of different S and L leading to a breakdown of (7-10b,c). In that case

intermediate coupling must be considered.

To obtain the intermediate coupling corrected line strength we may write

S
1
2 (aJ ; bJ ′) =

∑

α,β

(aJ |αJ)S
1
2 (αJ ; βJ ′)(βJ ′|bJ ′) (7-11)

where (aJ |αJ) represents the transformation matrix that transforms the states |αJ〉
into the state |aJ〉 of the actual coupling and analogously for (βJ ′|bJ ′). For some

detailed examples see1.
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7.4. Relative Line Strengths in LS−Coupling

It is sometimes useful to have explicit expressions for the relative line strengths in

LS−coupling, These can be obtained from the square of (7-9) with explicit evaluation

of the 6j−symbol to give

S(αSL, J ;α′SL, J) =
(2J + 1) [(S(S + 1)− J(J + 1)− L(L+ 1)]2

4J(J + 1)
P

(7-12a)

S(αSL, J ;α′SL, J + 1) =
(S + L+ J + 2)(L+ J − S + 1)(S − L+ J + 1)(S + L− J)

4(J + 1)
P

(7-12b)

S(αSL, J ;α′SL, J − 1) =
(S + L+ J + 1)(L+ J − S)(S − L+ J)(S + L− J + 1)

4J
P

(7-12c)

S(αSL, J ;α′SL+ 1, J) =
(2J + 1)(S + L+ J + 2)(L+ J − S + 1)(S − J + L+ 1)(S + J − L)

4J(J + 1)
P ′

(7-12d)

S(αSL, J ;α′SL− 1, J) =
(2J + 1)(S + L+ J + 1)(L+ J − S)(S − J + L)(S + J − L+ 1)

4J(J + 1)
P ′′

(7-12e)

S(αSL, J ;α′SL+ 1, J + 1) =
(S + L+ J + 2)(S + L+ J + 3)(L+ J − S + 1)(L+ J − S + 2)

4(J + 1)
P ′

(7-12f)

S(αSL, J ;α′SL− 1, J + 1) =
(S + L− J − 1)(S + L− J)(S − L+ J + 1)(S − L+ J + 2)

4(J + 1)
P ′′

(7-12g)

S(αSL, J ;α′SL+ 1, J − 1) =
(S − L+ J − 1)(S − L+ J)(S + L− J + 1)(S + L− J + 2)

4J
P ′

(7-12h)

where

P =
|〈αSL‖P‖α′SL〉|2
L(L+ 1)(2L+ 1)

, (7-13a)

P ′ =
|〈αSL‖P‖α′SL+ 1〉|2

(L+ 1)(2L+ 1)(2L+ 3)
(7-13c)

and

P ′′ =
|〈αSL‖P‖α′SL− 1〉|2
L(2L− 1)(2L+ 1)

(7-13c)

Thus we have from (7-12c,f) the line strength ratio

S(αSL, J ;α′SL+ 1, J + 1)

S(αSL, J ;α′SL+ 1, J)
=

J(S + L+ J + 3)(L+ J − S + 2)

(2J + 1)(S − J + L+ 1)(S + J − L)
(7-14)

which is, of course, consistent with (7-8).
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7.5. Relative Line Strengths for Hyperfine Levels

The treatment of the line strengths for electric dipole transitions between hyperfine

levels, in the absence of external fields, parallels our earlier work on atomic transitions.

Thus the relative line strengths for hyperfine levels can be derived from (7-12) to (7-14)

by simply making the replacements

S → I, L→ J, J → F (7-15)

and hence

S(αJI, F ;α′JI, F ) =
(2F + 1) [(I(I + 1)− F (F + 1)− J(J + 1)]2

4F (F + 1)
P

(7-16a)

S(αJI, F ;α′JI, F + 1) =
(I + J + F + 2)(J + F − I + 1)(I − J + F + 1)(I + J − F )

4(F + 1)
P

(7-16b)

S(αJI, F ;α′JI, F − 1) =
(I + J + F + 1)(J + F − I)(I − J + F )(I + J − F + 1)

4F
P

(7-16c)

S(αJI, F ;α′J + 1I, F ) =
(2F + 1)(I + J + F + 2)(J + F − I + 1)(I − F + J + 1)(I + F − J)

4F (F + 1)
P ′

(7-16d)

S(αJI, F ;α′J − 1I, F ) =
(2F + 1)(I + J + F + 1)(J + F − I)(I − F + J)(I + F − J + 1)

4F (F + 1)
P ′′

(7-16e)

S(αJI, F ;α′J + 1I, F + 1) =
(I + J + F + 2)(I + J + F + 3)(J + F − I + 1)(J + F − I + 2)

4(F + 1)
P ′

(7-16f)

S(αJI, F ;α′J − 1I, F + 1) =
(I + J − F − 1)(I + J − F )(I − J + F + 1)(I − J + F + 2)

4(F + 1)
P ′′

(7-16g)

S(αJI, F ;α′J + 1I, F − 1) =
(I − J + F − 1)(I − J + F )(I + J − F + 1)(I + J − F + 2)

4F
P ′

(7-16h)

where

P =
|〈αJI‖P‖α′JI〉|2
J(J + 1)(2J + 1)

, (7-17a)

P ′ =
|〈αJI‖P‖α′J + 1I〉|2

(J + 1)(2J + 1)(2J + 3)
(7-17b)

and

P ′′ =
|〈αJI‖P‖α′J − 1I〉|2
J(2J − 1)(2J + 1)

(7-17b)



74 Brian G Wybourne

Thus we have from (7-16b,d) the line strength ratio

S(αJI, F ;α′JI, F + 1)

S(αJI, F ;α′J + 1I, F )
=

F (I + J + F + 3)(J + F − I + 2)

(2F + 1)(I − F + J + 1)(I + F − J)
(7-18)

7.6. Relative line strengths for the D2 transitions of 87
37Rb

Recall that for 87
37Rb the nuclear spin is I = 3

2
and the groundstate is 5s 2S1

2
and

the spin-orbit interaction splits the first excited state into the two sublevels 5p 2P1
2

and 5p 2P3
2

with the 5p 2P3
2

sublevel being highest. The D2 transitions are associated

with transitions 5s 2S1
2
→ 5p 2P3

2
. The magnetic hyperfine interaction results in the

groundstate splitting into two sublevels with F = 1 and F = 2 respectively while for

excited level 5p 2P3
2

we obtain four sublevels with F = 0, 1, 2, 3. Here we are interested

in the transition array 5s 2S1
2
F → 5p 2P3

2
F ′ and their relative line strengths.

The relative line strengths may be calculated directly from (7-17b) together with

(7-16d,f,h) and normalised to give the results below.

(

0 1 2 3

1 1
6

5
12

5
12

0

2 0 1
20

1
4

7
20

)

7.7. Effective Operators and Perturbation Theory

The Stark effect involves the interaction of an atomic electric dipole moment, p,

with an external electric field, E, which may be represented by the operator40

HE = −E · p (7-19)

For a H−atom there is a first-order Stark effect due to the degeneracy of states

of opposite parity for a given principal quantum number n. For alkali atoms the

degeneracy is lifted by the Coulomb field and there is no first-order energy shift of the

states and one must go to second-order to obtain a Stark effect. Before proceeding to

the quadratic Stark effect in atoms a few remarks about effective operators41,42 and

perturbation theory.

Let us assume that the exact Hamiltonian H of the system can be split into two

Hermitian operators, H0 and V , i.e.,

H = H0 + V (7-20)

The spectral resolution of H0 is assumed to be known explicitly. The eigenvalues

λA, λB, . . . associated with H0 will normally possess degeneracy. We shall,
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for convenience, refer to each eigenvalue as a “configuration”. For a particular

configuration A we have the eigenvalue equation

H0|Ai〉 = λA|Ai〉 (7-21)

where i labels the g−degenerate eigenstates. It is assumed that a suitable orthonormal

basis set can be constructed in terms of the zero-order eigenfunctions |Ai〉 such that

|Aα〉 =

g
∑

i=1

ai|Ai〉 (7-22)

and

〈Aα|Aα′〉 = δ(α, α′) (7-23)

The first-order correction to the eigenvalue λA due to the effect of the perturbation

operator V acting on the unperturbed system is found by diagonalizing the g×g energy

matrix formed by the matrix elements 〈Aα|V |Aα′〉. The diagonalization of this matrix

will usually result in a lowering of the initial degeneracy.

The perturbing potential V will normally also couple the states of the configuration

A to those of B,C, . . .. If one, or more, of these configurations is approximately

degenerate with A then it is desirable to diagonalize the energy matrix for that set

of configurations. If the perturbing configuration is well removed from A then their

effect on the energy levels may be studied by perturbation theory. The first-order

correction to the eigenfunction |Aα′〉 due to the perturbation by the states |Bβ〉 of

the configuration B is given by

|Aα′〉1 =
∑

β

|Bβ〉〈Bβ|V |Aα′〉
λA − λB

(7-24)

and the second-order correction to the energy matrix is given by the matrix elements

〈Aα|V |Aα′〉 =
∑

β

〈Aα|V |Bβ〉〈Bβ|V |Aα′〉
λA − λB

(7-25)

where the summation is over all the states |Bβ〉 of the configuration B. Let us for the

moment consider the object

∑

β

〈Aα|V |Bβ〉〈Bβ|V |Aα′〉 (7-26)

Recall the closure theorem that for a complete set of states

∑

B,β

|Bβ〉〈Bβ| = 1 (7-27)

Clearly we are not entitled to use (7-27) in (7-26) let alone in (7-25) since some of the

intermediate states will include states of A and furthermore, in (7-25) the different
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configurations occur at different energies. An alternative approach is to define the

perturbing potential V in such a way that if the intermediate states belong to any

configuration other than B a null result is obtained. It is then possible to use the

closure theorem to obtain the result
∑

β

〈Aα|V |Bβ〉〈Bβ|V |Aα′〉 = 〈Aα|VABVBA|Aα′〉 (7-28)

The product operator, VABVBA now plays the role of an effective operator acting within

the zero-order states |Aα〉 of the configuration of interest.

The problem is then to define suitable operators, VABVBA that have the desired

properties. One obvious way would be to introduce annihilation and creation

operators43 or alternatively to use tensor operators that are essentially coupled

products of annihilation and creation operators. We shall exploit the latter approach.

To that end let us introduce tensor operators whose single particle operators are

defined by the relation

〈a‖v(k)(c, d)‖b〉 =
√

2k + 1δ(a, c)δ(b, d) (7-29)

where |a〉, |b〉, |c〉, |d〉 designate single particle states. For orbital operators we have

the basic commutator relation

[v(k1)(nℓ, n′ℓ′)v(k2)(n”ℓ′′, n′′′ℓ′′′)](k)q

− (−1)k1+k2−k[v(k2)(n′′ℓ”, n′′′ℓ′′′)v(k1)(nℓ, n′ℓ′)](k)q

=
√

(2k1 + 1)(2k2 + 1)[δ(n′ℓ′, n′′ℓ”)(−1)ℓ+ℓ
′′′

{

k1 k2 k

ℓ′′′ ℓ ℓ′

}

v(k)
q (nℓ, n′′ℓ”)

+ δ(nℓ, n′′′ℓ′′′)(−1)ℓ
′+ℓ′′+k1−k2

{

k1 k2 k

ℓ” ℓ′ ℓ

}

v(k)
q (n”ℓ′′, n′ℓ′)] (7-30)

Consider the case where in (7-25) the configuration A contains just one open shell

ℓN of N equivalent particles and B differs by a single excitation into an empty shell.

Then for one-particle spin-independent interactions a typical term in (7-25) (to within

a multiplicative factor that includes radial integrals and the energy denominator and

one particle reduced matrix elements of the tensor operators) would be
∑

β

〈Aα|V (k1)
q1

(ℓℓ′)|Bβ〉〈Bβ|V (k2)
q2

(ℓ′ℓ)|Aα′〉 (7-31)

The summation over the states of B is accomplished by simply removing the

intermediate states |Bβ〉〈Bβ| to give

〈Aα|V (k1)
q1

(ℓℓ′)V (k2)
q2

(ℓ′ℓ)|Aα′〉 (7-32)

The two operators may then be coupled together to yield
∑

k,q

〈k1q1k2q2|k1k2kq〉〈Aα|[V (k1)(ℓℓ′)V (k2)(ℓ′ℓ)](k)q |Aα′〉 (7-33)
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The matrix element may now be simplified using the commutation result (7-30) and

remembering that since 〈Aα| and |Aα′〉 do not contain any particles in ℓ′ orbitals the

matrix elements of the operators [V (k2)(ℓ′ℓ)V (k1)(ℓℓ′)]
(k)
q and V

(k)
q (ℓ′ℓ′) vanish to give

the final result

∑

β

〈Aα|V (k1)
q1 (ℓℓ′)|Bβ〉〈Bβ|V (k2)

q2 (ℓ′ℓ)|Aα′〉

=
∑

k,q

〈k1q1k2q2|k1k2kq〉(−1)2ℓ+k
√

(2k1 + 1)(2k2 + 1)

{

k1 k2 k

ℓ ℓ ℓ′

}

× 〈Aα|V (k)
q |Aα′〉 (7-34)

7.8. The Quadratic Stark Effect in Atoms

With the above outline of the relevant perturbation theory we can consider the

quadratic Stark effect for atoms. For simplicity let us assume that the applied electric

field is in the z−direction and that the electric dipole moment is as given earlier in

(7-2). The perturbation term VE is then

VE = eEz

∑

i

riC
(1)
0 i (7-35)

Let us assume that we are interested in a configuration A = ℓN that is perturbed by

states from a configuration B = ℓN−1ℓ′ as considered below (7-30). For convenience,

we introduce a constant, E , which we shall define as

E =
1

3

e2E2
z

λA − λB
〈ℓ|r|ℓ′〉〈ℓ′|r|ℓ〉〈ℓ‖C(1)‖ℓ′〉〈ℓ′‖C(1)‖ℓ〉 (7-36)

We note the parity selection rule ∆ℓ = ±1 is inherent in (7-36). Given the above

definition the perturbation sum in (7-25) may be immediately found using (7-34) to

give

E
∑

β

〈Aα|V (1)
0 (ℓℓ′)|Bβ〉〈Bβ|V (1)

0 (ℓ′ℓ)|Aα′〉

= E
∑

k

〈10, 10|(1, 1)k0〉〈Aα|V (k)
0 (ℓℓ)|Aα′〉(−1)k3

{

1 1 k

ℓ ℓ ℓ′

}

= E
∑

k

√
2k + 1

(

1 1 k

0 0 0

)

〈Aα|V (k)
0 (ℓℓ)|Aα′〉(−1)k3

{

1 1 k

ℓ ℓ ℓ′

}

(7-37)

The 3jm−symbol vanishes except for k = 0, 2 with

(

1 1 0

0 0 0

)

= −
√

3

3
and

(

1 1 2

0 0 0

)

=

√
30

15
(7-38)



78 Brian G Wybourne

The term with k = 0 is a complete scalar and has the effect of giving a uniform shift

to all levels of the configuration A.

In the case of the k = 2 contribution let us put

αℓℓ′ = E
{

ℓ ℓ′ 1

1 2 ℓ

}

(7-39)

so that the k = 2 contribution becomes, after expanding the state description, and

suppressing the constant αℓℓ′
√

6〈αSLJIFMF |V (2)
0 (ℓℓ)|α′SL′J ′IF ′MF 〉

=
√

6(−1)F−MF

(

F 2 F ′

−MF 0 MF

)

〈αSLJIF |V (2)(ℓℓ)|α′SL′J ′IF ′〉

= (−1)F−MF

(

F 2 F ′

−MF 0 MF

)

(−1)J
′+I+F

√

6(2F + 1)(2F ′ + 1)

×
{

F 2 F ′

J ′ I J

}

〈αSLJ ||V (2)(ℓℓ)||α′SL′J ′〉 (7-40)

For N >= 2 the final reduced matrix element can be evaluated using Judd2 Eq.(7-52)

or the tables of Nielson and Koster44. For a single electron outside of closed shells we

have

〈sℓj‖V (2)(ℓℓ)‖sℓj ′〉 = (−1)s+ℓ+j
√

5(2j + 1)(2j ′ + 1)

{

2 j j ′

1
2

ℓ ℓ

}

(7-41)

In particular

〈2P3
2
||V (2)(p, p)||2P3

2
〉 =

√
30

3
(7-42)

Note that the 6j−symbol will vanish unless ℓ >= 1 and j+j ′ >= 2. If the fine structure

splittings are much greater than the hyperfine splittings then only the matrix elements

diagonal in j need be considered. Note that the effect of an external electric field on

the hyperfine levels is to, unlike the case of magnetic fields, only partially lift the

degeneracy, states with ±MF remain degenerate and hence, apart from states with

MF = 0, each sublevel is still two-fold degenerate.

7.9. Example of 133
55 Cs

In the case of 133
55 Cs we will confine our attention to the 6p(2P3

2
) hyperfine multiplet

where, since the nuclear spin is I = 7
2
, the hyperfine levels have F = 2, 3, 4, 5. It follows

from (7-39) that ℓ′ = 0, 2. Since the dependence on ℓ′ is entirely contained in (7-39)

let us just consider the matrix elements
√

6〈2P3
2

7
2
FMF |V (2)

0 (p, p)|2P3
2

7
2
F ′MF 〉

= (−1)MF +12
√

5(2F + 1)(2F ′ + 1)

(

F 2 F ′

−MF 0 MF

){

F 2 F ′

3
2

7
2

3
2

}

(7-43)
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It is a simple matter to write a short MAPLE programme to evaluate the relevant

matrix elements and to construct a matrix for each value of MF . These matrices

are given below. The states are designated by just |FMF 〉 since all other quantum

numbers are fixed.

(

MF = ±5 |5± 5〉
〈5± 5| 1

)

(

MF = ±4 |5± 4〉 |4± 4〉
〈5± 4| 2

5
∓

√
21
5

〈4± 4| ∓
√

21
5

−2
5

)









MF = ±3 |5± 3〉 |4± 3〉 |3± 3〉
〈5± 3| − 1

15
∓

√
21
5

√
35

15

〈4± 3| ∓
√

21
5

− 1
10

∓
√

15
10

〈3± 3|
√

35
15

∓
√

15
10

−5
6























MF = ±2 |5± 2〉 |4± 2〉 |3± 2〉 |2± 2〉
〈5± 2| −2

5
∓ 7

10

√
35

10
0

〈4± 2| ∓ 7
10

4
35

∓2
√

35
35

5
√

3
14

〈3± 2|
√

35
10

∓2
√

35
35

0 ±
√

105
14

〈2± 2| 0 5
√

3
14

±
√

105
14

2
7





























MF = ±1 |5± 1〉 |4± 1〉 |3± 1〉 |2± 1〉
〈5± 1| −3

5
∓

√
14

10

√
2

2
0

〈4± 1| ∓
√

14
10

17
70

∓
√

7
14

5
√

6
14

〈3± 1|
√

2
2

∓
√

7
14

1
2

±
√

42
14

〈2± 1| 0 5
√

6
14

±
√

42
14

−1
7





























MF = 0 |50〉 |40〉 |30〉 |20〉
〈50| −2

3
0

√
5

3
0

〈40| 0 2
7

0 3
√

5
7

〈30|
√

5
3

0 2
3

0

〈20| 0 3
√

5
7

0 −2
7















Diagonalization of the above matrices yields just two distinct eigenvalues +1 and −1

each with a degeneracy of 16. This is exactly what we would expect if we let the

hyperfine structure constant approach zero. The Stark effect would lead to two levels,

one for mj = ±3
2

and one for mj = ±1
2
. The degeneracies associated with each |mj|

would be 2(2I + 1). Indeed

√
6〈2P3

2
mj |V (2)

0 (p, p)|2P3
2
mj〉 = (−1)|mj |+ 1

2 (7-44)
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Lecture 8

It is never safe to affirm that the future of physical science has no marvels in

store which may be even more astonishing than those of the past; but it seems probable

that most of the grand underlying principles have now been firmly established and that

further advances are to be sought chiefly in the rigorous application of these principles

to all the phenomena which come under our notice ... An eminent physicist has

remarked that the future truths of physical science are to be looked for in the sixth

place of decimals. (A. A. Michelson University of Chicago Quarterly Calendar 10

(August 1894): 15)

8. Hyperfine Interactions and Laser Cooling

In this section I propose to give a largely qualitative picture of the practical application

of hyperfine and magnetic interactions to laser cooling which is essential in areas

of physics involving the cooling of materials to nanoKelvin temperatures such as is

required in Bose-Einstein Condensation (BEC). For an excellent interactive website

on laser cooling and BEC I strongly recommend a visit to:-

http://www.colorado.edu/physics/PhysicsInitiative/ Physics2000.03.99/bec/index.html

Other sites of interest can be found at

http://www.physicscentral.com/action/action-00-4.html

http://www.colorado.edu/physics/PhysicsInitiative/Physics2000/index.pl

8.1. Motion and Temperature

Recall Boltzman’s equipartition of energy - that molecules in thermal equilibrium have

the same average energy, 1
2
kT associated with each independent degree of freedom

of their motion so that the average kinetic energy associated with three degrees of

translation freedom is

1
2
mv2 = 3

2
kT (8-1)

and hence can be taken as a definition of kinetic temperature with

T =
mv2

3k
(8-2)

Or for a given temperature T the average speed of a particle of mass m will be

v =

√

3kT

m
(8-3)

This suggests that if we can reduce the average speed of the particles we are

equivalently lowering their temperature.
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8.2. Some Basic Quantum Results

Let us recall some basic properties of photons and particles. For a photon we have

the standard energy and momentum results

E = hf =
hc

λ
(8-4)

p =
h

λ
(8-5)

and for a non-relativistic particle of mass m travelling with a speed v we have for the

de Broglie wavelength, λdB,

λdB =
h

mv
(8-6)

From (8-3) and (8-6) we can relate the de Broglie wavelength for an atom of mass m

to temperature by writing

T =
h2

3mkλ2
dB

(8-7)

In thermal physics it is common to define the thermal de Broglie wavelength as

λth =
h√

2πmkT
(8-8)

Note that λth decreases as the square root of the temperature T . BEC arises when

atoms are cooled to the temperature where λth is comparable with the interatomic

spacing of the atoms and the atomic wave packets overlap to make a gas of

indistinguishable particles with the result that a cloud of atoms all occupy the same

quantum state. Note that for alkali atoms the BEC involves the alkali atoms as a

very dilute vapour NOT a solid or liquid. Indeed typical densities are of the order of

10−5 of that of air. The vapour must consist of weakly interacting atoms otherwise

liquifaction or solidification will occur before BEC can happen. Typical BEC’s have

dimensions ∼ 100µm which may be compared with the Bohr radius of a H−atom of

1a0 = 0.0529nm. Recall that for one atomic mass unit (amu)

1amu = 1.6605402× 10−27kg

and specifically, in amu it is found that

23Na 22.989769
85Rb 84.911789
87Rb 86.909180
133Cs 132.905451

Furthermore,

h = 6.6260755× 10−34Js k = 1.380658× 10−23JK−1



82 Brian G Wybourne

To obtain BEC we clearly have to be able to cool the alkali vapour to orders of

nanokelvin temperatures. To obtain sufficiently low temperatures for BEC to occur

requires unconventional cooling techniques. Here we only sketch some of the broad

features of these techniques.

It has been known since the mid-1920’s that for BEC to occur the phase space

density, ρ, defined as the number of particles per cubic thermal de Broglie wavelength,

λth, must be of the order of unity, indeed it was early shown that if the atoms are bosons

then BEC occurs when‡ ρ reaches the critical value of 2.612. In most BEC experiments

this requires temperatures between 500nK and 2µK with densities between 1014 and

1015 atoms per cm3.

8.3. Absorption and Emission of Photons

The absorption or emission of a photon will possibly occur between two states

of energy E1 and E2 if the energy of the photon matches the energy difference

∆E = |E1 − E2| i.e.

∆E = h̄ω (8-9)

where the wavelength λ is related to the angular frequency ω0 in vacuum and to the

wavenumber kL by

λ =
2πc

ω0
and kL =

2π

λ
(8-10)

Note we say possibly as satisfaction of the energy criterion is not sufficient since in

most cases certain selection rules must be satisfied.

If a resonant photon is absorbed or emitted by an atom the atoms velocity will be

changed by a recoil velocity, vr, given by

vr =
h̄kL
m

(8-11)

The recoil energy is related to the photon energy such that

h̄ωr =
h̄2k2

L

2m
(8-12)

This gives us the idea of how to use a laser to lower the velocity of a cloud of Rb

vapour by using a laser tuned to a particular energy separation. Atoms approaching

the laser beam will have their velocity reduced by absorption of photons while those

travelling away from the beam will have their velocity increased. Of course things are

more complicated. The photons of the incident light will be Doppler shifted due to

the motion of the incident atoms. The Doppler shift of the incident light of frequency

ω0 due to the motion of the atom is

∆ωd =
vr
c
ω0 (8-13)

which, upon noting (8-12) and (8-10), becomes simply

∆ωd = 2ωr (8-14)

‡ For an early account of BEC see:- J E Mayer and M G Mayer,Statistical Mechanics, New York:J
Wiley & Sons (1940) (p416)



Magnetic and Hyperfine Interactions 83

8.4. Laser Cooling

To observe BEC and related phenomena it is necessary to cool the extremely low

pressure vapour, commonly an alkali metal vapour such as 87
37Rb to nanokelvin

temperatures. This is accomplished using lasers, magnetic fields and sometimes

electric fields. Usually a combination of methods are used, such as laser cooling,

Doppler cooling, polarised gradient cooling and evaporative cooling. In laser cooling

one usually chooses a specific atomic transition and uses three intersecting orthogonal

pairs (mutually perpendicular) of counter-propagating laser beams of equal intensity

and frequency tuned to just below the atomic transition frequency with the vapour

trapped at the point of intersection of the beams. As noted earlier the absorption of

photons slows down the atoms by transferring their momentum to the atoms against

the direction of motion of the atom; spontaneous emission by the atom occurs in

randomly oriented directions. Eventually, repetition of this process results in a slowing

down of the atoms and hence a dramatic lowering of the temperature.

The Doppler effect plays a key role in laser cooling. Consider an atom travelling

along the axis of a particular laser beam that has been tuned just below the resonance

frequency of the atomic transition. If the atom is travelling towards the laser beam

the atom will be Doppler shifted into resonance whereas if the atom is travelling

in the opposite direction it will be Doppler shifted further away from the resonance

frequency. As noted earlier the faster the atom is moving the greater the Doppler shift.

If the atom is moving too fast towards the laser beam it will shift the atom beyond

the resonance frequency. We now see the rationale for using counter-propagating laser

beams of identical frequency and intensity. If the two beams are collinear then an

atom moving in any direction along the beam axis has a greater absorption of photons

travelling in the opposite direction. As a result the atom will experience, on average,

a loss of momentum and hence a force that slows it down giving an effective cooling

of the atom.

Thus it is as if the atom is being forced, in three dimensions, through a dense

molasses like liquid and hence the picturesque terminology optical molasses. In this

case the viscous medium is actually light. So, where does hyperfine structure and the

Zeeman effect enter?

8.5. Magneto-Optical Traps

Two practical problems arise - containment of the vapour and tuning the laser

frequency. The walls of any container will be “hot” so the vapour must be kept

away from the walls. As to tuning the laser there are two possibilities. One is to

adjust the frequency of the photons or change the frequency of the atomic transition.

Recall that an alkali atom normally exhibits hyperfine structure. The D2 transitions,

in the absence of hyperfine structure, correspond to the optical transitions 2S1
2
→2 P3

2

(see S7.6) As a result of hyperfine interactions the 2S1
2

groundstate splits into two

hyperfine levels with F = I ± 1
2

and the 2P3
2

level into up to four hyperfine levels,
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in the case of 87
37Rb, with F = 0, 1, 2, 3. If we apply a weak external magnetic field

we split each hyperfine level into 2F + 1 Zeeman sublevels each characterised by a

magnetic quantum number, MF , where

MF = F, F − 1, . . . ,−F (8-15)

The magnetic field shifts the energies of the hyperfine levels in proportion to the

quantum number MF and the strength of the magnetic field. Thus we can use a weak

magnetic field to change the frequency of the atomic transitions rather than needing

to change the frequency of the lasers. Furthermore, if we use circularly polarised

laser beams, we can have σ+ (right-circularly polarised) in one direction and σ− (left-

circularly polarised) in the opposite direction (Recall S7.1). The σ+ light will only be

absorbed if the value of MF is increased by one unit while the σ− light will only be

absorbed if MF is decreased by one unit.

As a concrete example let us assume that an atom is in its groundstate 2S1
2

with

say F = 1 and the lasers are tuned to just below the resonance frequency of the F = 2

hyperfine level of the excited 2P3
2

level. The application of a weak magnetic field

results in both levels splitting. The groundstate splits into three Zeeman sublevels with

MF = ±1, 0 with theMF = −1 lowest in energy while the F = 2 excited level splits into

five sublevels with MF = ±2,±1, 0. From S7.1, assuming circularly polarised light we

from the MF = −1 groundstate two allowed transitions MF = −1→MF = −2 for σ−
absorption and MF = −1 → MF = 0 for σ+ absorption. Let us now assume that the

atom is moving along the z−axis away from z = 0 and that the MF = −2 level is closer

to the resonance frequency than is the MF = 0 level. As a consequence there will be

more absorption of the σ− light than of the σ+ light and hence the the effect of the net

momentum imparted by the photons is to push the atom back towards z = 0. Adding

a magnetic field that is zero at z = 0, the point of intersection of the polarised laser

beams, and linearly increasing with distance z results in any atom not at the centre,

(z = 0), having its resonance frequency Zeeman shifted towards the region of zero

magnetic field. Such an arrangement confines the cooled atoms to the region of zero

magnetic field and hence constitutes a magneto-optical trap. Such a trap can reduce

the temperature of 87
37Rb atoms to ∼ 240µK. In practice one can cool to much lower

temperatures using so-called polarised gradient cooling to get to ∼ 10µK. To reach

still lower temperatures requires further technology such as evaporative cooling where

“hot” atoms are boiled off leaving “cold” atoms behind much as in the traditional

cooling of a hot cup of coffee. Such techniques allow one to explore temperatures in

the nanoKelvin range.
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Lecture 9

He who can, does; he who cannot teaches

George Bernard Shaw Man & Superman (1903)

Those who can, do; those who can’t, attend conferences

Daily Telegraph 6th August, (1979)

9. Ions in Crystals

So far we have considered isolated atoms and ions. Now we consider the additional

effects that arise when an ion is confined in a crystalline environment. I will restrict

attention to the particular cases of lanthanides and actinides and hence to principally

ions containing electrons in the 4f− or 5f−shell. Here the spin-orbit interaction

cannot be ignored and crystal field splittings are usually two orders of magnitude larger

than hyperfine splittings. This means working in a |αSLJMJIMIMF 〉 basis rather

than a |αSLJIFMF 〉 basis. Furthermore, a crystalline environment usually means

describing the crystal fields surrounding the ions of interest in terms of finite point

symmetry groups that are subgroups of the rotation group SO3, commonly extended

to its covering group, SU2. In some cases the crystal field will be dominated by the

symmetry of a point group G with a small departure from that symmetry to that

described by a subgroup, H ∈ G. By way of examples we shall primarily concentrate

on the ions Pr3+ and Ho3+ which will involve the electron configurations 4f 2 and 4f 10

respectively and whose hyperfine structure has been studied experimentally in some

detail45−53.

9.1. Crystal Field Splittings

For an ion in free space one has spherical symmetry and each energy level may be

characterised by its total angular momentum J (neglecting, at this moment, nuclear

angular momentum) and each level will be 2J + 1−fold degenerate. This degeneracy

will be at least partially lifted if the ion is placed in a crystal. The amount of

degeneracy lifting depends on the value of J and the symmetry surrounding the

ion. The number of components into which a state of a given angular momentum

J splits in a symmetry field characterised by a site point group G may be determined

from a knowledge of the branching rules for the decomposition of the irreducible

representation [J ] under the group-subgroup reduction SU2 → G. This problem was

first considered by Bethe54 with later corrections by Opechowski55. Detailed tables

have been given by Koster etal56. Here I restrict attention to simply giving results as

required. Those of you unfamiliar with group theory will need to consult textbooks

or my earlier lectures on symmetry. We now give some of the relevant data we shall
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require for discussing the Pr3+ ion in a CsCdBr3 crystalline environment followed by

data for discussing the Ho3+ ion in LiY F4 crystals.

9.2. Data on the Finite Groups O ∼ S4 and C3v ∼ S3

The finite groups O ∼ S4 and C3v ∼ S3 play a key role in understanding the

Pr3+ ion in a CsCdBr3 crystalline environment. The crystal field is predominantly

octahedral with a small trigonal component (C3v). Here we now collect together some

data on the finite groups O ∼ S4 and C3v ∼ S3. The natural stable isotope of Pr has

a nuclear spin I = 5
2

while the electronic angular momentum has integer values. As a

result we want information on the double groups.

9.3. Table 9-1. The character table of the double Octahedral group O









































O E Ē 8C3 8C̄3 3C2, 3C̄2 6C ′
2, 6C̄

′
2 6C4 6C̄4

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 1 1 −1 −1 −1

Γ3 2 2 −1 −1 2 0 0 0

Γ4 3 3 0 0 −1 −1 1 1

Γ5 3 3 0 0 −1 1 −1 −1

Γ6 2 −2 1 −1 0 0
√

2 −
√

2

Γ7 2 −2 1 −1 0 0 −
√

2
√

2

Γ8 4 −4 −1 1 0 0 0 0









































(9-1)

9.4. Table 9-2. The character table of the double group C3v





























C3v E Ē 2C3 2C̄3 3σv 3σ̄v

Γ1 1 1 1 1 1 1

Γ2 1 1 1 1 −1 −1

Γ3 2 2 −1 −1 0 0

Γ4 1 −1 −1 1 i −i
Γ5 1 −1 −1 1 −i i

Γ6 2 −2 1 −1 0 0





























(9-2)

Note that the irreps Γ4,Γ5 form a complex pair (or doublet) sometimes designated

as Y with Γ6 designated as X (e.g. see B R Judd,Proc. R. Soc. A241, 122 (1957)).
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9.5. Table 9-3. SO(3)→ O branching rules

DJ J O

1 0 Γ1

3 1 Γ4

5 2 Γ3 + Γ5

7 3 Γ2 + Γ4 + Γ5

9 4 Γ1 + Γ3 + Γ4 + Γ5

11 5 Γ3 + 2Γ4 + Γ5

13 6 Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5

2 1/2 Γ6

4 3/2 Γ8

6 5/2 Γ7 + Γ8

8 7/2 Γ6 + Γ7 + Γ8

10 9/2 Γ6 + 2Γ8

12 11/2 Γ6 + Γ7 + 2Γ8 (9-3)

9.6. Table 9-4. O → C3v branching rules

DΓ O C3v

1 Γ1 Γ1

1 Γ2 Γ2

2 Γ3 Γ3

3 Γ4 Γ2 + Γ3

3 Γ5 Γ1 + Γ3

2 Γ6 Γ4 + Γ5 (9-4)

9.7. Table 9-5. Kronecker products for the Octahedral group O





































Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

Γ1 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

Γ2 Γ2 Γ1 Γ3 Γ5 Γ4 Γ7 Γ6 Γ8

Γ3 Γ3 Γ3 {Γ1 + Γ3}+ [Γ2] Γ4 + Γ5 Γ4 + Γ5 Γ7 Γ6 Γ8

Γ4 Γ4 Γ5 Γ4 + Γ5 {Γ1 + Γ3 + Γ4}+ [Γ5] Γ2 + Γ3 + Γ4 + Γ5 Γ6 + Γ8 Γ7 + Γ8 Γ6 + Γ7 + 2Γ8

Γ5 Γ5 Γ4 Γ4 + Γ5 Γ2 + Γ3 + Γ4 + Γ5 {Γ1 + Γ3 + Γ4}+ [Γ5] Γ7 + Γ8 Γ6 + Γ8 Γ6 + Γ7 + 2Γ8

Γ6 Γ6 Γ7 Γ7 Γ6 + Γ8 Γ7 + Γ8 {Γ4}+ [Γ1] Γ2 + Γ5 Γ3 + Γ4 + Γ5

Γ7 Γ7 Γ6 Γ6 Γ7 + Γ8 Γ6 + Γ8 Γ2 + Γ5 {Γ4}+ [Γ1] Γ3 + Γ4 + Γ5

Γ8 Γ8 Γ8 Γ8 Γ6 + Γ7 + 2Γ8 Γ6 + Γ7 + 2Γ8 Γ3 + Γ4 + Γ5 Γ3 + Γ4 + Γ5 {Γ2 + 2Γ4 + Γ5}
+[Γ1 + Γ3 + Γ5]





































(9-5)
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9.8. Table 9-6. Kronecker products for the trigonal group C3v

























Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ2 Γ2 Γ1 Γ3 Γ5 Γ4 Γ6

Γ3 Γ3 Γ3 {Γ1 + Γ3}+ [Γ2] Γ6 Γ6 Γ4 + Γ5 + Γ6

Γ4 Γ4 Γ5 Γ6 Γ2 Γ1 Γ3

Γ5 Γ5 Γ4 Γ6 Γ1 Γ2 Γ3

Γ6 Γ6 Γ6 Γ4 + Γ5 + Γ6 Γ3 Γ3 {Γ2 + Γ3}+ [Γ1]

























(9-6)

In (9-5) and (9-6) the terms involved in the symmetric part of the Kronecker

squares are enclosed in {, } brackets and the antisymmetric terms in [, ] brackets.

9.9. Data on the Finite Groups for Ho3+ Ions in LiY F4 Crystals

Ho3+ substitutes for the Y 3+ in LiY F4 at sites of tetragonal symmetry described

by the point group S4, not to be confused with the symmetric group on four objects!

Since the ionic radii of Ho3+ and Y 3+ are almost the same there is little, if any, lattice

distortion.

The group S4 is a cyclic group isomorphic to C4, consisting of the identity, E,

the rotation-reflection S4 = IC−1
4 , a two-fold rotation C2 and the inverse operator

S−1
4 = IC4. All rotations are taken about the z−axis. The character table is given

below:-

E Ē S−1
4 S̄−1

4 C2 C̄2 S4 S̄4

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 −1 −1 1 1 −1 −1

Γ3 1 1 i i −1 −1 −i −i
Γ4 1 1 −i −i −1 −1 i i

Γ5 1 −1 ω −ω i −i −ω3 ω

Γ6 1 −1 −ω3 ω3 −i i ω −ω3

Γ7 1 −1 −ω ω i −i ω3 ω

Γ8 1 −1 ω3 −ω3 −i i −ω ω3

9.10. Kronecker Products in S4

The Kronecker products for S4 may be easily established from the character table

to yield the results given in Table 9-8 below:-
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Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

Γ1 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

Γ2 Γ2 Γ1 Γ4 Γ3 Γ7 Γ8 Γ5 Γ6

Γ3 Γ3 Γ4 Γ2 Γ1 Γ8 Γ5 Γ6 Γ7

Γ4 Γ4 Γ3 Γ1 Γ2 Γ6 Γ7 Γ8 Γ5

Γ5 Γ5 Γ7 Γ8 Γ6 Γ3 Γ1 Γ4 Γ2

Γ6 Γ6 Γ8 Γ5 Γ7 Γ1 Γ4 Γ2 Γ3

Γ7 Γ7 Γ5 Γ6 Γ8 Γ4 Γ2 Γ3 Γ1

Γ8 Γ8 Γ6 Γ7 Γ5 Γ2 Γ3 Γ1 Γ4

Table 9-8. Kronecker Products for the Point Group S4

9.11. The O3 ⇒ S4 Branching Rules

The degeneracies of the states of a given J in a crystal field of S4 symmetry is

determined by the O3 ⇒ S4 branching rules where O3 is the full orthogonal group since

the point group S4 includes reflections and hence improper rotations. The irreducible

representations of O3 are labelled with a + or − superscript to distinguish those

irreducible representations that are even under inversion (+) from those that are

odd (-). Thus the results are given in the table below for integer and half-integer

values of J . The decompositions of the D−
j irreducible representations of O3 may be

obtained from those of D+
j by multiplication by Γ2. Note that since the spin irreducible

representations of S4 are all two-dimensional the for half-integer angular momentum

the levels in a crystal with point group symmetry S4 must necessarily remain two-

fold degenerate. An external magnetic field is required to lift this residual Kramer’s

degeneracy.

In the case of Ho3+ in LiY F4 the electronic angular momentum J is an integer and

the Stark electric field degeneracies follow from the appropriate O3 ⇒ S4 branching

rules. Adding the half-integer angular momentum of the Ho nucleus results in states

of total angular momentum F which is half-integer and hence the degeneracies are

always two-fold. The hyperfine interaction will also change selection rules, as we shall

see later.
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D+
J S4 D−

J S4

D+
0 Γ1 D−

0 Γ2

D+
1 Γ1 + Γ3 + Γ4 D−

1 Γ2 + Γ3 + Γ4

D+
2 Γ1 + 2Γ2 + Γ3 + Γ4 D−

2 2Γ1 + Γ2 + Γ3 + Γ4

D+
3 Γ1 + 2Γ2 + 2Γ3 + 2Γ4 D−

3 2Γ1 + Γ2 + 2Γ3 + 2Γ4

D+
4 3Γ1 + 2Γ2 + 2Γ3 + 2Γ4 D−

4 2Γ1 + 3Γ2 + 2Γ3 + 2Γ4

D+
5 3Γ1 + 2Γ2 + 3Γ3 + 3Γ4 D−

5 2Γ1 + 3Γ2 + 3Γ3 + 3Γ4

D+
6 3Γ1 + 4Γ2 + 3Γ3 + 3Γ4 D−

6 4Γ1 + 3Γ2 + 3Γ3 + 3Γ4

D+
7 3Γ1 + 4Γ2 + 4Γ3 + 4Γ4 D−

7 4Γ1 + 3Γ2 + 4Γ3 + 4Γ4

D+
8 5Γ1 + 4Γ2 + 4Γ3 + 4Γ4 D−

8 4Γ1 + 5Γ2 + 4Γ3 + 4Γ4

D+
1/2 Γ5 + Γ6 D−

1/2 Γ7 + Γ8

D+
3/2 Γ5 + Γ6 + Γ7 + Γ8 D−

3/2 Γ5 + Γ6 + Γ7 + Γ8

D+
5/2 Γ5 + Γ6 + 2Γ7 + 2Γ8 D−

5/2 2Γ5 + 2Γ6 + Γ7 + Γ8

D+
7/2 2Γ5 + 2Γ6 + 2Γ7 + 2Γ8 D−

7/2 2Γ5 + 2Γ6 + 2Γ7 + 2Γ8

D+
9/2 3Γ5 + 3Γ6 + 2Γ7 + 2Γ8 D−

9/2 2Γ5 + 2Γ6 + 3Γ7 + 3Γ8

D+
11/2 3Γ5 + 3Γ6 + 3Γ7 + 3Γ8 D−

11/2 3Γ5 + 3Γ6 + 3Γ7 + 3Γ8

D+
13/2 3Γ5 + 3Γ6 + 4Γ7 + 4Γ8 D−

13/2 4Γ5 + 4Γ6 + 3Γ7 + 3Γ8

D+
15/2 4Γ5 + 4Γ6 + 4Γ7 + 4Γ8 D−

15/2 4Γ5 + 4Γ6 + 4Γ7 + 4Γ8

D+
17/2 5Γ5 + 5Γ6 + 4Γ7 + 4Γ8 D−

17/2 4Γ5 + 4Γ6 + 5Γ7 + 5Γ8

D+
19/2 5Γ5 + 5Γ6 + 5Γ7 + 5Γ8 D−

19/2 5Γ5 + 5Γ6 + 5Γ7 + 5Γ8

D+
21/2 5Γ5 + 5Γ6 + 6Γ7 + 6Γ8 D−

21/2 6Γ5 + 6Γ6 + 5Γ7 + 5Γ8

D+
23/2 6Γ5 + 6Γ6 + 6Γ7 + 6Γ8 D−

23/2 6Γ5 + 6Γ6 + 6Γ7 + 6Γ8

Table 9-9. Branching Rules for O3 ⇒ S4

9.12. The D2d Symmetry

The point group D2d contains S4 as a subgroup and hence exists as an approximate

symmetry for describing Ho3+ in LiY F4 crystals. D2d is isomorphic to the group D4

and consists of the operations of D2 and in addition has the operations S4 and S−1
4

about one of the two-fold axes of rotation about the z−axis, as well as two reflections

σd through perpendicular planes containing the axis of S4 and which bisect the angles

between the two rotations of D2 about the axes x and y, C2′ . The character table,

Kronecker products, and O3 ⇒ D2d decompositions are given in Koster etal. We shall

refer to these later.

9.13. The Crystal Field Expansion

While group theory tells us the number of levels into which a free ion level of

angular momentum J will split when the symmetry of the ion is reduced to that of

some point group G it tells us nothing about the size of the splittings. To that end
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it is useful to consider a Hamiltonian H that consists of a free ion part, HF , and a

perturbing part, Vc, such that

H = HF + Vc (9-7)

The “free ion” part, H, will include such terms as the Coulomb and spin-orbit

interactions and possibly additional effective interactions to represent configuration

interaction effects etc. The perturbing part, Vc, represents terms that attempt to

explicitly take into account the perturbation produced by the crystal. To a first

approximation we will represent Vc in terms of a linear combination of the tensor

operators, C
(k)
q , introduced in S2.10 to give

Vc =
∑

k,q

Bk
q

∑

i

(C(k)
q )i (9-8)

The quantities, Bk
q , are the coefficients of the linear combination, commonly called the

crystal field parameters. The second summation is over all of the electrons of the ion

of interest. Here we limit our attention to single particle type operators. The values of

k and q are restricted by the symmetry of the point group and by the type of electron

orbitals being considered. If the bra and ket states are of the same parity then k is

necessarily even while for bra and ket states of opposite parity k will necessarily be

odd. Furthermore, if the electron orbitals are ℓ and ℓ′ then

ℓ+ ℓ′ >= k >= |ℓ− ℓ′| (9-9)

Thus within a fN configuration we would have

k = 0, 2, 4, 6 ℓ = ℓ′ = 3 (9-10)

whereas the states of the fN configuration would be coupled to the states of the

opposite parity configurations, such as fN−1d or fN−1g, by the odd values of k

k =

{

1, 3, 5 ℓ = 3, ℓ′ = 2

1, 3, 5, 7 ℓ = 3, ℓ′ = 4
(9-11)

These odd terms play a key role in the Judd-Ofelt theory57,58 of intensities for

lanthanide and actinide ions in crystals.

Note that the term with k = q = 0 is spherically symmetric so leads to a uniform

shift of all the levels of the configuration of interest. Further note that while the Bk
q

will be real functions of the radial distance, the non-cylindrical terms (i.e. terms with

|q| > 0) will not necessarily be real functions of the angular coordinates.

For fN configurations the matrix elements of Vc will be

〈fNαSLJMJ |Vc|fNα′SL′J ′M ′
J〉

=
∑

k,q

Bk
q 〈fNαSLJMJ |U (k)

q |fNα′SL′J ′M ′
J〉〈f ||C(k)||f〉 (9-12)



92 Brian G Wybourne

and from the Wigner-Eckart theorem

〈fNαSLJMJ |U (k)
q |fNα′SL′J ′M ′

J〉

= (−1)J−MJ

(

J k J ′

−MJ q M ′
J

)

〈fNαSLJ ||U (k)||fNα′SL′J ′〉 (9-13)

where

〈fNαSLJ ||U (k)||fNα′SL′J ′〉

= (−1)S+L+J ′+k
√

(2J + 1)(2J ′ + 1)

{

J J ′ k

L′ L S

}

〈fNαSL||U (k)||fNα′SL′〉

(9-14)

The matrix elements of the doubly reduced matrix elements may be taken from the

tables of Nielson and Koster44 or from various computer programmes59. Nielson and

Koster list the matrix elements for the even values of k for the configurations ℓN

(ℓ = p, d, f) for N <= 2ℓ+ 1. The corresponding matrix elements for N > 2ℓ+ 1 are

obtained by multiplication by −1 of those for ℓ4ℓ+2−N . Note that the matrix elements

are diagonal in the spin S while the axial terms, U
(k)
0 , will lead to a splitting of terms

with different MJ and the non-axial terms, U
(k)
q , will mix states with MJ −M ′

J = q.

As a result J and MJ will cease to be good quantum numbers.

9.14. Point Group Symmetry Restrictions

The possible values of q are restricted by two requirements. The first being that

k >= |q| and the second that the perturbing term, Vc, be invariant with respect to

all the symmetry operations of the relevant point group. The invariance with respect

to the symmetry operations of the point group amounts to the requirement that the

potential transform as the identity irreducible representation Γ1 of the point group,

G. The number of independent expansion coefficients Bk
q for a given value of k is just

the number of times Γ1 occurs in the decomposition O3 ⇒ G of the O3 irreducible

representation D+
k . In the case of the group, S4, we find from Table 9-9 that the

identity irreducible representation Γ1 occurs once for k = 2 and three times for k = 4

and k = 6. This may be compared with the higher symmetry group D2d where Γ1

occurs once for k = 2 and twice for each of k = 4 and k = 6. Thus in D2d the crystal

field expansion for the states of fN configurations will be:-

D2d : V = B2
0C

(2)
0 +B4

0C
(4)
0 +B4

4(C
(4)
−4 + C

(4)
4 ) +B6

0C
(6)
0 +B6

4(C
(6)
−4 + C

(6)
4 ) (9-15)

The potential is Hermitian with the expansion coefficients Bk
q all real.

The lower symmetry of the point group S4 manifests itself in the need for an extra

expansion coefficient for each of the non-axial terms. This can be realised by taking

the non-axial terms as complex rather than real. Thus for S4 the crystal field potential

becomes:-

S4 : V = B2
0C

(2)
0 +B4

0C
(4)
0 +B4

±4C
(4)
±4 +B6

0C
(6)
0 +B6

±4C
(6)
±4 (9-16)
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where

Bk
±q = Bk

q ± iAk
q (9-17)

with Bk
q and Ak

q are both real. Thus the S4 crystal field is associated with seven

independent crystal field parameters whereas D2d has five independent parameters.

This crystal field expansion is relevant for Ho3+ doped LiY F4 crystals.

9.15. An Octahedral Crystal Field

In the case of Pr3+ doped CsCdBr3 crystals To a first approximation, the Pr3+

ion sees a predominantly octahedral (O) crystal field which may be written as

Vcryst = B4

[

C
(4)
0 −

√
70

7

(

C
(4)
3 − C

(4)
−3

)

]

+B6

[

C
(6)
0 +

√
210

24

(

C
(6)
3 − C

(6)
−3

)

+

√
231

24

(

C
(6)
6 + C

(6)
−6

)

]

(9-18)

being the fourth and sixth order invariants associated with the integrity basis60,61 for

O → T → C3. Note an integrity basis is the minimal set of independent invariants

associated with a group G such that all other invariants are polynomials of those of

the minimal set. The success of parameterised crystal field calculations has more to

do about getting the integrity basis right for the appropriate symmetry group than

the success, or otherwise, of specific models of the crystal field.

Let us consider in some detail the behaviour of the 4f 2 3F3 level of Pr3+ in a pure

octahedral field. This is the only J = 3 term for the 4f 2 configuration so there is no

intermediate coupling and the term can be treated as a pure LS−coupled term.

We first note that for the 3F3 term of f 2 we have

〈f 2 3F3||C(2)||f 2 3F3〉 =

√
105

30
(9-19a)

〈f 2 3F3||C(4)||f 2 3F3〉 = −
√

154

198
(9-19b)

〈f 2 3F3||C(6)||f 2 3F3〉 = −5
√

3003

858
(9-19c)

Furthermore,

〈f 2 3F3M |C(k)
q ||f 2 3F3M ′〉

= (−1)3−M
(

3 k 3

−M q M ′

)

〈f 2 3F3||C(k)||f 2 3F3〉 (9-20)

Let us construct the matrices for the operator

X4 = 594

[

C
(4)
0 −

√
70

7

(

C
(4)
3 − C

(4)
−3

)

]

(9-21)
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where we have chosen the number 594 to yield simple matrix elements and

consequently integer eigenvalues. Using (9-20) and (9-21) we obtain the matrices

(

|3F3,1〉 |3F3,−2〉
〈3F3,1| −1 2

√
5

〈3F3,−2| 2
√

5 7

)

(9-22a)

(

|3F3,−1〉 |3F3,2〉
〈3F3,−1| −1 −2

√
5

〈3F3,2| −2
√

5 7

)

(9-22b)









|3F3,3〉 |3F3,0〉 |3F3,−3〉
〈3F3,3| −3 −3

√
10 0

〈3F3,0| −3
√

10 −6 3
√

10

〈3F3,−3| 0 3
√

10 −3









(9-22c)

Diagonalizing the matrices yields three distinct eigenvalues

− 18(1) − 3(3) 9(3) (9-23)

with degeneracies encased in (, ) brackets. The degeneracies are as expected for

octahedral symmetry. The associated eigenvectors are:-

|(−18)〉 =
1

3

[

−
√

2|3F3,3〉 −
√

5|3F3,0〉+
√

2|3F3,−3〉
]

(9-24a)

|(−3)a〉 =
1√
2

[

|3F3,3〉+ |3F3,−3〉
]

(9-24b)

|(−3)b〉 =
1√
6

[

−
√

5|3F3,1〉+ |3F3,−2〉
]

(9-24c)

|(−3)c〉 =
1√
6

[√
5|3F3,−1〉+ |3F3,2〉

]

(9-24d)

|(9)a〉 =
1

6

[

−
√

10|3F3,3〉+ 4|3F3,0〉+
√

10|3F3,−3〉
]

(9-24e)

|(9)b〉 =
1√
6

[

|3F3,1〉+
√

5|3F3,−2〉
]

(9-24f)

|(9)c〉 =
1√
6

[

|3F3,−1〉 −
√

5|3F3,2〉
]

(9-24g)

Let us repeat the above for the sixth-order operator

X6 = 6864

[

C
(6)
0 +

√
210

24

(

C
(6)
3 − C

(6)
−3

)

+

√
231

24

(

C
(6)
6 + C

(6)
−6

)

]

(9-25)
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This time we obtain the matrices

(

|3F3,1〉 |3F3,−2〉
〈3F3,1| −300 105

√
5

〈3F3,−2| 105
√

5 120

)

(9-26a)

(

|3F3,−1〉 |3F3,2〉
〈3F3,−1| −300 −105

√
5

〈3F3,2| −105
√

5 120

)

(9-26b)









|3F3,3〉 |3F3,0〉 |3F3,−3〉
〈3F3,3| −20 35

√
10 −385

〈3F3,0| 35
√

10 400 −35
√

10

〈3F3,−3| −385 −35
√

10 −20









(9-26c)

540(1), 225(3), −405(3) (9-27)

Not surprisingly, the eigenvectors are the same as found in (9-24a-g), to within an

overall phase, with the correlations (540 → −18), (225 → 9) and (−405 → −3). We

now give the matrices of the complete octahedral crystal field VOh = X4B
4 +X6B

6:-

(

|3F3,1〉 |3F3,−2〉
〈3F3,1| −B4 − 300B6

√
5(2B4 + 105B6)

〈3F3,−2|
√

5(2B4 + 105B6) 7B4 + 120B6

)

(9-28a)

(

|3F3,−1〉 |3F3,2〉
〈3F3,−1| −B4 − 300B6 −

√
5(2B4 + 105B6)

〈3F3,2| −
√

5(2B4 + 105B6) 7B4 + 120B6

)

(9-28b)









|3F3,3〉 |3F3,0〉 |3F3,−3〉
〈3F3,3| −3B4 − 20B6

√
10(−3B4 + 35B6) −385B6

〈3F3,0|
√

10(−3B4 + 35B6) −6B4 + 400B6
√

10(3B4 − 35B6)

〈3F3,−3| −385B6
√

10(3B4 − 35B6) −3B4 − 20B6









(9-28c)

The above matrices may be rewritten in terms of the octahedral states given in (9-

24a-g) to give









|(−3)a〉 |(−3)b〉 |(−3)c〉
〈(−3)a| −3B4 − 405B6 0 0

〈(−3)b| 0 −3B4 − 405B6 0

〈(−3)c| 0 0 −3B4 − 405B6









(9-29a)
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







|(9)a〉 |(9)b〉 |(9)c〉
〈(9)a| 9B4 + 225B6 0 0

〈(9)b| 0 9B4 + 225B6 0

〈(9)c| 0 0 9B4 + 225B6









(9-29b)

(

|(−18)〉
〈(−18)| −18B4 + 540B6

)

(9-29c)

Not surprisingly, the matrices are diagonal in the octahedral basis.

9.16. Identification of the Octahedral States for 3F3

Inspection of Table 9-3 shows that in an octahedral field a state with J = 3 will

split into three sublevels that belong to the Γ2,Γ4,Γ5 irreducible representations of the

octahedral group. The Γ2 irreducible representation is one-dimensional while the Γ4

and Γ5 irreducible representations are both three-dimensional. This is consistent with

our finding three distinct eigenvalues, one non-degenerate and two that were three-

fold degenerate. Thus the eigenvector |(−18)〉 given in (9-24a) must be associated

with the Γ2 irreducible representation of the octahedral group. The correspondences

for the other six eigenvectors must now be determined. This could be achieved by

examining their behaviour under the symmetry operations of the octahedral group.

It is instructive to adopt an alternative approach. Note that the angular momentum

operator J is a rank one tensor operator and transforms like a J = 1 state and

from Table 9-3 its three components must span the Γ4 irreducible representation.

Furthermore, Table 9-5 gives the Kronecker product

Γ2 × Γ4 = Γ5 (9-30)

This implies that the matrix elements of 〈Γ2|Jz|Γ4α〉 must necessarily vanish. It is

readily seen that that is indeed the case if Γ2 is identified with the ket vector |(−18)〉
given by (9-24a) and the three ket vectors |(−3)α〉 given by (9-24b,c,d) are taken

as belonging to Γ4. Conversely, (9-30) is satisfied if the three ket vectors |(9)α〉 are

identified as three components of the Γ5 irreducible representation.

9.17. Influence of the Trigonal C3v Crystal Field

The crystal field is predominantly octahedral with a smaller trigonal component.

The basic effect can be seen by introducing the operator

T = 120C
(2)
0 (9-31)

and considering the matrix elements

〈(−18)Γ2|T |(−18)Γ2〉 = 0

〈(9)aΓ4|T |(9)aΓ4〉 = 2

〈(9)bΓ4|T |(9)bΓ4〉 = −1 = 〈(9)cΓ4|T |(9)cΓ4〉
〈(−3)aΓ5|T |(−3)aΓ5〉 = 10

〈(−3)bΓ5|T |(−3)bΓ5〉 = −5 = 〈(−3)cΓ5|T |(−3)cΓ5〉 (9-32)
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The above results are consistent with the O → C3v branching rules

Γ2 → Γ2

Γ4 → Γ2 + Γ3

Γ5 → Γ1 + Γ3 (9-33)

i.e. the octahedral Γ2 irrep remains non-degenerate while the Γ4 and Γ5 split into a

singlet and a doublet. The trigonal splitting for the octahedral Γ5 irrep is five times

larger than for the Γ4 irrep. Experimentally46 one finds a ratio of the splittings to

be of the order of four. The above result shows that one can often gain insight into

the physics of a problem by relatively simple calculations. Frequently more insight

is gained by such calculations than by very large calculations that often lead to an

obscuring of simple things.
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Lecture 10

Both liberty and equality are among the primary goals pursued by human beings

through many centuries; but total liberty for wolves is death to lambs, total liberty

of the powerful, the gifted, is not compatible with the rights to a decent existence

of the weak and less gifted.

Isaiah Berlin, On the Pursuit of the Ideal (March 17, 1988).

10. Some Aspects of Crystal Field Theory and the Lanthanides and

Actinides

Before returning to the subject of hyperfine interactions in crystals I need to make

some further remarks on crystal field theory and on the Judd-Ofelt57,58 theory of

intensities. Since the classical paper of Bethe54, considerable attention has been given

to the interpretation of the spectra of f−ions substituted into various crystal lattices.

The simple theory62−66 based, initially, on the assumption that the substituted ion

“sees” a purely electrostatic field with a point symmetry of the lattice site it occupies,

met with considerable success. It allowed meaningful assignments to be made of most

of the observed crystal field levels and, for the rare earths, the crystal field parameters

usually reproduce the observed spectra to a standard deviation ∼ 10cm−1.

In this lecture I will first discuss selection rules that follow from the point group

symmetry of the immersed ion, taking for specificity the point group S4 introduced in

S9.9. We deduce the relevant selection rules for electric dipole and magnetic dipole

transitions in crystals with no reference to specific mechanisms. We note that hyperfine

interactions can lead to a violation of these selection rules. We then consider the

parameterisation of electric dipole transitions and then make connection with the

Judd-Ofelt formulation.

10.1. Selection Rules for Ions in a Crystal Field of S4 Point Symmetry

Electric dipole (E.d) transitions involve the matrix elements of z for polarisation

parallel to the z−axis (π−polarisation) and for polarisation perpendicular to the

z−axis (σ−polarisation) matrix elements of x±iy. For S4 point symmetry z transforms

as the Γ2 representation and x ± iy as the (Γ3,Γ4) complex pair of representations.

The E.d selection rules follow from inspection of the Kronecker product table 9-8 given

in S9.10 to give for an even number of electrons













E.d Γ1 Γ2 Γ3 Γ4

Γ1 − π σ σ

Γ2 π − σ σ

Γ3 σ σ − π

Γ4 σ σ π −













(10-1)
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and for an odd number of electrons













E.d Γ5 Γ6 Γ7 Γ8

Γ5 − σ π σ

Γ6 σ − σ π

Γ7 π σ − σ

Γ8 σ π σ −













(10-2)

For magnetic dipole transitions we need the matrix elements of Jz for

σ−polarisation and Jx ± iJy for π−polarisation. For S4 Jz transforms as Γ1 and

Jx ± iJy as the (Γ3,Γ4) complex pair of representations leading to the selection rules













M.d Γ1 Γ2 Γ3 Γ4

Γ1 σ − π π

Γ2 − σ π π

Γ3 π π σ −
Γ4 π π − σ













(10-3)

and for an odd number of electrons













M.d Γ5 Γ6 Γ7 Γ8

Γ5 σ π − π

Γ6 π σ π −
Γ7 − π σ π

Γ8 π − π σ













(10-4)

Note that the crystal field can mix states of different J and L lifting the ∆J,∆L =

0,±1 restrictions of the free ion while the spin-orbit interaction can lead to a

breakdown of the spin selection rule ∆S = 0. Magnetic dipole transitions are allowed

between states of the same parity. In the free ion in pure LS−coupling we have the

magnetic dipole selection rules

∆S,∆L = 0, ∆J = 0,±1 (10-5)

Again these selection rules can be broken by spin-orbit and crystal field interactions.

Nevertheless the group-theoretical selection rules (10-1)-(10-4) are rigorous. An

exception can arise if hyperfine interactions exist and they mix close by crystal field

levels.

Consider the trivalent ion, Ho3+, having the electron configuration 4f 10 and hence

an even number of electrons and thus integer electronic angular momentum. However,

the Ho nucleus is half-integer and hence the nett angular momentum is half-integer.

As a result the crystal field levels, in the presence of the hyperfine interaction, will
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involve the spin irreducible representations of S4 and hence the selection rules will be

given by (10-3) and (10-4) rather than (10-1) and (10-2). Taking into account the

degeneracy of the pairs Γ56 and Γ78 we see that some of the transitions will occur in

pure π− or σ− polarisation with the rest as σπ−polarisation as shown below

(

E.d Γ56 Γ78

Γ56 σ σπ

Γ78 σπ σ

)

(10-6)

and

(

M.d Γ56 Γ78

Γ56 σπ π

Γ78 π σπ

)

(10-7)

which gives a way of sometimes distinguishing the different symmetries by polarisation

measurements.

10.2. Crystal Field Quantum Numbers

The crystal field matrix elements must satisfy the selection rule

∆MJ = q (10-8)

to be non-vanishing. Following Hellwege68 we may conveniently introduce a set of

crystal quantum numbers µ such that

MJ = µ(mod q) (10-9)

Thus for S4 we have q = 0, ±4 leading to the crystal quantum numbers

µ =

{

0, ±1, 2 J integer

±1
2
, ±3

2
J half-integer

(10-10)

Thus for J = 8 the following |JMJ〉 basis states will be coupled by the S4 crystal field

µ = 0 |80〉, |8± 4〉, |8∓ 8〉 (10-11a)

µ = ±1 |8± 1〉, |8∓ 3〉, |8± 5〉, |8∓ 7〉 (10-11b)

µ = 2 |82〉, |8− 2〉, |86〉, |8− 6〉 (10-11c)

while for a hyperfine level with F = 15
2

, or an angular momentum level for an odd

number of electrons with J = 15
2

, we would have the following basis states

µ = ±1
2
|15

2
± 1

2
〉, |15

2
∓ 7

2
〉, |15

2
± 9

2
〉, |15

2
∓ 15

2
〉 (10-12a)

µ = ±3
2
|15

2
± 3

2
〉, |15

2
∓ 5

2
〉, |15

2
± 11

2
〉, |15

2
∓ 13

2
〉 (10-12b)
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The correlation between the crystal quantum numbers and the group representations

of S4 is readily seen to be

µ =











0 : Γ1

±1 : Γ34

2 : Γ2

(10-13a)

µ =

{

±1
2

: Γ56

±3
2

: Γ78

(10-13b)

where we have combined the complex pairs of irreducible representations of S4,

emphasizing that they form doubly degenerate states in the crystal field. Note that

in evaluating crystal field matrix elements the matrix elements vanish between states

belonging to different crystal quantum numbers. Furthermore, it can be useful to

introduce, for the symmetric and antisymmetric linear combinations relevant to the

Γ1 and Γ2 irreducible representations

|JMJ〉± =
1√
2

(|JMJ〉 ± |J −MJ〉) (10-14)

We then have

〈JMJ |Vcryst|JM ′
J〉++ = 〈JMJ |Vcryst|JM ′

J〉−−, real (10-15a)

〈JMJ |Vcryst|JM ′
J〉+− = 〈JMJ |Vcryst|JM ′

J〉∗−+, imaginary (10-15b)

10.3. Intensities of Transitions and Effective operators for Ions in Crystals

In the preceding two sections we have developed the selection rules for electric

dipole transitions for ions in crystals. These selection rules were developed

independently of any specific mechanism. Thus in the case of S4 point group

symmetry we were considering the selection rules that would arise if we had

constructed an effective operator having three components transforming as the

irreducible representations, Γ2 for the π−polarisation component and the (Γ3,Γ4)

complex pair of representations for the two σ−polarisation components. This may

be compared with our construction of an effective crystal field operator, Vcryst, where

we constructed an operator involving linear combinations of the operators C
(k)
q that

transformed as the identity irreducible representation Γ1. In the latter case one was

simply constructing an integrity basis and then endowing it with an interpretation

based upon the parameterisation of the crystal field.

As pointed out by McLellan69−71 the concept of an integrity basis can be

generalised to polynomial bases for specific representations of a group G. Thus one

could construct an effective operator to represent the intensities of transitions by

defining, once again, linear combinations of the operators C
(k)
q but this time with the

requirement that the linear combinations transform as the Γ2,Γ3 and Γ4 irreducible

representations of S4. These linear combinations would have associated parameters
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depending upon the allowed values of (k, q). If the operators are developed in terms

of the C
(k)
q operators acting within the fN electron configuration then the rank k

must be even. It would, however, be perfectly possible to develop operators with the

appropriate transformation properties having both even and odd ranks if the unit

tensor operators U
(k)
q were used. Exclusion of the odd rank operators requires a

physical argument such as that based upon the Judd-Ofelt57,58 perturbation approach

where the odd rank operators approximately cancel in second-order (the degree of

cancellation depends upon the choice of zero-order eigenfunctions) though not in third-

order41,42.

10.4. The Judd-Ofelt Theory of Intensities

The Judd-Ofelt57,58 theory of intensities forms a landmark in the theory of the

spectroscopic properties of the lanthanides and actinides ions in crystals. Basically it

represents a second-order perturbation formulation of forced electric dipole transitions

almost exactly paralleling our effective operator treatment of the quadratic Stark effect

in atoms outlined in S7.7 and S7.8. Here I give only the barest outline keeping largely

to the notation developed in Lecture VII and to relevant papers41,42,57,58. The second-

order contribution to the electric dipole moment we write as

〈Aα|D(1)
q |Aα′〉1

=
∑

β

{〈Aα|Ved|Bβ〉〈Bβ|Vcryst|Aα′〉+ 〈Aα|Vcryst|Bβ〉〈Bβ|Ved|Aα′〉} /(λA − λB)

(10-16)

where the configurations are of opposite parity, and we write41,42,57

Vcryst =
∑

t,p

AtpD
(t)
p (10-17)

with

D(t)
p =

∑

j

rtC(t)
p (θj, φj) (10-18)

and, suppressing the factor of −e,

Ved = D(1)
q (10-19)

Following Lecture VII we readily arrive at the result

〈Aα|D(1)
q |Aα′〉1

=
∑

p,t,λeven

T (λ, q, ρ)〈Aα|U (λ)
ρ |Aα′〉

=
∑

p,t,λeven

(−1)p+q(2λ+ 1)Atp

(

1 λ t

q ρ p

)

Ξ(t, λ)〈Aα|U (λ)
ρ |Aα′〉 (10-20)
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where

Ξ(t, λ) = 2(2ℓ+ 1)(2ℓ′ + 1)(−1)ℓ+ℓ
′

{

1 λ t

ℓ ℓ′ ℓ

}(

ℓ 1 ℓ′

0 0 0

)(

ℓ′ t ℓ

0 0 0

)

× 〈nℓ|r|n′ℓ′〉〈nℓ|rt|n′ℓ′〉/(λnℓ − λn′ℓ′) (10-21)

necessarily ρ = −(p+ q) and we have put A ≡ nℓN and B ≡ nℓN−1n′ℓ′.

The oscillator strength fe of a transition at a wavenumber σ in a medium of

refractive index η may be written as

fe =
8π2mc

3he2
σ〈A|P(1)

ρ |B〉2
(η2 + 2)2

9
(10-22)

= σ
∑

λ,q,ρ

T (λ, q, ρ)〈Aα|U (λ)
ρ |Aα′〉2 (10-23)

where

T (λ, q, ρ) =
8π2mc

3he2
σ

(η2 + 2)2

9
T (λ, q, ρ)2 (10-24)

Before continuing further with remarks on intensities I propose to give a simple

example of a crystal field calculation of some of the levels of Pr3+ at a D3h point group

symmetry such as occurs, to a good approximation in the lanthanide trihalides.

10.5. A Simplified Crystal Field Calculation

The Pr3+ ion has 4f 2 as its lowest energy electron configuration having the

spectroscopic terms 3PFH 1SDGI. Hund’s rules give the ground term as 3H4. Placed

in a LaCl3 single crystal the Pr3+ ion sees a nearest neighbour point symmetry

environment of D3h. (The ’exact’ point group symmetry is C3h). The crystal field

levels may be labelled by the irreducible representations of the point group D3h whose

character table is given below.

























E 2C3 3C2 σh 2S3 3σv

Γ1 1 1 1 1 1 1

Γ2 1 1 −1 1 1 −1

Γ3 1 1 −1 −1 −1 1

Γ4 1 1 1 −1 −1 −1

Γ5 2 −1 0 2 −1 0

Γ6 2 −1 0 −2 1 0

























(10-25)

Table 10-1. Character table for the ordinary irreducible representations of D3h

Under SO3 → D3h we have the branching rules
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J D3h irreducible representations

0 Γ1

1 Γ2 + Γ6

2 Γ1 + Γ5 + Γ6

3 Γ2 + Γ3 + Γ4 + Γ5 + Γ6

4 Γ1 + Γ3 + Γ4 + 2Γ5 + Γ6

5 Γ2 + Γ3 + Γ4 + 2Γ5 + 2Γ6

6 2Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5 + 2Γ6 (10-26)

Table 10-2 SO3 → D3h Branching Rules

The irreducible representations of D3h form a wider class of labels than do the

crystal quantum numbers. Levels with µ = 0 may be divided according to whether

they transform as Γ1 or Γ2 and those with µ = 3 divided according to the irreducible

representations Γ3 or Γ4. The µ = ±1 and µ = ±2 levels span the two-dimensional Γ5

and Γ6 irreducible representations respectively. In the absence of magnetic fields the

Γ5 and Γ6 levels will remain two-fold degenerate.

For a crystal field of D3h symmetry the crystal field potential may be written as

Vcryst = B2
0C

(2)
0 +B4

0C
(4)
0 +B

(6)
0 C

(6)
0 +B6

6(C
(6)
6 + C

(6)
−6 ) (10-26)

The matrix elements of Vcryst for states of the 4f 2 configuration follow, by now,

standard tensor operator algebra using MAPLE. Here I will limit the calculations to

just the triplets 3PFH and ignore departures from LS−coupling (explored earlier in

Lecture III) and J−mixing. There is no splitting for the 3P0 level which is a non-

degenerate Γ1 level. For the 3P1 term we expect two levels, a non-degenerate Γ2 and a

two-fold degenerate Γ6 level with crystal field energies of (we suppress the SL labels,

just giving the |JMJ〉 numbers)

〈1, 0|Vcryst|1, 0〉 = +
B2

0

5
and 〈1,±1|Vcryst|1,±〉 = −B

2
0

10
(10-27)

and thus a crystal field energy separation of

E(Γ6)− E(Γ2) =
3B2

0

10
(10-28)

Experimentally72 the separation is found to be 30.3cm−1 suggesting from Eq. (10-28) a

value for B2
0 of ∼ 103cm−1. Indeed on the basis of a least squares fit with the inclusion

of intermediate coupling and J−mixing, Margolis73, arrived at the parameter set

B2
0 = 95cm−1, B4

0 = −325cm−1, B6
0 = −634cm−1, B6

6 = 427cm−1(10-29)

For the 3P2 level we expect from Table 10-1 a non-degenerate Γ1 and two two-fold

degenerate Γ5, Γ6 levels. Indeed we find the matrix elements

〈2, 0|Vcryst|2, 0〉 = −B
2
0

5
, 〈2,±1|Vcryst|2,±1〉 = −B

2
0

10
, 〈2,±2|Vcryst|2,±2〉 =

B2
0

5
(10-30)
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Again the matrix elements involve just one parameter, B2
0 , whereas the matrix

elements for the 3F2 term will involve B4
0 as well as B4

0 though the number of levels

remains the same. Indeed we now find for the three levels

〈2, 0|Vcryst|2, 0〉 = −8B2
0

105
− 2B4

0

63
(10-31a)

〈2,±1|Vcryst|2,±1〉 = −4B2
0

105
+

4B4
0

189
(10-31b)

〈2,±2|Vcryst|2,±2〉 =
8B2

0

105
− B4

0

189
(10-31c)

In calculating the matrix elements for the 3F3 term we take advantage, for the

case of the |3,±3〉 kets, of the symmetric and antisymmetric linear combinations

|3, 3〉± defined in (10-24) with the symmetric combination belonging to Γ4 and the

antisymmetric to Γ3.

〈3, 0|Vcryst|3, 0〉 = −B
2
0

15
− B4

0

99
+

25B6
0

429
(10-32a)

〈3,±1|Vcryst|3,±1〉 = −B
2
0

20
− B4

0

594
− 25B6

0

572
(10-32b)

〈3,±2|Vcryst|3,±2〉 =
7B4

0

594
+

5B6
0

286
(10-32c)

±〈3, 3|Vcryst|3, 3〉± =
B2

0

12
− B4

0

198
− 5B6

0

1716
∓ 5
√

231B6
6

858
(10-32d)

±〈3, 3|Vcryst|3, 3〉∓ =∓ 〈3, 3|Vcryst|3, 3〉± = 0 (10-32e)

Here we see that by starting with symmetrised states the rank 2 matrix formed by

the |3,±3〉 states has effectively been put in diagonal form.

As a final example we consider 3H4 ground term.

〈4, 0|Vcryst|4, 0〉 =
104B2

0

495
− 12B4

0

121
− 1360B6

0

14157
(10-33a)

〈4,±1|Vcryst|4,±1〉 =
442B2

0

2475
− 6B4

0

121
+

68B6
0

14157
(10-33b)





µ = ±2 |4, 2〉± |4, 4〉±

±〈4, 2| 208B2
0

2475
+

2B4
0

33
+

136B6
0

1287
±272

√
33B6

6

14157

±〈4, 4| ±272
√

33B6
6

14157
−728B2

0

2475
− 28B4

0

363
+

272B6
0

14157



 (10-33c)

±〈4, 3|Vcryst|4, 3〉± = −182B2
0

2475
+

14B4
0

121
− 1156B6

0

14157
± 136

√
231B6

6

14157
(10-33d)

Notice that (10-33c) corresponds to a pair of rank 2 matrices which have identical

pairs of eigenvalues though differing eigenfunctions.
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10.6. The MAPLE Programme

The preceding calculations were done by the simple MAPLE programme given

below. Note that the crystal field parameters Bk
q are declared globally. If you do not

specify them then you get the expressions given earlier. If you declare the values of

the parameters then the output will be numerical.

Table 10-2. The MAPLE programme

print(‘This routine calculates the crystal field matrix elements for‘);

print(‘the triplet states of the fˆ2 configuration with D3h symmetry‘);

read”njsym”;

fck:=proc(L,J,M1,M2,k,q)

local result;

result:=simplify(combine((((-1)ˆ(J-M1))*threej(J,k,J,-M1,q,M2)*

(-2)*(2*L+1)*sixj(L,k,L,3,3,3)*ck(3,3,k)*((-1)ˆ(1+L+J+k))*(2*J+1)*

sixj(J,k,J,L,1,L))));

end:

V:=proc(L,J,M1,M2)

local me;

global B20,B40,B60,B66;

me:=B20*fck(L,J,M1,M2,2,0)+B40*fck(L,J,M1,M2,4,0)

+B60*fck(L,J,M1,M2,6,0)

+B66*(fck(L,J,M1,M2,6,6)+fck(L,J,M1,M2,6,-6));

end:

print(‘Example to calculate the matrix element 〈3H43|V |3H43〉‘);
print(‘Enter V(5,4,3,3);‘);

V(5,4,3,3);

Using the Margolis parameter set, Eq.(10-29), in Eqs (10-33a-d) leads to the

numerical results (in cm−1)

〈4, 0|Vcryst|4, 0〉 = 113 (10-33a′)

〈4,±1|Vcryst|4,±1〉 = 30 (10-33b′)

(

µ = ±2 |4, 2〉± |4, 4〉±
±〈4, 2| −79 ±47

±〈4, 4| ±47 −15

)

(10-33c′)

±〈4, 3|Vcryst|4, 3〉± = 7± 62 (10-33d′)
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Diagonalisation of the matrix in Eq. (10-33c′) yields the eigenvalues −55 and 69.

Adjusting the eigenvalues found in Eqs. (10-33a′-d′) so that the lowest eigenvalue

matches the lowest crystal field level for the ground state we have the comparison

with the experimental data74 given in (10-34) below.

D3h µ Eexpt Ecalc

Γ5 2 0 0

Γ3 3 49 33

Γ5 2 114 96

Γ6 1 134 130

Γ4 3 173 137

Γ1 0 217 199 (10-34)

The agreement between the experimental and calculated levels is reasonable

considering the simplicity of our calculation where we have been more interested

in illustrating principles rather than precision. Note that the order of the levels is

correctly given.

10.7. Further Remarks on Integrity Bases

Crystal field calculations that involve parameterised fits of symmetrised sets of

spherical harmonics are to a large extent model independent with a “good fit” being

indicative of the correct symmetry. As noted earlier such calculations are what

one expects if all the invariants of the appropriate integrity basis are used. In

many respects the parameterised Judd-Ofelt theory of intensities can be regarded

as essentially a generalised integrity basis. Thus for the point group D3h one knows

that the electric dipole selection rules arise from the knowledge that z belongs to the

Γ4 irrep and x ± iy to Γ6. We may attempt to construct an effective operator from

the even rank unit tensor operators U
(k)
q that mimic the selection rules. Two such

operators would be

O(Γ4) = T 4
3 (U

(4)
3 + U

(4)
−3 ) + T 6

3 (U
(6)
3 + U

(6)
−3 ) (10-35a)

O(Γ6) = T 2
2 (U

(2)
2 + U

(2)
−2 ) + T 4

2 (U
(4)
2 + U

(4)
−2 ) + T 4

4 (U
(4)
4 + U

(4)
−4 )

+ T 6
2 (U

(6)
2 + U

(6)
−2 ) + T 6

4 (U
(6)
4 + U

(6)
−4 ) (10-34b)

The operator O(Γ4) would parameterise the π−polarised transitions and O(Γ6) the

σ−polarised transitions. The first operator involving two parameters and the second

five parameters.
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Lecture 11

11. Introduction

We now return to the subject of hyperfine interactions in crystals. The earliest

studies came from electron spin resonance studies. Later work by the groups of

Hellwege in Darmstadt and Dieke at Johns Hopkins reported observations of hyperfine

structure in optical absorption spectra of Pr3+ and Ho3+ ions in crystals. The

substantive development came with the very high resolution studies by M Popova

and her associates45,46,49−53 at Troitsk, near Moscow. In this lecture our primary aim

will be to calculate the magnetic dipole hyperfine structure in the 3F3 term of the 4f 2

configuration of the Pr3+ ion in a CsCdBr3 crystalline environment assuming that

the Pr3+ ion is at a site of symmetry SO(3)→ Oh → C3v symmetry. Our objective is

to explain by example, and specific calculations, the principal features of the observed

hyperfine structure. We do not aim for high precision but rather relatively simple

descriptions of the broad features of the observed hyperfine structure. We shall ignore

electric quadrupole contributions. Our attention will be almost entirely focussed on

the 3F3 level of the 4f 2 electron configuration. Many of the calculations will be done

by writing simple MAPLE programmes. Let us first recall some of the content of

earlier lecturs.

11.1. Coulomb Matrix Elements for the f 2 Electron Configuration

The f 2 configuration involves just seven 2S+1L terms whose Coulomb energies in

terms of the Slater Fk integrals are2

E(1S) = F0 + 60F2 + 198F4 + 1716F6

E(3P ) = F0 + 45F2 + 33F4 − 1287F6

E(1D) = F0 + 19F2 − 99F4 + 715F6

E(3F ) = F0 − 10F2 − 33F4 − 286F6

E(1G) = F0 − 30F2 + 97F4 + 78F6

E(3H) = F0 − 25F2 − 51F4 − 13F6

E(1I) = F0 + 25F2 + 9F4 + F6 (11-1)

11.2. Spin-orbit Interaction Matrices for the f 2 Electron Configuration

We give below the complete spin-orbit interation matrices for all the 2S+1LJ levels

of the f 2 electron configuration. Notice that there is no spin-orbit coupling between the
3F3 level and any other levels and hence there are no intermediate coupling corrections
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to be made.

(

3P0
1S0

3P0 −1 −2
√

3
1S0 −2

√
3 0

)

(

3P1

3P1 −1
2

)









3P2
1D2

3F2

3P2
1
2

3
2

√
2 0

1D2
3
2

√
2 0 −

√
6

3F2 0 −
√

6 −2









(

3F3

3F3 −1
2

)









3F4
1G4

3H4

3F4
3
2

√
33
3

0

1G4

√
33
3

0 −
√

30
3

3H4 0 −
√

30
3

−3









(

3H5

3H5 −1
2

)

(

3H6
1I6

3H6
5
2

√
6

2

1I6
√

6
2

0

)

(11-2)

NB. The individual matrix elements are to be multiplied by the spin-orbit coupling

constant ζ.

11.3. Matrix Elements of Magnetic Dipole Hyperfine Interactions

Let us us recall some of our earlier results. Define

aℓ = 2µ2
B(me/Mp)gI〈r−3〉 (11-3)

where µB is the Bohr magneton, gI the nuclear g factor and 〈r−3〉 the average inverse-

cube radius of the electron orbital ℓ. Further, let

Hm(i)(1) = aℓ[l
(1)
i −

√
10(s(1)xC(2))

(1)
i ]

= aℓ[li −
√

10X
(1)
i ] (11-4)

with

H(1)
m =

n
∑

i=1

Hm(i)(1) (11-5)

where the sum is over a group of equivalent electrons in the configuration ℓn.

The interaction of a nuclear magnetic moment with the orbital and spin moments

of n electrons can be written in the above tensor operator notation as

Hm = aℓ(H
(1) · I(1)) (11-6)

In the JIFM scheme we have

〈αJIFM |aℓ(H(1) · I(1))|α′J ′IF ′M ′〉

= aℓ(−1)J
′+I+F δF,F ′δM,M ′

{

J ′ I F

I J 1

}

〈αJ ||H(1)||α′J ′〉〈I||I(1)||I〉 (11-7)
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For matrix elements diagonal in J Eq.(11-7) simplifies to

〈αJIFM |aℓ(H(1) · I(1))|α′JIFM〉

= aℓ
K

2
√

J(J + 1)(2J + 1)
〈αJ ||H(1)||α′J〉 (11-8)

where

K = F (F + 1)− J(J + 1)− I(I + 1) (11-9)

While there is no difficulty in calculating matrix elements with J−mixing we shall

leave that extension as an exercise. The calculation of the magnetic dipole hyperfine

interaction involves two parts, an orbital part (L) and a spin part (S).

For the orbital part we have

L =
〈αSLJ ||L(1)||α′S ′L′J〉
√

J(J + 1)(2J + 1)
= δα,α′δS,S′δL,L′(2− g) (11-10)

where g is the usual Lande g−factor

2− g =
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
(11-11)

This part may be corrected for intermediate coupling by simply replacing g by its

intermediate coupling value.

For the spin part we have

S = −
√

10〈αSLJ ||∑n
i=1(s

(1)C(2))
(1)
i ||α′S ′L′J〉

√

J(J + 1)(2J + 1)
(11-12)

which evaluates to

S = (−1)ℓ+1(2ℓ+ 1)

(

ℓ ℓ 2

0 0 0

)







S S ′ 1

L L′ 2

J J 1







×
√

30(2J + 1)

J(J + 1)
〈αSL||V (12)||α′S ′L′〉 (11-13)

where the last matrix element involves the double tensor operator V(12) that acts in

the spin and orbital spaces and whose one-electron reduced matrix elements satisfy

〈ℓ||v(12)||ℓ〉 =

√

3

2
(11-14)

For the special case of a two-electron configuration ℓ2 we have

〈αSL||V (12)||α′S ′L′〉 =
√

6(2S + 1)(2S ′ + 1)(2L+ 1)(2L′ + 1)

×
{

S 1 S ′

1
2

1
2

1
2

}{

L 2 L′

ℓ ℓ ℓ

}

(11-15)
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From Eqs.(11-10) and (11-12) we find for f 2(3F3) the values

L =
11

12
and S = − 1

36
(11-16)

The magnetic hyperfine structure constant, A, as normally defined, is given by

A = aℓ[L+ S] (11-17)

and hence

A(3F3) = aℓ

[

8

9

]

(11-18)

We note that for the 3F3 state there is no intermediate coupling correction.

11.4. Nuclear Magnetic Hyperfine Matrix Elements in the JJzIIz Scheme

In a crystal the splittings that arise from the internal electric fields as substantially

greater than the hyperfine splittings so that it is more realistic to calculate the

hyperfine matrix elements in the JJzIIz scheme where the diagonal matrix elements

are given by

〈αSLJJzIIz|Hm|α′S ′L′JJzIIz〉 = JzIzA (11-19)

and the off-diagonal matrix elements by

〈αSLJJzIIz|Hm|α′S ′L′JJz ± 1IIz ∓ 1〉
= 1

2
A
√

(J ∓ Jz)(J ± Jz + 1)(I ± Iz)(I ∓ Iz + 1) (11-20)

In order to obtain practical results one needs to obtain the crystal field states as linear

combinations of the |JJz〉 kets. In the present case that involves first obtaining states

symmetrised with respect to the octahedral point group as done in Lecture IX. We

recall some of those results.

11.5. An Octahedral Crystal Field

To a first approximation, the Pr3+ ion sees a predominantly octahedral (O) crystal

field which may be written as

Vcryst = B4

[

C
(4)
0 −

√
70

7

(

C
(4)
3 − C

(4)
−3

)

]

+B6

[

C
(6)
0 +

√
210

24

(

C
(6)
3 − C

(6)
−3

)

+

√
231

24

(

C
(6)
6 + C

(6)
−6

)

]

(11-21)

Following Lecture IX, we construct for the 3F3 term the matrix elements of the

operator

X4 = 594

[

C
(4)
0 −

√
70

7

(

C
(4)
3 − C

(4)
−3

)

]

(11-22)
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where we chose the number 594 to yield simple matrix elements and consequently

integer eigenvalues. The matrix elements were evaluated in a |JJz〉 basis and

diagonalised so as to yield the octahedrally symmetrised states

|(3Γ1)〉 =
1

3

[

−
√

2|3F3,3〉 −
√

5|3F3,0〉+
√

2|3F3,−3〉
]

(11-23a)

|(3Γ4)a〉 =
1√
2

[

|3F3,3〉+ |3F3,−3〉
]

(11-23b)

|(3Γ4)b〉 =
1√
6

[

−
√

5|3F3,1〉+ |3F3,−2〉
]

(11-23c)

|(3Γ4)c〉 =
1√
6

[√
5|3F3,−1〉+ |3F3,2〉

]

(11-23d)

|(3Γ5)a〉 =
1

6

[

−
√

10|3F3,3〉+ 4|3F3,0〉+
√

10|3F3,−3〉
]

(11-23e)

|(3Γ5)b〉 =
1√
6

[

|3F3,1〉+
√

5|3F3,−2〉
]

(11-23f)

|(3Γ5)c〉 =
1√
6

[

|3F3,−1〉 −
√

5|3F3,2〉
]

(11-23g)

Introduction of the sixth-order invariant

X6 = 6864

[

C
(6)
0 +

√
210

24

(

C
(6)
3 − C

(6)
−3

)

+

√
231

24

(

C
(6)
6 + C

(6)
−6

)

]

(11-24)

allowed us to write the complete octahedral crystal field as VOh = X4B
4 +X6B

6 and

to obtain the crystal field matrices as

(

|3F3,1〉 |3F3,−2〉
〈3F3,1| −B4 − 300B6

√
5(2B4 + 105B6)

〈3F3,−2|
√

5(2B4 + 105B6) 7B4 + 120B6

)

(11-25a)

(

|3F3,−1〉 |3F3,2〉
〈3F3,−1| −B4 − 300B6 −

√
5(2B4 + 105B6)

〈3F3,2| −
√

5(2B4 + 105B6) 7B4 + 120B6

)

(11-25b)









|3F3,3〉 |3F3,0〉 |3F3,−3〉
〈3F3,3| −3B4 − 20B6

√
10(−3B4 + 35B6) −385B6

〈3F3,0|
√

10(−3B4 + 35B6) −6B4 + 400B6
√

10(3B4 − 35B6)

〈3F3,−3| −385B6
√

10(3B4 − 35B6) −3B4 − 20B6









(11-25c)

which in terms of the octahedrally symmetrised states of (11-23a-g) gave the matrices









|(3Γ4)a〉 |(3Γ4)b〉 |(3Γ4)c〉
〈(3Γ4)a| −3B4 − 405B6 0 0

〈(3Γ4)b| 0 −3B4 − 405B6 0

〈(3Γ4)c| 0 0 −3B4 − 405B6









(11-26a)
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







|(3Γ5)a〉 |(3Γ5)b〉 |(3Γ5)c〉
〈(3Γ5)a| 9B4 + 225B6 0 0

〈(3Γ5)b| 0 9B4 + 225B6 0

〈(3Γ5)c| 0 0 9B4 + 225B6









(11-26b)

(

|(3Γ1)〉
〈(3Γ1)| −18B4 + 540B6

)

(11-26c)

The matrices are, as expected, diagonal in the octahedral basis.

11.6. Calculation of Magnetic Dipole Hyperfine Matrix Elements

For a free ion 3F3 term we would compute the magnetic dipole hyperfine matrix

elements in a |JIFMF 〉 basis using the results of S6.3 to obtain the matrices

(

MF = 11
2
|335

2
5
2
〉

〈335
2

5
2
| 15

2

)

(11-27a)





MF = 9
2
|335

2
3
2
〉 |325

2
5
2
〉

〈335
2

3
2

9
2

√
30
2

〈32, 5
2

5
2
|

√
30
2

5



 (11-27b)









MF = 7
2
|335

2
1
2
〉 |325

2
3
2
〉 |315

2
5
2
〉

〈335
2

1
2
| 3

2
2
√

3 0

〈325
2

3
2
| 2

√
3 3 5

2

√
2

〈315
2

5
2
| 0 5

2

√
2 5

2









(11-27c)













MF = 5
2

|335
2
− 1

2
〉 |325

2
1
2
〉 |315

2
3
2
〉 |305

2
5
2
〉

〈335
2
− 1

2
| −3

2
3
2

√
6 0 0

〈325
2

1
2
| 3

2

√
6 1 2

√
5 0

〈315
2

3
2
| 0 2

√
5 3

2

√
15

〈30, 5
2

5
2
| 0 0

√
15 0













(11-27d)



















MF = 3
2

|335
2
− 3

2
〉 |325

2
− 1

2
〉 |315

2
1
2
〉 |305

2
3
2
〉 |3− 15

2
5
2
〉

〈335
2
− 3

2
| −9

2
2
√

3 0 0 0

〈325
2
− 1

2
| 2

√
3 −1 3

2

√
10 0 0

〈315
2

1
2
| 0 3

2

√
10 1

2
2
√

6 0

〈305
2

3
2
| 0 0 2

√
6 0

√
15

〈3− 15
2

5
2
| 0 0 0

√
15 −5

2



















(11-27e)
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























MF = 1
2

|335
2
− 5

2
〉 |325

2
− 3

2
〉 |315

2
− 1

2
〉 |305

2
1
2
〉 |3− 15

2
3
2
〉 |3− 25

2
5
2
〉

〈335
2
− 5

2
| −15

2
1
2

√
30 0 0 0 0

〈325
2
− 3

2
| 1

2

√
30 −3 2

√
5 0 0 0

〈315
2
− 1

2
| 0 2

√
5 −1

2
3
√

3 0 0

〈305
2

1
2
| 0 0 3

√
3 0 2

√
6 0

〈3− 15
2

3
2
| 0 0 0 2

√
6 −3

2
5
2

√
2

〈3− 25
2

5
2
| 0 0 0 0 5

2

√
2 −5

























(11-27f)

























MF = −1
2
|325

2
− 5

2
〉 |315

2
− 3

2
〉 |305

2
− 1

2
〉 |3− 15

2
1
2
〉 |3− 25

2
3
2
〉 |3− 35

2
5
2
〉

〈325
2
− 5

2
| −5 5

2

√
2 0 0 0 0

〈315
2
− 3

2
| 5

2

√
2 −3

2
2
√

6 0 0 0

〈305
2
− 1

2
| 0 2

√
6 0 3

√
3 0 0

〈3− 15
2

1
2
| 0 0 3

√
3 −1

2
2
√

5 0

〈3− 25
2

3
2
| 0 0 0 2

√
5 −3 1

2

√
30

〈3− 35
2

5
2
| 0 0 0 0 1

2

√
30 −15

2

























(11-27g)



















MF = −3
2

|315
2
− 5

2
〉 |305

2
− 3

2
〉 |3− 15

2
− 1

2
〉 |3− 25

2
1
2

3− 35
2

3
2
〉

〈315
2
− 5

2
| −5

2

√
15 0 0 0

〈305
2
− 3

2
|

√
15 0 2

√
6 0 0

〈3− 15
2
− 1

2
| 0 2

√
6 1

2
3
2

√
10 0

〈3− 25
2

1
2
| 0 0 3

2

√
10 −1 2

√
3

〈3− 35
2

3
2
| 0 0 0 2

√
3 −9

2



















(11-27h)













MF = −5
2

|305
2
− 5

2
〉 |3− 15

2
− 3

2
〉 |3− 25

2
− 1

2
〉 |3− 35

2
1
2
〉

〈305
2
− 5

2
| 0

√
15 0 0

〈3− 15
2
− 3

2
|

√
15 3

2
2
√

5 0

〈3− 25
2
− 1

2
| 0 2

√
5 1 3

2

√
6

〈3− 35
2

1
2
| 0 0 3

2

√
6 −3

2













(11-27i)









MF = −7
2

|3− 15
2
− 5

2
〉 |3− 25

2
− 3

2
〉 |3− 35

2
− 1

2
〉

〈3− 15
2
− 5

2
| 5

2
5
2

√
2 0

〈3− 25
2
− 3

2
| 5

2

√
2 3 2

√
3

〈3− 35
2
− 1

2
| 0 2

√
3 3

2









(11-27j)
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(

MF = −9
2

|3− 25
2
− 5

2
〉 |3− 35

2
− 3

2
〉

〈3− 25
2
− 5

2
| 5 1

2

√
30

〈3− 35
2
− 3

2
| 1

2

√
30 9

2

)

(11-27k)

(

MF = −11
2

|3− 35
2
− 5

2
〉

〈3− 35
2
− 5

2
| 15

2

)

(11-27ℓ)

The above matrices can be checked by diagonalisation. The resultant eigenvalues

should be proportional to the value K defined in (11-9) where F has its maximal value

of MF . The eigenvalues for the above matrices are:

MF = 11
2

15
2

(11-28a)

MF = 9
2

15
2
, 2 (11-28b)

MF = 7
2

15
2
, 2, −5

2
(11-28c)

MF = 5
2

15
2
, 2, −5

2
, −6 (11-28d)

MF = 3
2

15
2
, 2, −5

2
, −6, −17

2
(11-28e)

MF = 1
2

15
2
, 2, −5

2
, −6, −17

2
, −10 (11-28f)

MF = −1
2

− 17
2
, 2, −5

2
, −10, −6, 15

2
(11-28g)

MF = −3
2

− 17
2
, 2, −5

2
, −6, 15

2
(11-28h)

MF = −5
2

2, −5
2
, −6, 15

2
(11-28i)

MF = −7
2

2, −5
2
, 15

2
(11-28j)

MF = −9
2

2, 15
2

(11-28k)

MF = −11
2

15
2

(11-28ℓ)

The above values should correspond to those that would be obtained in a strong field

basis.

11.7. Magnetic Hyperfine Matrix Elements in an Octahedral Field

It is instructive to compute the magnetic hyperfine matrix elements for an

octahedral field starting with the symmetrized eigenfunctions given in (11-23a-g). Let

us put

M± =
√

(5
2
±MI)(

7
2
∓MI) (11-29)

The matrix elements follow from use of (11-23a-g) with (11-19) and (11-20) to give

〈(3Γ2)IMI |Hm|(3Γ2)IMI〉 = 0 (11-30a)

〈(3Γ2)IMI |Hm|(3Γ5)aIMI〉 = −2MI
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〈(3Γ2)IMI |Hm|(3Γ5)bIMI − 1〉 =
√

2M+

〈(3Γ2)IMI |Hm|(3Γ5)cIMI + 1〉 = −
√

2M− (11-30b)

〈(3Γ2)IMI |Hm|(3Γ4)aIMI〉 = 0

〈(3Γ2)IMI |Hm|(3Γ4)bIMI〉 = 0

〈(3Γ2)IMI |Hm|(3Γ4)cIMI〉 = 0 (11-30c)

〈(3Γ5)aIMI |Hm|(3Γ5)aIMI〉 = 0

〈(3Γ5)bIMI |Hm|(3Γ5)bIMI〉 =
MI

2

〈(3Γ5)cIMI |Hm|(3Γ5)cIMI〉 = −MI

2
(11-30d)

〈(3Γ5)aIMI |Hm|(3Γ5)bIMI − 1〉 =

√
2

4
M+

〈(3Γ5)aIMI |Hm|(3Γ5)cIMI + 1〉 =

√
2

4
M−

〈(3Γ5)bIMI |Hm|(3Γ5)cIMI〉 = 0 (11-30e)

〈(3Γ5)aIMI |Hm|(3Γ4)aIMI〉 = −
√

5MI

〈(3Γ5)aIMI |Hm|(3Γ4)bIMI − 1〉 =

√
10

4
M+

〈(3Γ5)aIMI |Hm|(3Γ4)cIMI + 1〉 = −
√

10

4
M−

〈(3Γ5)bIMI |Hm|(3Γ4)aIMI + 1〉 = −
√

10

4
M−

〈(3Γ5)bIMI |Hm|(3Γ4)bIMI〉 = −
√

5

2
MI

〈(3Γ5)bIMI |Hm|(3Γ4)cIMI − 1〉 =

√
10

2
M+

〈(3Γ5)cIMI |Hm|(3Γ4)aIMI − 1〉 =

√
10

4
M+

〈(3Γ5)cIMI |Hm|(3Γ4)bIMI + 1〉 =

√
10

2
M−

〈(3Γ5)cIMI |Hm|(3Γ4)cIMI〉 = −
√

5

2
MI (11-30f)

〈(3Γ4)aIMI |Hm|(3Γ4)aIMI〉 = 0

〈(3Γ4)bIMI |Hm|(3Γ4)bIMI〉 = −3MI

2

〈(3Γ4)cIMI |Hm|(3Γ4)cIMI〉 = +
3MI

2
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〈(3Γ4)aIMI |Hm|(3Γ4)bIMI − 1〉 =
3
√

2

4
M+

〈(3Γ4)aIMI |Hm|(3Γ4)cIMI + 1〉 =
3
√

2

4
M−

〈(3Γ4)bIMI |Hm|(3Γ4)cIMI〉 = 0 (11-30g)

We note that under the octahedral group Hm transforms as Γ4.

We note from (11-30a), (11-30d) and (11-30g) that the Γ2 state has no first-order

magnetic hyperfine structure whereas the splitting for the Γ4 states is three times

larger than for the Γ5 states.

11.8. Octahedral Magnetic Hyperfine Matrix Elements

Using (11-30a,d,e,g) we can readily calculate the matrix elements within each

octahedral state to give the matrices and their respective eigenvalues and eigenvectors

(in designating the eigenvectors we have suppressed the I = 5
2
) as





(3Γ5) |a5
2

5
2
〉 |b5

2
3
2
〉

〈a5
2

5
2
| 0

√
10
4

〈b5
2

3
2
|

√
10
4

3
4



 (−1
2
, 5

4
)

| − 1
2
〉(−3)
1 =

1√
7

[
√

2|a5
2
〉 −
√

5|b3
2
〉]

|5
4
〉(−3)
1 =

1√
7

[
√

5|a5
2
〉+
√

2|b3
2
〉] (11-31a)









(3Γ5) |a5
2

3
2
〉 |b5

2
1
2
〉 |c5

2
5
2
〉

〈a5
2

3
2
| 0 1

√
10
4

〈b5
2

1
2
| 1 1

4
0

〈c5
2

5
2
|

√
10
4

0 −5
4









(−7
4
, −1

2
, 5

4
)

| − 1
2
〉(−3)
2 =

1√
35

[3|a3
2
〉 − 4|b1

2
〉+
√

10|c5
2
〉]

|5
4
〉(−3)
2 =

1√
21

[
√

10|a3
2
〉+
√

10|b1
2
〉+ |c5

2
〉]

| − 7
4
〉(−3)
1 =

1√
15

[−2|a3
2
〉+ |b1

2
〉+
√

10|c5
2
〉] (11-31b)









(3Γ5) |a5
2

1
2
〉 |b5

2
− 1

2
〉 |c5

2
3
2
〉

〈a5
2

1
2
| 0 3

√
2

4
1

〈b5
2
− 1

2
| 3

√
2

4
−1

4
0

〈c5
2

3
2
| 1 0 −3

4









(−7
4
, −1

2
, 5

4
)
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| − 1
2
〉(−3)
3 =

1√
35

[|a1
2
〉 − 3

√
2|b− 1

2
〉+ 4|c3

2
〉]

|5
4
〉(−3)
3 =

1√
7

[2|a1
2
> +
√

2|b− 1
2
〉+ |c3

2
〉]

| − 7
4
〉(−3)
2 =

1√
5

[−
√

2|a1
2
〉+ |b− 1

2
〉+
√

2|c3
2
〉] (11-31c)









(3Γ5) |a5
2
− 1

2
〉 |b5

2
− 3

2
〉 |c5

2
1
2
〉

〈a5
2
− 1

2
| 0 1 3

√
2

4

〈b5
2
− 3

2
| 1 −3

4
0

〈c5
2

1
2
| 3

√
2

4
0 −1

4









(−7
4
, −1

2
, 5

4
)

| − 1
2
〉(−3)
4 =

1√
35

[|a− 1
2
〉+ 4|b− 3

2
〉 − 3

√
2|c1

2
〉]

|5
4
〉(−3)
4 =

1√
7

[2|a− 1
2
> +|b− 3

2
〉+
√

2|c1
2
〉]

| − 7
4
〉(−3)
3 =

1√
5

[−
√

2|a− 1
2
〉+
√

2|b− 3
2
〉+ |c1

2
〉] (11-31d)









(3Γ5) |a5
2
− 3

2
〉 |b5

2
− 5

2
〉 |c5

2
− 1

2
〉

〈a5
2
− 3

2
| 0

√
10
4

1

〈b5
2
− 5

2
|

√
10
4

−5
4

0

〈c5
2
− 1

2
| 1 0 1

4









(−7
4
, −1

2
, 5

4
)

| − 1
2
〉(−3)
5 =

1√
35

[−3|a− 3
2
〉 −
√

10|b− 5
2
〉+ 4|c− 1

2
〉]

|5
4
〉(−3)
5 =

1√
21

[
√

10|a− 3
2
〉+ |b− 5

2
〉+
√

10|c− 1
2
〉]

| − 7
4
〉(−3)
4 =

1√
15

[−2|a− 3
2
〉+
√

10|b− 5
2
〉+ |c− 1

2
〉] (11-31e)





(3Γ5) |a5
2
− 5

2
〉 |c5

2
− 3

2
〉

〈a5
2
− 5

2
| 0

√
10
4

〈c5
2
− 3

2
|

√
10
4

3
4



 (−1
2
, 5

4
)

| − 1
2
〉(−3)
6 =

1√
7

[−
√

5|a− 5
2
〉+
√

2|c− 3
2
〉]

|5
4
〉(−3)
6 =

1√
7

[
√

2|a− 5
2
〉+
√

5|c− 3
2
〉] (11-31f)

(

(3Γ5) |b5
2

5
2
〉

〈b5
2

5
2
| 5

4

)

(5
4
)

|5
4
〉(−3)
7 = |b5

2
〉 (11-31g)
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(

(3Γ5) |c5
2
− 5

2
〉

〈c5
2
− 5

2
| 5

4

)

(5
4
)

|5
4
〉(−3)
8 = |c− 5

2
〉 (11-31h)





(3Γ4) |a5
2

5
2
〉 |b5

2
3
2
〉

〈a5
2

5
2
| 0 3

√
10

4

〈b5
2

3
2
| 3

√
10

4
−9

4



 (−15
4
, 3

2
)

|3
2
〉(9)1 =

1√
7

[
√

5|a5
2
〉+
√

2|b3
2
〉]

| − 15
4
〉(9)1 =

1√
7

[
√

2|a5
2
〉 −
√

5|b3
2
〉] (11-32a)









(3Γ4) |a5
2

3
2
〉 |b5

2
1
2
〉 |c5

2
5
2
〉

〈a5
2

3
2
| 0 3 3

√
10

4

〈b5
2

1
2
| 3 −3

4
0

〈c5
2

5
2
| 3

√
10

4
0 15

4









(−15
4
, 3

2
, 21

4
)

|3
2
〉(9)2 =

1√
35

[3|a3
2
〉+ 4|b1

2
〉 −
√

10|c5
2
〉]

| − 15
4
〉(9)2 =

1√
21

[−
√

10|a3
2
〉+
√

10|b1
2
〉+ |c5

2
〉]

|21
4
〉(9)1 =

1√
15

[2|a3
2
〉+ |b1

2
〉+
√

10|c5
2
〉] (11-32b)









(3Γ4) |a5
2

1
2
〉 |b5

2
− 1

2
〉 |c5

2
3
2
〉

〈a5
2

1
2
| 0 9

√
2

4
3

〈b5
2
− 1

2
| 9

√
2

4
3
4

0

〈c5
2

3
2
| 3 0 9

4









(−15
4
, 3

2
, 21

4
)

|3
2
〉(9)3 =

1√
35

[|a1
2
〉+ 3

√
2|b− 1

2
〉 − 4|c3

2
〉]

| − 15
4
〉(9)3 =

1√
7

[−2|a1
2
〉+
√

2|b− 1
2
〉+ |c3

2
〉]

|21
4
〉(9)2 =

1√
5

[
√

2|a1
2
〉+ |b− 1

2
〉+
√

2|c3
2
〉] (11-32c)









(3Γ4) |a5
2
− 1

2
〉 |b5

2
− 3

2
〉 |c5

2
1
2
〉

〈a5
2
− 1

2
| 0 3 9

√
2

4

〈b5
2
− 3

2
| 3 9

4
0

〈c5
2

1
2
| 9

√
2

4
0 3

4









(−15
4
, 3

2
, 21

4
)
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|3
2
〉(9)4 =

1√
35

[|a− 1
2
〉 − 4|b− 3

2
〉+ 3

√
2|c1

2
〉]

| − 15
4
〉(9)4 =

1√
7

[−2|a− 1
2
〉+ |b− 3

2
〉+
√

2|c1
2
〉]

|21
4
〉(9)3 =

1√
5

[
√

2|a− 1
2
〉+
√

2|b− 3
2
〉+ |c1

2
〉] (11-32d)









(3Γ4) |a5
2
− 3

2
〉 |b5

2
− 5

2
〉 |c5

2
− 1

2
〉

〈a5
2
− 3

2
| 0 3

√
10

4
3

〈b5
2
− 5

2
| 3

√
10

4
15
4

0

〈c5
2
− 1

2
| 3 0 −3

4









(−15
4
, 3

2
, 21

4
)

|3
2
〉(9)5 =

1√
35

[3|a− 3
2
〉 −
√

10|b− 5
2
〉+ 4|c− 1

2
>]

| − 15
4
〉(9)5 =

1√
21

[−
√

10|a− 3
2
〉+ |b− 5

2
〉+
√

10|c− 1
2
〉]

|21
4
〉(9)4 =

1√
15

[2|a− 3
2
〉+
√

10|b− 5
2
〉+ |c− 1

2
〉] (11-32e)





(3Γ4) |a5
2
− 5

2
〉 |c5

2
− 3

2
〉

〈a5
2
− 5

2
| 0 3

√
10

4

〈c5
2
− 3

2
| 3

√
10

4
−9

4



 (−15
4
, 3

2
)

|3
2
〉(9)6 =

1√
7

[
√

5|a− 5
2
〉+
√

2|c− 3
2
〉]

| − 15
4
〉(9)6 =

1√
7

[
√

2|a− 5
2
〉 −
√

5|c− 3
2
〉] (11-32f)

(

(3Γ4) |b5
2

5
2
〉

〈b5
2

5
2
| −15

4

)

(−15
4

)

|3
2
〉(9)7 = |b5

2
〉 (11-32g)

(

(3Γ4) |c5
2
− 5

2
〉

〈c5
2
− 5

2
| −15

4

)

(−15
4

)

|3
2
〉(9)8 = |c− 5

2
〉 (11-32h)

Note that the eigenvectors associated with each matrix form an orthonormal set but

they are determined only to within an overall phase and hence caution must be



Magnetic and Hyperfine Interactions 121

exercised in using them to calculate matrix elements involving eigenvectors associated

with different orthonormal sets.

Further, note that the above eigenvalues are associated with considerable

degeneracies, more than might at first be expected. In particular,

(3Γ2 6(0) (11-33a)

(3Γ4 6(3
2
) 8(−15

4
) 4(21

4
) (11-33b)

(3Γ5 6(−1
2
) 8(5

4
) 4(−7

4
) (11-33c)

Furthermore, there are just three distinct eigenvalues for the Γ4 and Γ5 irreps. Noting

that

Γ4 × (Γ7 + Γ8) = 2Γ6 + Γ7 + 3Γ8 (11-34a)

Γ5 × (Γ7 + Γ8) = Γ6 + 2Γ7 + 3Γ8 (11-34b)

we might have expected two sets of six distinct eigenvalues arising from the Γ4 and Γ5

irreps. Nor does the eigenvalue spectrum involve equal spacings. Some of the extra

degeneracy would be lifted if we included the magnetic hyperfine interaction between

the states of the three irreps, (Γ2,Γ4,Γ5) as seen by inspection of (11-31b) and 11-31f).

However, a more important consideration is the influence of the trigonal C3v crystal

field.

11.9. Influence of the Trigonal C3v Crystal Field

The crystal field is predominantly octahedral with a smaller trigonal component.

The basic effect can be seen by introducing the operator

T = 120C
(2)
0 (11-35)

and considering the matrix elements

〈Γ2|T |Γ2〉 = 0

〈(3Γ4)a|T |(3Γ4)a〉 = 2

〈(3Γ4)b|T |(3Γ4)b〉 = −1 = 〈(3Γ4)c|T |(3Γ4)c〉
〈(3Γ5)a|T |(3Γ5)a〉 = 10

〈(3Γ5)b|T |(3Γ5)b〉 = −5 = 〈(3Γ5)c|T |(3Γ5)c〉 (11-36)

The above results are consistent with the O → C3v branching rules

Γ2 → Γ2

Γ4 → Γ2 + Γ3

Γ5 → Γ1 + Γ3 (11-37)
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i.e. the octahedral Γ2 irrep remains non-degenerate while the Γ4 and Γ5 split into a

singlet and a doublet. The trigonal splitting octahedral Γ5 irrep is five times larger

than for the Γ4 irrep. Inspection of the magnetic hyperfine matrices (11-31a-h) and

(11-32a-h) shows that for both of the octahedral irreps Γ4 and Γ5 there is no coupling

between the b and c components but there is coupling with the a components. If

the trigonal crystal field interaction is significantly greater than that of the magnetic

hyperfine interaction then the off-diagonal matrix elements of the magnetic hyperfine

interaction may be ignored. Then only the diagonal magnetic hyperfine matrix

elements in (11-31a-h) and (11-32a-h) need be considered. It is readily seen that

the diagonal elements, and their degeneracies are

3Γ4 (0)6, (15
4

)2, (9
4
)2, (3

4
)2, (−3

4
)2, (−9

4
)2,

(−15
4

)2 (11-38a)

3Γ5 (0)6, (5
4
)2, (3

4
)2, (1

4
)2, (−1

4
)2, (−3

4
)2,

(−5
4
)2 (11-38b)

Γ2 (0)6 (11-38c)

Recalling that under SO(3)→ C3v

[5/2]→ 2(Γ4 + Γ5) + Γ6 (11-39)

and that for C3v

Γ1 × 2(Γ4 + Γ5) + Γ6 = 2(Γ4 + Γ5) + Γ6

Γ2 × 2(Γ4 + Γ5) + Γ6 = 2(Γ4 + Γ5) + Γ6

Γ3 × 2(Γ4 + Γ5) + Γ6 = (Γ4 + Γ5) + 5Γ6 (11-40)

it is not surprising that the eigenvalue spectrum involves, to first order, 6-fold

eigenvalues that show no hyperfine splittings and two groups of six two-fold degenerate

equi-spaced eigenvalues, each set being derived from the interaction of the nuclear

magnetic moment with a Γ3 C3v crystal field level. The spacing, and total width of

the six hyperfine levels derived from the Γ3 C3v irrep originating from the octahedral

Γ4 irrep is 3/2 times larger than that derived from the octahedral Γ5 irrep in accord

with observation. Departures from equi-spacing probably come from the consequences

of off-diagonal hyperfine matrix elements rather than more exotic conjectured effects.
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Lecture 12

”No one accustomed to mix with the higher classes of society will be at all

inclined to dispute the advantages arising from a genteel appearance; it therefore

becomes necessary that the means of acquiring this distinction should be clearly

demonstrated. An attentive perusal of the following pages will conduce to this

desired effect.”

The Art of Tying the Cravat(1828) (From the 85 ways to tie a tie, thomas

fink&yong mao Fourth Estate London (1999)

12. Relativistic Effects

In this lecture I intend to discuss the effects that arise in crystal field theory when

one considers relativity. Relativistic crystal field theory10 started with attempts to

calculate the electric quadrupole moment of the ground state 4f 76s2[8S7
2
] of neutral

europium in an atomic beam6,75, a problem very analogous to the crystal field splitting

of the ground state 4f 7[8S7
2
] of trivalent gadolinium10,76. If we solve Dirac’s equation

for an electron nℓj in a central field we obtain two radial functions, F and G,

that are associated with the small and large components of the Dirac wavefunction,

respectively, and which depend on the total angular momentum j of the electron.

Here we consider the simple case of a single electron in an f−orbital and then remark

upon some of the consequences for such things as the Judd-Ofelt theory of intensities

looking for effects that go beyond the standard non-relativistic theory.

12.1. Relativistic Crystal Field Theory

To give a specific example, assume a crystal field potential

V = A0
2r

2C
(2)
0 + A0

4r
4C

(4)
0 +A0

6r
6C

(6)
0 + A6

6r
6(C

(6)
6 + C

(6)
−6 ) (12-1)

For a single f−electron we have the fourteen states

|7
2
± 1

2
〉, |7

2
± 3

4
〉, |7

2
± 5

2
〉, |7

2
± 7

2
〉, |5

2
± 1

2
〉, |5

2
± 3

4
〉, |5

2
± 5

2
〉 (12-2)

Noting that2

〈sℓj||C(k)||sℓj ′〉 = 〈ℓ||C(k)||ℓ〉(−1)s+ℓ+j+k
√

(2j + 1)(2j ′ + 1)

{

j k j ′

ℓ s ℓ

}

(12-3)

leading to

〈sℓjm|rkC(k)
q |sℓj ′m′〉

= 〈ℓ||C(k)||ℓ〉Rjj′(−1)j−m
(

j k j ′

−m q m′

)

× (−1)s+ℓ+j+k
√

(2j + 1)(2j ′ + 1)

{

j k j ′

ℓ s ℓ

}

(12-4)
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where each non-relativistic radial integral

Rk
ℓℓ =

∫ ∞

0

Rnℓ(r)r
kRnℓdr, (12-5)

is now replaced three relativistic radial integrals Rk
jj′ such that

Rk
++ =

∫ ∞

0

rk(F 2
+ +G2

+)dr,

Rk
+− =

∫ ∞

0

rk(F+F− +G+G−)dr,

Rk
−− =

∫ ∞

0

rk(F 2
− +G2

−)dr, (12-6)

with the + referring to j = ℓ+ 1
2

and the − to j = ℓ− 1
2
.

For fourteen states of a single f−electron we obtain the crystal field matrices













µ = ±1
2

|7
2
± 1

2
〉 |5

2
± 1

2
〉
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2
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4R
4
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6R
6
++

√
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105
A0

2R
2
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231
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4R
4
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± 50
429
A0

6R
6
+−)

〈5
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2
|

√
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2R
2
+− ± 10

231
A0

4R
4
+−

8
35
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21
A0

4R
4
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6R
6
+−)




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




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







µ = ±3
2
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〉
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If in the above matrices we were to make all the radial integrals Rk
jj′ of the same rank

k equal we would obtain the standard non-relativistic crystal field matrices. The next

problem is to extend the formulation to many-electron configurations. Two ways are

open (1). Do the entire calculation in a jj−coupling basis; or (2). Follow Sandars and
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Beck6 and continue to use the traditional LS−coupling basis by making the operator

replacements

rkC(k) →
∑

κ,κ′

bk(κκ
′)w(κκ′)k, (12-8)

where the w(κκ′)k are single-particle tensor operators2 and the bk(κκ
′) involve the

relativistic radial integrals. One finds that

r2C(2) → b2(11)w(11)2 + b2(13)w(13)2 + b2(02)w(02)2, (12-9a)

r4C(4) → b4(13)w(13)4 + b4(15)w(15)4 + b4(04)w(04)4, (12-9b)

r6C(6) → b6(15)w(15)6 + b6(06)w(06)6, (12-9c)

where

b2(11) = 4
√

21
[

−5R2
++ + 3R2

+− + 2R2
−−
]

/245

b2(13) = 4
√

7
[

5R2
++ + 4R2

+− − 9R2
−−
]

/245

b2(02) = −2
√

42
[

25R2
++ + 6R2

+− + 18R2
−−
]

/735 (12-10a)

b4(13) = 4
√

21
[

6R4
++ − 5R4

+− −R4
−−
]

/441

b4(15) = 2
√

2310
[

−3R4
++ − 8R4

+− + 11R4
−−
]

/4851

b4(04) = 2
√

77
[

18R4
++ + 20R4

+− + 11R4
−−
]

/1617 (12-10b)

b6(15) = 20
√

77
[

−R6
++ +R6

+−
]

/1001

b6(06) = −10
√

462
[

R6
++ + 6R6

+−
]

/3003 (12-10c)

Not surprisingly, calculation with the replacement operators yields exactly the same

results, for a single electron, as found in Eq.(12-7a-c). For states involving n equivalent

electrons the w(κκ′) are simply replaced by

W(κκ′) →
n
∑

i=1

w(κκ′) (12-11)

and the matrix elements may be evaluated in the usual non-relativistic LS−coupling

basis but with the associated radial integrals being taken from appropriate relativistic

Dirac-Hartree-Fock wavefunctions. The important point to notice is that the

replacement operators are double tensor operators that act in both the spin and orbital

spaces whereas the non-relativistic crystal field operators act only in the orbital space.

It is this property that leads to a second-order contribution to the ground state

splitting for rare earth and actinide ions having a half-filled f−shell10,76,15. Smentek et

al15 have recently given detailed calculations of a relativistic crystal field for S−state

f electron ions. Free ion non-relativistic calculations were performed using Froese-

Fischer’s MCHF programme while the relativistic radial integrals were evaluated using

the GRASP2 package. The inner s and p orbitals are contracted and hence the effective

nuclear charge seen by the f−orbitals is decreased and the orbitals expand. Further

numerical calculations need to be attempted.
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12.2. Relativistic f ←→ f Transitions in Crystal Fields

Here we have products of the electric dipole and crystal field matrix elements

coupling the fN configuration to those of opposite parity. Again, whereas in the

non-relativistic Judd-Ofelt theory transitions depend on the tensor operators U(k)

the relativistic treatment leads to double-tensor operators W(κκ′)k. In the Judd-

Ofelt theory the single particle unit tensor operators u(nℓ, n′ℓ′)(kodd) link a ground

configuration orbital nℓ to an orbital n′ℓ′ in an excited configuration and closure

results in single particle tensor operators u(nℓ, nℓ)(keven). In the relativistic extension

the double tensor operators w(nℓ, n′ℓ′)(κκ′)k couple the orbitals and closure results in

single particle double tensor operators w(nℓ, nℓ)(κκ′)k where again k is even but κ′

is even or odd as κ is 0 or 1 respectively. The effective operators obtained in the

detailed analysis13,14 generalize the standard Judd-Ofelt effective operators, the latter

becoming a limiting case of the former. Whereas in our discussion of relativistic crystal

field theory we limited ourselves to action within the f−shell here the action takes

place between configurations and the radial functions are more complex, involving

f−orbitals and orbitals of opposite parity. It is not my intention to discuss in detail

the technicalities of the calculations - these are covered in the recent literature13,14

12.3. Concluding Remarks

In terms of the angular parts which reflect the symmetry properties of f−orbitals

there is a remarkable, and understandable, similarity between crystal field theory and

the theory of f ←→ f transitions. In the non-relativistic theory both involve, to

second-order, the matrix elements of the unit tensor operators U(k) with k = 0, 2, 4, 6

while in the extension to the relativistic theory both involve the replacement of the

U(k) operators by the double tensor operators W(κκ′)k. The fundamental difference

comes in the radial integrals involved. It is only in relatively recent times that

it has become possible to give serious consideration to detailed calculation of such

integrals. Future work will undoubtedly be more directed to such calculations and

to estimates of the significance of relativistic effects both for crystal field interactions

and transition intensities. One expects these effects to become increasingly important

as the calculations, and hopefully experiments, are made on the heavy actinides. It

may well be that in the future studies will be directed towards calculations in the

jj−coupling basis which is the natural basis to use when relativistic effects become

significant.

12.4. Finis...

This is the end of this series. I have tried to introduce you to some aspects of

the theory of hyperfine structure in atoms, ions and crystals. In many instances we

have limited our attention to the barest details. While we could treat many topics in

greater details I hope I have given enough for you to develop your own interests and

to teach yourself. Learning to teach yourself is probably the greatest thing anyone can

gain from a university education.
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These lectures continue from Part I with particular emphasis on the detailed

calculation of the properties of the low lying states of the Eu3+ ion both in free

space and in crystal environments. Special attention is paid to the ground multiplet
7F of the 4f 6 configuration and to the highly forbidden 7F0 ↔ 5D0 transitions that

are relevant in the possible development of rare earth ion based quantum computers.

Real mathematical theorems will require the same stamina whether you measure

the effort in months or years. You can forget the idea, if you ever had it, that all

you require is a bit of natural genius and that then you can wait for inspiration

to strike. There is simply no substitute for hard work and perserverance (Andrew

Wiles 13 July 2001)

Lecture 13: Calculating Magnetic Interactions

in fn electron configurations

Synopsis

In this lecture we start with a brief discussion of units and then some remarks on

the structure of fn electron configurations turning then to the f 6 configuration

as realized in neutral samarium, (SmI), and in triply ionized europium, (EuIV )

or (Eu3+). We then give a detailed account, and calculation, of the Zeeman

effect with particular emphasis on the two lowest levels, 7F0 and 7F1, of the f 6

configuration for both weak and strong magnetic fields in the presence of magnetic

hyperfine interactions.

13. Introduction

These lectures follow on from those of Part I and familiarity with the previous lectures

is assumed. References will be numbered following from those of Part I. Reference

numbers <= 76 are from Part I. In Part II the emphasis is on practical calculation

and it is essential that students work through the exercises and derive for themselves

the various calculations. There is currently considerable interest in the possibility of

realising quantum computers with rare earth ion doped crystals77,78. The rare earth

ion Eu3+ doped in crystals of Y2SiO5 is of particular interest79. The precursor to

this work goes back to the theory of nuclear magnetic resonance in Eu3+ developed

in the late 1950’s by R J Elliott80 and studies of the anomalous quadrupole coupling

in europium ethylsulphate 81. The role of hyperfine and magnetic interactions in

determining the very small splittings in the groundstate and the exceedingly low

probabilities associated with the 7F0 → 5D0 transition play a crucial role in the

possibility of creating rare earth ion based quantum computers. These subjects will

be treated in detail in this part of our course.
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13.1. The Matter of Units

In order to do practical calculations that can be compared with experimental

measurements we must give some consideration to units. The units appearing in

experimental papers usually reflect the type of experimental equipment being used.

Thus an optical spectroscopist might report wavelengths in Ångstroms (1Å = 10−8cm)

or in nanometres (1nm = 10−1Å = 10−9cm) while a radioastronomer might report

wavelengths in centimetres or metres. Or again an optical spectroscopist may choose to

report “energies” of atomic levels in wave numbers, the reciprocal of wavelength using

cm−1 with the electron spin resonance (ESR) spectroscopist using MHz (1MHz =

106Hz) or possibly GHz (1GHz = 109Hz). We may wish that all used a common

system of units but things are different when one works in the real world rather than

Utopia and we must be able to switch between units. In much of these lectures we

will need to be able to switch between various units. In particular note that82

1eV = 8.0655× 103cm−1 = 2.418× 105MHz = 1.602× 10−19J

1cm−1 = 1.2398× 10−4eV = 2.998× 104MHz

1MHz = 4.136× 10−6eV = 3.336× 10−5cm−1

In much of our discussion of magnetic field effects we will give magnetic fields in the

unit Tesla (T) and make use of the Bohr magneton µB = eh̄
2me

. In that case we will

frequently put

µB = 0.46696cm−1T−1 (13-1)

13.2. The fn Electron Configurations

The lanthanides and actinides1 are characterized by the systematic filling of the

4fn and 5fn shells respectively where n = 0, 1, . . . , 14. The enumeration of the states of

the fn configurations has been outlined by Judd2 using the group schemes introduced

by Racah21. There the states are labelled by the irreducible representations of the

group chain

U14 ⊃ SU2 × SU7 ⊃ SO7 ⊃ G2 ⊃ SO3 (13-2)

In SmI the lowest electron configuration is 4f 66s2 whereas in EuIV it is just 4f 6.

Since the 6s2 shell is closed the SL terms of the two configurations are identical. A

complete listing of the group labelled terms is given in Table 13.1. It follows from

Hund’s rules that the ground term is 7F and the ground state is 7F0.
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Table 13.1 Group classification of the states of the f 6 electron configuration

SU7 SO7 G2
2S+1L

{16} [100] (10) 7F

{214} [210] (21) 5DFGHKL

(20) 5DGI

(11) 5PH

[111] (20) 5DGI

(10) 5F

(00) 5S

{2212} [221] (31) 3PDF2GH2I2K2LMNO

(30) 3PFGHIKM

(21) 3DFGHKL

(20) 3DGI

(11) 3PH

(10) 3F

[211] (30) 3PFGHIKM

(21) 3DFGHKL

(20) 3DGI

(11) 3PH

(10) 3F

[110] (11) 3PH

(10) 3F

{23} [222] (40) 1SDFG2HI2KL2MNQ

(30) 1PFGHIKM

(20) 1DGI

(10) 1F

(00) 1S

[220] (22) 1SDGHILN

(21) 1DFGHKL

(20) 1DGI

[200] (20) 1DGI

[000] (00) 1S

13.3. The Low Lying Levels of Sm I and Eu IV

The experimentally determined low lying energy levels of Sm I and Eu IV may

be extracted from the NIST database83. In Table 13.2 we give the levels of the 7F

multiplet and the lowest 5D multiplet for the 4f 66s2 configuration in Sm I. Note

we have omitted the 4f 65d6s levels that commence at ∼ 10800cm−1. The Lande

g−factors were determined by atomic beam measurements8. Note we will usually list

energy levels as cm−1 wavenumbers.
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Table 13.2 The energy levels of the 7F multiplet and the lowest 5D multiplet of SmI

Configuration Term J Level Lande-g

4f 66s2 7F0 0.00
7F1 202.58 1.49839
7F2 811.92 1.49779
7F3 1489.55 1.49707
7F4 2273.09 1.49625
7F5 3125.46 1.49532
7F6 4020.66 1.49417
5D0 ... ...
5D1 15914.55 ...
5D2 17864.29 ...
5D3 20195.76 ...
5D4 ... ...

Note that the positions of the 5D0 and 5D4 are, as yet, undetermined.

Table 13.3 Low lying terms of EuIV

Configuration Term J Level

4f 6 7F0 0
7F1 [370]
7F2 [1040]
7F3 [1890]
7F4 [2860]
7F5 [3910]
7F6 [4940]
5D0 [17270]
5D1 [19030]
5D2 [21510]
5D3 [24390]
5D4 [27640]

The energy levels of the 7F multiplet and the lowest 5D multiplet of the 4f 6

configuration of Eu IV are listed in Table 13.3. Note that these data are not those of

ionized Eu3+ but are levels deduced from experimental studies of trivalent europium

in crystals and hence must be viewed as approximate and are indicated by enclosing

the wavenumbers in square, [ ], brackets.

13.4. Calculation of the Free Ion Energy Levels of Sm I

Conway and Wybourne7 used the complete Coulomb and spin-orbit interaction

matrices for the f 6 configuration to calculate the free ion energy levels of the 7F

multiplet for Sm I. In some senses their calculation could be thought as rather crude
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because they chose to fix the ratios of the Slater integrals F4/F2 and F6/F2 to those

of a 4f hydrogenic eigenfunction, i.e.,

F4/F2 = 0.13805 F6/F2 = 0.015108 (13-3)

and then expressed the elements of the energy matrices in terms of the two integrals

F2 and ζ4f . These two integrals were then treated as freely variable paramters to

be determined from the experimental data. In spite of the apparent crudity of the

calculation they found the mean error between the experimental and calculated energy

levels was < 0.2cm−1. Using the resultant eigenvectors they were able to calculate

intermediate coupling corrected Lande g−values that, with the appropriate relativistic

corrections5, agreed with the experiment values to within the fifth decimal place. A

reanalysis of the experimental data using atomic beam measurements8 produced an

even smaller discrepancy between the calculated and experimental values.

The atomic beam measurements were made on the two stable isotopes of

samarium, 147Sm and 149Sm. Both isotopes have I = 7
2
. Before discussing the

hyperfine structure in detail let us consider the Zeeman effect for the levels of the 7F

multiplet in the two coupling schemes JIFMF and JMJIMIMF in sufficient detail to

include interactions that do not preserve J or F as good quantum numbers.

13.5. The Zeeman Effect in SmI (ignoring nuclear spin effects)

We note from Table 13.2 that the groundstate of Sm I is 7F0 and the 7F1 level occurs

at 202.58cm−1 and we would like to include the coupling, in a magnetic field, of these

to levels. The Zeeman part of the Hamiltonian may be written as (recall S6.3)

Hmag = µBBz(L
(1)
0 + gsS

(1)
0 + gII

(1)
0 ) (13-4)

For completeness we will often retain the nuclear Zeeman term, though realising that

it is usually about three orders of magnitude less than the electronic term. As a first

exercise let us ignore the hyperfine interaction and consider the behaviour of the two

lowest 7F terms in a magnetic field Bz working in a |JM〉 basis. Thus we have four

basis states

|7F00〉, |7F10〉, |7F11〉, |7F1− 1〉

The method of calculating the diagonal and off-diagonal Zeeman matrix elements was

developed in S2.16. Thus from (2-53) we have

〈αSLJM |Hmag|αSLJM〉 = BzµBMg(SLJ) (2-53)

and from (2-54) we have

g(7F1) =
1 + gs

2
(13-5)

while for the required off-diagonal matrix element we make use of (2-58) to obtain

〈7F00|Hmag|7F10〉 = BzµB2(gs − 1) (13-6)
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We observe from Table 13.2 that the 7F1 and 7F0 levels in SmI are separated by

202.58cm−1. This splitting comes almost entirely from the spin-orbit interaction.

Within the 7F multiplet the spin-orbit interaction matrix elements are given by2

〈f 6 7FJ |Hs.o|f 6 7FJ〉 =
ζf
12

[J(J + 1)− L(L+ 1)− S(S + 1)] (13-7)

and since S = L = 3 we have

∆E = E(7F1)−E(7F0) =
ζf
6

= 202.58cm−1 (13-8)

and hence we deduce that ζf ∼ 1215.5cm−1 Thus relative to the ground state the

energy of the |7F1± 1〉 states is given by

E(7F1± 1) =
ζf
6
± 1 + gs

2
µBBz (13-9)

Hence the Zeeman splitting in this case is ∼ ±0.7cm−1 with the magnetic field in

Tesla.

The |7F00〉 and |7F10〉 states are coupled by the magnetic field and hence a

complete treatment would require diagonalization of the matrix

(

|7F00〉 |7F10〉
〈7F00| 0 2(gs − 1)µBBz

〈7F10| 2(gs − 1)µBBz
ζf
6

)

(13-10)

The eigenvalues follow from the secular equation

λ2 − ζf
6
λ− 4(gs − 1)2µ2

BB
2
z = 0 (13-11)

to give

λ± =
ζf
12

[

1±
√

1 + [24(gs − 1)
µBBz

ζf
]2

]

(13-12)

The nett effect is for the ground state to be decreased in energy and the other level

with M = 0 to be increased in energy i.e. the two levels mutually repel. Recalling from

(13-1) that µB ∼ 0.47cm−1T−1, that in Sm I ζ4f ∼ 1215cm−1 and that (gs − 1) ∼ 1

we have from (13-12)

λ± ∼ 101.3
[

1±
√

1 + 8.5× 10−5B2
z

]

to give

λ+ ∼202.6 + 4.25× 10−5B2
z cm

−1

λ− ∼− 4.25× 10−5B2
z cm

−1

In a typical Zeeman experiment Bz ∼ 1T and thus the Zeeman shift for the two M = 0

states is very small. The eigenvectors associated with the two levels will be of the form

|0〉 = a|7F00〉+ b|7F10〉 (13-13a)

|1〉 = −b|7F00〉+ a|7F10〉 (13-13b)

and as a consequence the groundstate will have a very small J = 1 character though

the groundstate remains non-degenerate as expected.
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13.6. Zeeman Effect in Sm I including Nuclear Spin

If we include nuclear spin we need to work in either a |JIFMF 〉 basis or a

|JMJIMIMF 〉 basis. Which basis to choose will depend on the relative strengths

of the magnetic and hyperfine interactions. For a weak magnetic field the |JIFMF 〉
basis is usually simplest whereas for a strong magnetic field the |JMJIMIMF 〉 basis

is often simpler. Let us start with the former basis.

As found earlier(S6.3-6.6), the diagonal matrix element may be expressed as

〈αJIFMF |Hmag|α′JIFMF 〉 = µBBzMFgF (13-14)

with

gF = gJ
[F (F + 1)− I(I + 1) + J(J + 1)]

2F (F + 1)

+ gI
[F (F + 1) + I(I + 1)− J(J + 1)]

2F (F + 1)
(13-15)

In the case of intermediate coupling one simply replaces gJ by its intermediate coupling

value.

13.7. Exercises

(a) Show that

〈αSLJ‖L(1) + gsS
(1)‖αSLJ〉 = g(SLJ)

√

J(J + 1)(2J + 1) (13-16)

(b)Show that

〈αSLJ‖L(1) + gsS
(1)‖αSLJ + 1〉

1− gs
2

√

(J + L+ S + 2)(J + L− S + 1)(J − L+ S + 1)(S + L− J)

J + 1
(13-17)

Note that in the above two exercises the matrix elements are diagonal in α, S and

L. Note also the special 6-j symbols

{

a b c

1 c b

}

= (−1)s
2 [a(a+ 1)− b(b+ 1)− c(c+ 1)]

√

2b(2b+ 1)(2b+ 2)2c(2c+ 1)(2c+ 2)
(13-18)

and

{

a b c

1 c− 1 b

}

= (−1)s

√

2(s+ 1)(s− 2a)(s− 2b)(s− 2c+ 1)

2b(2b+ 1)(2b+ 2)(2c− 1)2c(2c+ 1)
(13-19)

where s = a+b+c and in (13-16) g(SLJ) is the Lande g−factor defined in (2-54).
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(c) Show that

〈αJIFMF |Hmag|αJIF + 1MF 〉

= µBBz(gJ − gI)
√

(F + 1)2 −M 2
F

×
√

(F + J + I + 2)(F + J − I + 1)(F − J + I + 1)(I + J − F )

4(F + 1)2(2F + 1)(2F + 3)
(13-20)

(d)Show that

〈αSLJIFMF |Hmag|αSLJ + 1IFMF 〉

= µBBz
MF (1− gs)

4F (F + 1)(J + 1)

×
√

(F + I + J + 2)(F + J − I + 1)(J + I − F + 1)(I + F − J)

(2J + 1)(2J + 3)

×
√

(J + L+ S + 2)(J + L− S + 1)(J − L+ S + 1)(S + L− J)

(13-21)

(e) Show that

〈αSLJIFMF |Hmag|αSLJ + 1IF + 1MF 〉

= µBBz
(gs − 1)

4(F + 1)(J + 1)

√

(F + 1)2 −M 2
F

(2F + 1)(2F + 3)(2J + 1)(2J + 3)

×
√

(F + J + I + 2)(F + J + I + 3)(F + J − I + 1)(F + J − I + 2)

×
√

(J + L+ S + 2)(J + L− S + 1)(J − L+ S + 1)(S + L− J)

(13-22)

In this exercise you will need to note that

{

a b c

1 c− 1 b− 1

}

= (−1)s

√

s(s+ 1)(s− 2a− 1)(s− 2a)

(2b− 1)2b(2b+ 1)(2c− 1)2c(2c+ 1)
(13-23)

(f) Show that

〈αSLJIFMF |Hmag|αSLJ + 1IF − 1MF 〉

= µBBz

(gs − 1)
√

F 2 −M 2
F

4F (J + 1)

×
√

(I + F − J − 1)(I + F − J)(I + J − F + 1)(I + J − F + 2)

×
√

(J + L+ S + 2)(J + L− S + 1)(J − L+ S + 1)(S + L− J)

(2J + 1)(2J + 3)(2F − 1)(2F + 1)

(13-24)
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13.8. Some MAPLE Zeeman Effect Programmes

The results of the above exercises can easily be written as simple MAPLE programmes

and the matrix elements for Hmag evaulated in the |JIFMF 〉 scheme.

#Diagonal Zeeman Effect (13-14)#

gf:=proc(J,i,F,M)

local result;

result:=simplify(M*gj*((F*(F+1)-i*(i+1)+J*(J+1))/(2*F*(F+1)))

+ M*gi*((F*(F+1)+i*(i+1)-J*(J+1))/(2*F*(F+1))));

end;

#Off-diagonal in F (13-20)#

gof:=proc(J,i,F,M)

local result;

result:=simplify((gj-gi)*sqrt((F+1)2̂ - M2̂)*sqrt(((F+J+i+2)

*(F+J-i+1)*(F-J+i+1)*(i+J-F))/(4*(F+1)2̂*(2*F+1)*(2*F+3))));

end;

#Off-diagonal in J (13-21)#

goj:=proc(J,i,F,M,S,L)

local result;

result:=simplify(((M*(1-gs))/(4*F*(F+1)*(J+1)))

*sqrt((F+i+J+2)*(F+J-i+1)*(J+i-F+1)*(i+F-J)*(J+L+S+2)

*(J+L-S+1) *(J-L+S+1)*(S+L-J))/sqrt((2*J+1)*(2*J+3)));

end;

#Off-diagonal in J and F (13-22)#

gojf:=proc(J,i,F,M,S,L)

local result;

result:=simplify(((gs-1)/(4*(F+1)*(J+1)))

*sqrt((F+M+1)*(F-M+1))

*sqrt((F+J+i+2)*(F+J+i+3)*(F+J-i+1)*(F+J-i+2))

*sqrt((J+L+S+2)*(J+L-S+1)*(J-L+S+1)*(S+L-J))/sqrt((2*F+1)

*(2*F+3)*(2*J+1)*(2*J+3)));

end;
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#Off-diagonal in J and F → F-1 (13-24)#

gojfd:=proc(J,i,F,M,S,L)

local result;

result:=simplify(((((gs-1)*sqrt(F2̂-M2̂))/(4*F*(J+1)))*

sqrt((i+F-J-1)*(i+F-J)*(i+J-F+1)

*(i+J-F+2)*(J+L+S+2)*(J+L-S+1)*(J-L+S+1)*(S+L-J)))

/(sqrt((2*J+1)*(2*J+3)*(2*F-1)

*(2*F+1))));

end;

The above MAPLE programmes make the calculation of the Zeeman matrices a trivial

process. In the case of a nuclear spin of I = 7
2

we obtain the typical magnetic

interaction matrices (in terms of the magnetic field Bz). I list the matrices for the

positive values of MF leaving it as an exercise for you to state what changes must be

made to obtain the matrices for the negative values of MF .

13.9. Magnetic Interaction Matrices

(

MF = 9
2

|(1, 7
2
)9

2
, 9

2
〉

〈(1, 7
2
)9

2
, 9

2
| gJ + 7

2
gI

)

(13-25a)









MF = 7
2

|(0, 7
2
)7

2
, 7

2
〉 |(1, 7

2
)7

2
, 7

2
〉 |(1, 7

2
)9

2
, 7

2
〉

〈(0, 7
2
)7

2
, 7

2
| 7

2
gI 2(1− gs)

√
7

3
2(gs − 1)

√
2

3

〈(1, 7
2
)7

2
, 7

2
| 2(1− gs)

√
7

3
2
9
gJ + 59

18
gI

√
14
9

(gJ − gI)
〈(1, 7

2
)9

2
, 7

2
| 2(gs − 1)

√
2

3

√
14
9

(gJ − gI) 7
9
gJ + 49

18
gI









(13-25b)















MF = 5
2

|(0, 7
2
)7

2
, 5

2
〉 |(1, 7

2
)9

2
, 5

2
〉 |(1, 7

2
)7

2
, 5

2
〉 |(1, 7

2
)5

2
, 5

2
〉

〈(0, 7
2
)7

2
, 5

2
| 5

2
gI

√
14
3

(gs − 1) −10
√

7
21

(gs − 1)
√

42
7

(gs − 1)

〈(1, 7
2
)9

2
, 5

2
|

√
14
3

(gs − 1) 5
9
gJ + 35

18
gI

7
√

2
18

(gJ − gI) 0

〈(1, 7
2
)7

2
, 5

2
| −10

√
7

21
(gs − 1) 7

√
2

18
(gJ − gI) 10

63
gJ + 295

126
gI

3
√

6
14

(gJ − gI)
〈(1, 7

2
)5

2
, 5

2
|

√
42
7

(gs − 1) 0 3
√

6
14

(gJ − gI) −5
7
gJ + 45

14
gI















(13-25c)















MF = 3
2

|(0, 7
2
)7

2
, 3

2
〉 |(1, 7

2
)9

2
, 3

2
〉 |(1, 7

2
)7

2
, 3

2
〉 |(1, 7

2
)5

2
, 3

2
〉

〈(0, 7
2
)7

2
, 3

2
| 3

2
gI

√
2(gs − 1) −2

√
7

7
(gs − 1)

√
70
7

(gs − 1)

〈(1, 7
2
)9

2
, 3

2
|
√

2(gs − 1) 1
6
(2gJ + 7gI)

√
14
6

(gJ − gI) 0

〈(1, 7
2
)7

2
, 3

2
| −2

√
7

7
(gs − 1)

√
14
6

(gJ − gI) 1
42

(4gJ + 59gI)
3
√

10
14

(gJ − gI)
〈(1, 7

2
)5

2
, 3

2
|

√
70
7

(gs − 1) 0 3
√

10
14

(gJ − gI) 3
14

(−2gJ + 9gI)















(13-25d)
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













MF = 1
2

|(0, 7
2
)7

2
, 1

2
〉 |(1, 7

2
)9

2
, 1

2
〉 |(1, 7

2
)7

2
, 1

2
〉 |(1, 7

2
)5

2
, 1

2
〉

〈(0, 7
2
)7

2
, 1

2
| 1

2
gI

2
√

5
3

(gs − 1) −2
√

7
21

(gs − 1) 2
√

21
7

(gs − 1)

〈(1, 7
2
)9

2
, 1

2
| 2

√
5

3
(gs − 1) gJ + 7

18
gI

√
35
9

(gJ − gI) 0

〈(1, 7
2
)7

2
, 1

2
| −2

√
7

21
(gs − 1)

√
35
9

(gJ − gI) 1
126

(4gJ + 59gI)
3
√

3
7

(gJ − gI)
〈(1, 7

2
)5

2
, 1

2
| 2

√
21

7
(gs − 1) 0 3

√
3

7
(gJ − gI) 1

14
(−4gJ + 9gI)















(13-25e)

Note that in the absence of nuclear spin the ground state (7F0) is non-degenerate but

with the occurrence of a nuclear spin I the groundstate has a degeneracy of 2I + 1

and this degeneracy can be lifted by an external magnetic field. Can the hyperfine

interaction, at higher than first-order, lift the degeneracy or could an external electric

field, perhaps in a crystal, lift the degeneracry, at least partially? What about

relativistic effects? The objective of this course is to supply quantitative answers

to these questions.

13.10. Zeeman Matrices in a |JMJIMIMF 〉 Basis

We could also calculate the Zeeman matrix elements in a |JMJIMIMF 〉 basis. As an

exercise see if you can derive the following results:-

(

MF = 9
2

|11, 7
2

7
2
; 9

2
〉

〈11, 7
2

7
2
; 9

2
| gJ + 7

2
gI

)

(13-26a)









MF = 7
2

|00, 7
2

7
2
; 7

2
〉 |10, 7

2
7
2
; 7

2
〉 |11, 7

2
5
2
; 7

2
〉

〈00, 7
2

7
2
; 7

2
| 7

2
gI 2(gs − 1) 0

〈10, 7
2

7
2
; 7

2
| 2(gs − 1) 7

2
gI 0

〈11, 7
2

5
2
; 7

2
| 0 0 gJ + 5

2
gI









(13-26b)













MF = 5
2

|00, 7
2

5
2
; 5

2
〉 |10, 7

2
5
2
; 5

2
〉 |11, 7

2
3
2
; 5

2
〉 |1− 1, 7

2
7
2
; 5

2
〉

〈00, 7
2

5
2
; 5

2
| 5

2
gI 2(gs − 1) 0 0

〈10, 7
2

5
2
; 5

2
| 2(gs − 1) 5

2
gI 0 0

〈11, 7
2

3
2
; 5

2
| 0 0 gJ + 3

2
gI 0

〈1− 1, 7
2

7
2
; 5

2
| 0 0 0 −gJ + 7

2
gI













(13-26c)













MF = 3
2

|00, 7
2

3
2
; 3

2
〉 |10, 7

2
3
2
; 3

2
〉 |11, 7

2
1
2
; 3

2
〉 |1− 1, 7

2
5
2
; 3

2
〉

〈00, 7
2

3
2
; 3

2
| 3

2
gI 2(gs − 1) 0 0

〈10, 7
2

3
2
; 3

2
| 2(gs − 1) 3

2
gI 0 0

〈11, 7
2

1
2
; 3

2
| 0 0 gJ − 1

2
gI 0

〈1− 1, 7
2

5
2
; 3

2
| 0 0 0 −gJ + 3

2
gI













(13-26d)
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











MF = 1
2

|00, 7
2

1
2
; 1

2
〉 |10, 7

2
1
2
; 1

2
〉 |117

2
− 1

2
; 1

2
〉 |1− 1, 7

2
3
2
; 1

2
〉

〈00, 7
2

1
2
; 1

2
| 1

2
gI 2(gs − 1) 0 0

〈10, 7
2

1
2
; 1

2
| 2(gs − 1) 1

2
gI 0 0

〈117
2
− 1

2
; 1

2
| 0 0 gJ − 1

2
gI 0

〈1− 1, 7
2

3
2
; 1

2
| 0 0 0 −gJ + 3

2
gI













(13-26e)

Check that the traces of the matrices of the two sets (13-25) and (13-26) are in

one-to-one correspondence. Are the respective sets of eigenvalues the same in spite of

the different bases?

This concludes our introduction to the Zeeman effect and its application to the

free atom Sm. In the next lecture we examine the hyperfine interaction for the free

atom.
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Lecture 14: Calculating Magnetic Hyperfine Interactions for a free Atom or Ion

The present generation has no right to complain of the great discoveries already

made, as if they left no room for further enterprise. They have only given Science

a wider boundary, and we have not only to reduce to order the regions that have

been conquered, but to keep up constant operations on the frontier, on a continually

increasing scale. J C Maxwell, Inaugural Lecture

14. Introduction

In the previous lecture we examined the effect of an external magnetic field on the 7F0

and 7F1 levels of the 4f 6 configuration. In this lecture we consider, in some detail, the

role of the magnetic hyperfine interaction on these two levels for atoms and free ions

and in particular the two stable isotopes, 147Sm,149 Sm. Each of these isotopes have

nuclear spin I = 7
2
.

14.1. Magnetic Hyperfine Matrix Elements in JMJIMI Coupling

Recall (5-31) we have for the magnetic hyperfine interaction, Hhfs, for an electron

configuration ℓn

Hhfs = aℓ

n
∑

i=1

[li −
√

10(sC(2))
(1)
i ] · I (14-26)

with

aℓ = 2ββNgI < r−3 > =
2ββNµI < r−3 >

I
(14-27)

where < r−3 > is the expectation value of the inverse-cube radius of the electron

orbital. Noting (14-26), define

N(1) =
n
∑

i=1

N
(1)
i =

n
∑

i=1

(

li −
√

10(sC(2))
(1)
i

)

(14-28)

Let us consider the scalar tensor product

N(1) · I(1) = N
(1)
0 I

(1)
0 −

(

N
(1)
1 I

(1)
−1 +N

(1)
−1 I

(1)
1

)

(14-29)

and the evaluation of the matrix elements in JMJIMI coupling. Since the tensors are

of rank 1 the matrix elements will be null unless J ′ = J or J ′ = J ± 1. Recalling the

Wigner-Eckart theorem we may evaluate (14-29) as

〈αJMJIMIMF |N(1) · I(1)|α′J ′M ′
JIM

′
IM

′
F 〉

= δMF ,M
′

F

1
∑

q=−1

(−1)q〈αJMJIMIMF |N(1)
q I

(1)
−q |α′J ′M ′

JIM
′
IM

′
F 〉

= δMF ,M
′

F

1
∑

q=−1

(−1)q(−1)J−MJ

(

J 1 J ′

−MJ q MJ − q

)

〈αJ‖N (1)‖α′J ′〉

× (−1)I−MI

(

I 1 I

−MI −q MI + q

)

〈I‖I(1)‖I〉 (14-30)
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where we choose to consider only matrix elements diagonal in the nuclear spin I. The

last reduced matrix element in (14-30) is simply

〈I‖I(1)‖I〉 =
√

I(I + 1)(2I + 1) (14-31)

We now use (14-30) to obtain expressions for the various particular matrix elements.

Let us start with the matrix elements that are diagonal in all the quantum numbers

other than, possibly, α, α′. To that end we use (2-48c) to expand the two 3−jsymbols

to obtain

〈αJMJIMIMF |N(1) · I(1)|α′JMJIMIMF 〉 = MIMJ
〈αJ‖N (1)‖α′J〉

√

J(J + 1)(2J + 1)
(14-31a)

The matrix elements diagonal in the M quantum numbers but with J ′ = J + 1

become, after noting (2-56)

〈αJMJIMIMF |N(1) · I(1)|α′J + 1MJIMIMF 〉 = −MI

√

(J +MJ + 1)(J −MJ + 1)

(J + 1)(2J + 1)(2J + 3)

× 〈αJ‖N (1)‖α′J + 1〉 (14-31b)

Next consider the matrix elements while diagonal in J and MF are off-diagonal in

the quantum numbers, MJ ,MI . These matrix elements will have q = ±1 whereas the

previous all involved q = 0. Evaluating the 3j−symbols leads to the expressions

〈αJMJIMIMF |N(1) · I(1)|α′JMJ ± 1IMI ∓ 1MF 〉 =

∓ 1
2

√

(J ∓MJ)(J ±MJ + 1)

J(J + 1)(2J + 1)

√

(I ±MI)(I ∓MI + 1)〈αJ‖N (1)‖α′J〉

(14-31c)

and the matrix elements with J ′ = J + 1 become

〈αJMJIMIMF |N(1) · I(1)|α′J + 1MJ ± 1IMI ∓ 1MF 〉 =

± 1
2

√

(J ±MJ + 1)(J ±MJ + 2)(I ∓MI + 1)(I ±MI)

(J + 1)(2J + 1)(2j + 3)
〈αJ‖N (1)‖α′J + 1〉

(14-31d)

In the above we have made use of the special 3j−symbols

(

J J 1

M −M − 1 1

)

= (−1)J−M

√

(J −M)(J −M + 1)

2J(J + 1)(2J + 1)
(14-32a)

and

(

J + 1 J 1

M −M − 1 1

)

= (−1)J−M−1

√

(J −M)(J −M + 1)

2(2J + 1)(J + 1)(2J + 3)
(14-32b)
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To complete the calculation we need to evaluate the reduced matrix elements

〈αJ‖N (1)‖α′J ′〉. Noting (14-26) this amounts to evaluating the two reduced matrix

elements, after enlarging the state description,

〈αSLJ‖L(1)‖α′S ′L′J ′〉 (14-33a)

and

−
√

10〈αSLJ‖
∑

i

(s(1)C(2))
(1)
i ‖α′S ′L′J ′〉 (14-33b)

The first matrix element (14-33a) may be evaluated using (2-46) and then explicitly

evaluating the 6j−symbol to give for the two cases

〈αSLJ‖L(1)‖α′S ′L′J〉 =

δα,α′δS,S′δL,L′

1
2

[J(J + 1) + L(L+ 1)− S(S + 1)]

√

2J + 1

J(J + 1)
(14-34a)

and

〈αSLJ‖L(1)‖α′S ′L′J + 1〉 =

δα,α′δS,S′δL,L′

1
2

√

(S + L+ J + 2)(J + L− S + 1)(J − L+ S + 1)(S + L− J)

(J + 1)

(14-34b)

The second matrix element (14-33b) can be evaluated using (2-43) to give

〈αSLJ‖ −
√

10
∑

i

(s(1)C(2))
(1)
i ‖α′S ′L′J〉 =

−
√

2(2J + 1)(2J ′ + 1)







S S ′ 1

L L′ 2

J J ′ 1







〈s‖s(1)‖s〉〈ℓ‖C(2)‖ℓ〉〈αSL‖W (12)‖α′S ′L′〉

(14-35)

where we have introduced the double tensor operators W(κ,k) whose one electron

reduced matrix elements satisfy

〈sℓ‖w(κ,k)‖s′ℓ′〉 = δs,s′δℓ,ℓ′
√

(2κ+ 1)(2k + 1) (14-36)

Their properties are discussed in detail in Chapter 6 of Judd’s book2. For the f 6 7F

multiplet Judd (page 218) gives

〈7F‖W (12)‖7F 〉 = −
√

70

3
(14-37)

With the above results established it is not difficult to deduce that

〈f 6 7F1‖N (1)‖f 6 7F1〉 =

√

2

3
(14-38a)

〈f 6 7F0‖N (1)‖f 6 7F0〉 = 0 (14-38b)

〈f 6 7F0‖N (1)‖f 6 7F1〉 =
5
√

3

3
(14-38c)
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14.2. Magnetic Hyperfine Matrix Elements for the 7F J = 0, 1 Levels

We are now in a position to be able to calculate the magnetic hyperfine matrix elements

for the 7F J = 0, 1 levels in the |JMJIMIMF 〉 basis in a similar manner as was done

for the Zeeman effect in the previous lecture to obtain the matrices as

(

MF = 9
2

|11, 7
2

7
2
; 9

2
〉

〈11, 7
2

7
2
; 9

2
| 7

6

)

(14-39a)









MF = 7
2

|00, 7
2

7
2
; 7

2
〉 |10, 7

2
7
2
; 7

2
〉 |11, 7

2
5
2
; 7

2
〉

〈00, 7
2

7
2
; 7

2
| 0 −35

6
5
√

14
6

〈10, 7
2

7
2
; 7

2
| −35

6
0 −

√
14
6

〈11, 7
2

5
2
; 7

2
| 5

√
14

6
−

√
14
6

5
6









(14-39b)















MF = 5
2

|00, 7
2

5
2
; 5

2
〉 |10, 7

2
5
2
; 5

2
〉 |11, 7

2
3
2
; 5

2
〉 |1− 1, 7

2
7
2
; 5

2
〉

〈00, 7
2

5
2
; 5

2
| 0 −25

6
5
√

6
3

−5
√

14
6

〈10, 7
2

5
2
; 5

2
| −25

6
0

√
6

3

√
14
6

〈11, 7
2

3
2
; 5

2
| 5

√
6

3

√
6

3
1
2

0

〈1− 1, 7
2

7
2
; 5

2
| −5

√
14

6

√
14
6

0 −7
6















(14-39c)















MF = 3
2

|00, 7
2

3
2
; 3

2
〉 |10, 7

2
3
2
; 3

2
〉 |11, 7

2
1
2
; 3

2
〉 |1− 1, 7

2
5
2
; 3

2
〉

〈00, 7
2

3
2
; 3

2
| 0 −5

2
5
√

30
6

−5
√

6
3

〈10, 7
2

3
2
; 3

2
| −5

2
0 −

√
30
6

√
6

3

〈11, 7
2

1
2
; 3

2
| 5

√
30

6
−

√
30
6

1
6

0

〈1− 1, 7
2

5
2
; 3

2
| −5

√
6

3

√
6

3
0 −5

6















(14-39d)















MF = 1
2

|00, 7
2

1
2
; 1

2
〉 |10, 7

2
1
2
; 1

2
〉 |117

2
− 1

2
; 1

2
〉 |1− 1, 7

2
3
2
; 1

2
〉

〈00, 7
2

1
2
; 1

2
| 0 −5

6
10

√
2

3
−5

√
30

6

〈10, 7
2

1
2
; 1

2
| −5

6
0 −2

√
2

3

√
30
6

〈117
2
− 1

2
; 1

2
| 10

√
2

3
−2

√
2

3
−1

6
0

〈1− 1, 7
2

3
2
; 1

2
| −5

√
30

6

√
30
6

0 −1
2















(14-39e)

For numerical work the matrix elements must be multiplied by aℓ as defined in (14-27).

Note that there is no first-order hyperfine splitting for the 7F0 groundstate. This is

not surprising the matrix elements of any non-scalar interaction must vanish between

states with J = 0. However, is some splitting possible by second-order interaction via
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the 7F1 level. We need to determine how big such a splitting could be. Would it be

measurable?

The second-order perturbation on the 7F0 level by magnetic hyperfine interaction

with the 7F1 level is approximately given by

E(7F007
2
MI ;MF ) = − 1

∆

∑

MJ ,M
′

I

(aℓ〈7F007
2
MI ;MF |Hhfs|7F1MJ

7
2
M ′

I ;MF 〉)2 (14-40)

where ∆ = E(7F1)−E(7F0). The summation in (14-40) proceeds by summing the

squares of the matrix elements for the first row of each of the matrices for each value

of MF . However, each summation results in the number

a2
ℓ

175

4
(14-41)

and hence the shift is the same for all the values of MF and thus this mechanism

cannot lift the groundstate degeneracy!

Experimentally8, it is found for 147Sm I that aℓ ∼ −140MHz allowing us

to estimate the size of the shift of the groundstate of this atom. Using (14-41),

∆ ∼ 202cm−1 in (14-40) yields

E(7F007
2
MI ;MF ) =∼ −

(

140× 175

4

)2

×
(

202× 2.998× 104
)−1

= −6.3MHz = −2× 10−5cm−1 (14-42)

14.3. Combined Magnetic + Hyperfine fields in Sm I

Let us now consider the combined action of an external magnetic field Bz and the

magnetic hyperfine interaction on the 7F0 groundstate of Sm I. We have seen that

neither, by itself, can produce a splitting at second-order. In second-order we need to

evaluate the cross terms

E(7F007
2
MI ;MF ) = −δMI ,MF

2aℓµBBz

∆
× 〈7F007

2
MI ;MF |N(1) · I(1)|7F10MIMF 〉

× 〈7F10MIMF |L+ gsS|7F007
2
MI ;MF 〉 (14-43)

The first matrix element follows from specialisation of (14-31b) to give

〈7F007
2
MI ;MF |N(1) · I(1)|7F10MIMF 〉 = −5

3
MF (14-44)

and the second from (13-6)

〈7F10MIMF |L+ gsS|7F007
2
MI ;MF 〉 = 2(gs − 1)µBBz (14-45)

and hence (14-43) evaluates as

E(7F007
2
MI ;MF ) =

δMI ,MF

∆
MF2aℓµBBz

5

3
2(gs − 1) (14-46)
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Here we notice that the perturbation is directly proportional to the MF quantum

number and to the applied magnetic field and thus the combined effect is to produce

a small hyperfine splitting of the groundstate - how small? Assuming an external field

of 1T we find from (14-46) that

E(7F007
2
MI ;MF ) =∼ 2.2MFMHz ∼= 7× 10−5MF cm

−1 (14-47)

14.4. Exercises

14-1 Give a physical interpretation of the result found in (14-41).

14-2 Explain why if you diagonalise the matrices (14-39a-e), with the elements off-

diagonal in J put to zero you get just 4 distinct eigenvalues (0,−1
3
,−3

2
, 7

6
).
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Lecture 15: Electric Quadrupole Hyperfine Structure

Never having experienced the classical education as fragmentarily delivered by the

English public and grammar schools, nor a university grounding in Newtonian

science, Faraday had no preconceptions, and was thus uniquely receptive when he

first encountered science in London. James Hamilton, Faraday, the life London:

HarperCollins (2002)

15. Introduction

In this lecture we explore the role of electric quadrupole hyperfine interactions in

the 4f 67F multiplet of the trivalent europium ion Eu3+ ion. Recall europium has

two stable isotopes 151Eu and 153Eu each having a nuclear spin of I = 5
2

and hence

each possess both a nuclear magnetic moment and an electric quadrupole moment.

Throughout we will be drawing on Chapters 2 and 6 of Part I.

15.1. The Electric Quadrupole Interaction Matrix Elements in the |JIFMF 〉 Basis

Noting S6.10 and (2-44) we have

〈αJIFMF |HEQ|α′J ′IFMF 〉

= −e2(−1)J
′+I+F

{

J ′ I F

I J 2

}

〈αJ‖r−3
e C(2)

e ‖α′J ′〉〈I‖r2
nC

(2)
n ‖I〉 (15-1)

Note from (6-37) we can write

Q =

√

4I(2I − 1)

(I + 1)(2I + 1)(2I + 3)
〈I‖r2

nC
(2)
n ‖I〉 (15-2)

allowing us to rewrite (15-1) as

〈αJIFMF |HEQ|α′J ′IFMF 〉

= −bℓ(−1)J
′+I+F

{

J ′ I F

I J 2

}

√

(I + 1)(2I + 1)(2I + 3)

4I(2I − 1)
〈ℓ‖C(2)‖ℓ〉

× 〈αJ‖U (2)‖α′J ′〉 (15-3)

Expanding the description of the last reduced matrix element in (15-3) we have

〈αSLJ‖U (2)‖α′S ′L′J ′〉

= δS,S′(−1)S+L′+J
√

(2J + 1)(2J ′ + 1)

{

J 2 J ′

L′ S L

}

× 〈αSL‖U (2)‖α′S ′L′〉 (15-4)

where for a single electron we define the unit tensor operator u(k) by

〈ℓ‖u(k)‖ℓ′〉 = δℓ,ℓ′ (15-5)
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The reduced matrix elements of U (2) have been tabulated by Nielson and Koster44. In

particular

〈f 6 7F‖U (2)‖f 6 7F 〉 = −1 (15-6)

It follows from (15-4) that









U (2) |7F0〉 |7F1〉 |7F2〉
〈7F0| 0 0 −

√
7

7

〈7F1| 0 3
√

14
28

−
√

42
28

〈7F2| −
√

7
7

√
42

28
11

√
6

84









(15-7)

15.2. Electric Quadrupole Interaction for 151Eu(4f 6 7F0)

Let us use the preceding results to estimate the extent to which the ground state

of 151Eu3+ is perturbed by electric quadrupole interaction with the 7F2 state at

∼ 1040cm−1 above the ground state. Thus from (15-3), (15-7) and noting that

〈3‖C(2)‖3〉 = −2
√

105

15
(15-8)

we have

〈(05
2
)5

2
|HEQ|(25

2
)5

2
〉

= −b4f(−1)2+
5
2
+

5
2

{

2 5
2

5
2

5
2

0 2

}

√

7
2
· 6 · 8

4 · 5
2
· 4 · −

2
√

105

15
· −
√

7

7

= −
√

210

75
b4f (15-9)

15.3. Electric Quadrupole Interaction in the |JMJIMI〉 Basis

Within a crystal field the |JMJIMI〉 basis is most appropriate. To that end we need

to extend the results of S6.10 to compute matrix elements off-diagonal in J . We have

〈αJMJIMIMF |HEQ|α′J ′MJ ± q IMI ∓ qM ′
F 〉

= −e2δMF ,M
′

F
(−1)J−MJ

(

J 2 J ′

−MJ ∓q MJ ± q

)

(−1)I−MI

(

I 2 I

−MI ±q MI ∓ q

)

× 〈αJ‖r−3
e C2

e‖α′J ′〉〈I‖r2
nC

(2)
n ‖I〉 (15-10)

Noting (15-2) and (15-4) we have

〈αSLJMJIMIMF |HEQ|α′SL′J ′MJ ± q IMI ∓ qM ′
F 〉

= δMF ,M
′

F
(−1)J−MJ

(

J 2 J ′

−MJ ∓q MJ ± q

)

(−1)I−MI

(

I 2 I

−MI ±q MI ∓ q

)

×−e2〈r−3
e 〉Q

√

(I + 1)(2I + 1)(2I + 3)

4I(2I − 1)
〈ℓ‖C(2)‖ℓ〉

× (−1)S+L′+J
√

(2J + 1)(2J ′ + 1)

{

J 2 J ′

L′ S L

}

〈αSL‖U (2)‖α′S ′L′〉 (15-11)



Magnetic and Hyperfine Interactions 147

15.4. Electric Quadrupole Coupling between 7F0 and 7F2 in Eu3+

Let us use the above results to compute the matrix elements

E(MI) = 〈4f 6 7F0MJ = 05
2
MI |HEQ|4f 6 7F2MJ = 05

2
MI〉 (15-12)

Using

(

2 2 0

0 0 0

)

=
1√
5

(15-13)

and

(−1)
5
2
−MI

(

5
2

2 5
2

−MI 0 MI

)

=
12M 2

I − 35

16
√

105
(15-14)

together with (15-7) and (15-8) in (15-11) leads to

E(MI) = −e2Q〈r−3
e 〉
√

3

600
[12M 2

I − 35] (15-15)

from which we can deduce that were a second-order perturbation responsible for the

ground state hyperfine splitting, say by crystal field mixing, the electric quadrupole

hyperfine splittings will be proportional to M 2
I and states with ±MI will be two-fold

degenerate. We have from (15-15) the ratio

∆calc =
E(±5

2
)−E(±3

2
)

E(±3
2
)−E(±1

2
)

= 2 (15-16)

which may be compared with the experimental ratios in Y AlO3 : Eu3+ of84

∆expt(
151Eu) =

45.99

23.03
= 1.997 (15-17a)

and

∆expt(
153Eu) =

119.20

59.65
= 1.998 (15-17b)

15.5. A Derivation

The above results are encouraging but we still have to consider the sign of the splitting

so as to determine the ordering of the three hyperfine levels and finally the magnitude

of the splittings. We also want to make sure that our results are consistent. To that

end we attempt an alternative derivation based upon an expression for the electric

quadrupole hyperfine interaction due to Abragam and Pryce85 who give the interaction

as

HEQ =
e2Q

2I(2I − 1)

∑

i

{

I(I + 1)

r3
i

− 3(r · I)
r5
i

2
}

(15-18)
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where the summation is over all electrons outside of closed shells. Our task is to first

express the operator enclosed in curly brackets in terms of tensor operators. We start

with the second term.

(r · I) = r(C(1) · I(1)) = −
√

3r(C(1)I(1))
(0)
0 (15-19)

Next

(r · I)2 = 3r2(C(1)I(1))
(0)
0 (C(1)I(1))

(0)
0

= 3r2
(

(C(1)I(1))(0)(C(1)I(1))(0)
)(0)

0

= 3r2
∑

k

〈(11)0(11)0; 0|(11)k(11)k; 0〉
(

(C(1)C(1))(k)(I(1)I(1))(k)
)(0)

0

= 3r2
∑

k

(2k + 1)







1 1 0

1 1 0

k k 0







(

(C(1)C(1))(k)(I(1)I(1))(k)
)(0)

0

(15-20)

The 9j−symbol vanishes unless k = 0, 1, 2. Furthermore

(C(1)C(1))(0) = − 1√
3

(15-21a)

(C(1)C(1))(1) = 0 (15-21b)

(C(1)C(1))(2) =

√

2

3
C(2) (15-21c)

Consider the k = 0 term in (15-20). Evaluating the 9j−symbol and using (15-21a)

leads to

3r2 · 1

3
· − 1√

3
(I(1)I(1))(0) = − r2

√
3

(I(1)I(1))(0) (15-22)

Then

〈IMI |(I(1)I(1))
(0)
0 |IMI〉

= (−1)I−MI

(

I 0 I

−MI 0 MI

)

〈I‖(I(1)I(1))(0)‖I〉

=
(−1)2I

√
2I + 1

{

1 0 1

I I I

}

〈I‖I(1)‖I〉2

= − 1√
3(2I + 1)

I(I + 1)(2I + 1)

= −I(I + 1)√
3

(15-23)

Noting (15-22) we see that the k = 0 term exactly cancels the first term in (15-18).

Thus only the k = 2 term need be considered. We first note that
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〈I‖(I(1)I(1))(2)‖I〉

=
√

5(−1)2I

{

I 1 I

2 I 1

}

〈I‖I(1)‖I〉2

=
√

5(−1)2I

{

I I 2

1 1 I

}

I(I + 1)(2I + 1)

=

√

I(I + 1)(2I + 1)(2I + 3)(2I − 1)

6
(15-24)

and from the Wigner-Eckart theorem

〈IMI |(I(1)I(1))
(2)
0 |IMI〉

= (−1)I−MI

(

I 2 I

−MI 0 MI

)

〈I‖(I(1)I(1))(2)‖I〉 (15-25)

Evaluating the 3j−symbol and using (15-24) we obtain

〈IMI |(I(1)I(1))
(2)
0 |IMI〉 =

3M 2
I − I(I + 1)√

6
(15-26)

Evaluation of the 9j−symbol and use of (15-21b) results in the k = 2 portion of (15-20)

becoming

r2

√
6

3

∑

q

(−1)qC(2)
q (I(1)I(1))

(2)
−q (15-27)

and hence
{

I(I + 1)

r3
i

− 3(r · I)
r5
i

2
}

= −〈r−3
e 〉i
√

6
∑

q

(−1)qC(2)
q (I(1)I(1))

(2)
−q (15-28)

Returning this result to (15-18) leads to

〈7F00IMI |HEQ|7F20IMI〉

= − e2Q〈r−3
e 〉

2I(2I − 1)

√
6〈7F00|C(2)

0 |7F20〉〈IMI|(I(1)I(1))
(2)
0 |IMI〉 (15-29)

Noting that

〈7F00|C(2)
0 |7F20〉 =

2
√

3

15
(15-30)

and (15-26) we obtain (15-29), with I = 5
2
, as

〈7F005
2
MI |HEQ|7F205

2
MI〉 = −e2Q〈r−3

e 〉
√

3

600

[

12M 2
I − 35

]

(15-31)

in agreement with (15-15).



150 Brian G Wybourne

15.6. Crystal Field J−mixing in the 7F Multiplet

Ultimately our concern is with Eu3+ ions in a crystal field, Vcryst. In the usual crystal

field expansion one has typically

Vcryst =
∑

k,q

Bk
qC

(k)
q (15-32)

A typical matrix element of the tensor operator, C
(k)
q , will be of the form

〈αSLJM |C(k)
q |α′SL′J ′M ′〉

= (−1)J−M
(

J k J ′

−M q M ′

)

× (−1)S+L′+J+k
√

(2J + 1)(2J ′ + 1)

{

J k J ′

L′ S L

}

× 〈αSL‖C(k)‖α′SL′〉 (15-33)

Inspection of the above leads to the selection rules that must be satisfied if the matrix

element is not to vanish

∆S = 0, ∆L <= k, ∆J <= k, M ′ = M − q (15-34)

In the preceding section we saw that the electric quadrupole hyperfine interaction can

couple the MJ = 0 states of the 7F0 level to that of the 7F2 level. Clearly any crystal

field having an axial quadrupole term such as B2
0C

(2)
0 can likewise mix those two levels.

Thus we can anticipate a second-order splitting mechanism of the form

− 2
〈7F00IMI |B2

0C
(2)
0 |7F20IMI〉〈7F20IMI |HEQ|7F00IMI〉

E(7F2)− E(7F0)
(15-35)

That will be the subject of the next lecture.
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Lecture 16: Electric Quadrupole Hyperfine structure in Crystals

Symmetry, as wide or as narrow as you may define its meaning, is one idea by

which man through the ages has tried to comprehend and create order, beauty, and

perfection. Hermann Weyl, Symmetry Princeton: Princeton University Presss

(1952)

16. Introduction

In this lecture I want to focus on the evaluation of the sign and magnitude of the

groundstate hyperfine splitting of Eu3+ in a crystalline environment.

16.1. Derivation of Elliott’s Second-order Electric Quadrupole Splitting Result

Initially let us consider a purely axial crystal field. Since we will consider an interaction

between the 7F0 and 7F2 levels the crystal field could be represented, as traditionally80,

as

Vcryst = A0
2

∑

i

(3z2
i − r2

i ) (16-1)

where the summation is over all electrons in unclosed shells and A0
2 is a parameter that

reflects the structure of the crystal. Eq. (16-1) can be rewritten in tensor operator

form as

Vcryst = 2A0
2〈r2〉

∑

i

Ci
(2)
0 (16-2)

Let us now consider the splitting mechanism alluded to in (15-35) with a minor change

of notation,

E(I,MI) = −4A0
2〈r2〉 〈

7F00IMI|
∑

iCi
(2)
0 |7F20IMI〉〈7F20IMI |HEQ|7F00IMI〉
E(7F2)− E(7F0)

(16-3)

The operator in the first matrix element acts only in the space of the electrons and is

thus independent of, and diagonal in, the IMI nuclear quantum numbers. This matrix

element was evaluated in (15-30) while the second matrix element was evaluated in

(15-29) as

〈7F20IMI |HEQ|7F00IMI〉 = −e2Q〈r−3
e 〉
√

3

15

[3M 2
I − I(I + 1)]

I(2I − 1)
(16-4)

to yield (16-3) as

E(I,MI) =
8

75

e2QA0
2〈r2〉〈r−3

e 〉
∆2

[3M 2
I − I(I + 1)]

I(2I − 1)
(16-5)

which is identical with (11) of Elliott80 where

∆2 = E(7F2)− E(7F0) (16-6)
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For the stable europium isotopes I = 5
2

and (16-5) becomes

E(5
2
,MI) =

4

375

e2QA0
2〈r2〉〈r−3

e 〉
∆2

[3M 2
I −

35

4
] (16-7)

which again agrees with Ellott’s result80 but has the opposite sign to the observed

splittings so cannot, by itself, explain the ground state hyperfine structure. This

situation is reminescent of similar problems in explaining the crystal field splitting86

of the |4f 7 8S7
2
〉 groundstate of Gd3+.

16.2. Explicit Calculation of the Elliott Term

Elliot80 has expressed (16-5) in the form

E(I,MI) = P [M 2
I −

1

3
I(I + 1)] (16-8)

with

P =
8

25
e2QA0

2〈r2〉 〈r−3
e 〉

I(2I − 1)∆2
(16-9)

To obtain a numerical value for P we need estimates of the various quantities appearing

in (16-9). Elliott did this for Eu3+ in europium ethylsulphate crystals, we will follow

his calculation. A value for A0
2 can be obtained, to a reasonable approximation, by

noting that experimentally the two 7F1 sublevels, MJ = ±1 and MJ = 0 are separated

by 42cm−1. This splitting can be calculated, neglecting possible J−mixing, using

(16-2) and (15-33) and noting (15-7). Thus

〈7F11|C(2)
0 |7F11〉

= (−1)1−1

(

1 2 1

−1 0 1

)

〈3‖C(2)‖3〉〈7F1‖U (2)‖7F1〉

= 1×
√

30

30
×−2

√
105

15
× 3
√

14

28

= − 1

10
(16-10a)

〈7F10|C(2)
0 |7F10〉

= (−1)1−0

(

1 2 1

0 0 0

)

〈3‖C(2)‖3〉〈7F1‖U (2)‖7F1〉

= −1×
√

30

15
×−2

√
105

15
× 3
√

14

28

= +
1

5
(16-10b)

and hence

〈7F10|Vcryst|7F10〉 − 〈7F1 ± 1|Vcryst|7F1 ± 1〉 =
3

5
A0

2〈r2〉 (16-11)
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From which we deduce

A0
2〈r2〉 = 70cm−1 (16-12)

Experimentally the energy separation of the 7F0 and 7F2 levels is

∆2 = 1015cm−1 (16-13)

Bleaney87 had deduced a value of

〈r−3
e 〉 = 57Å−3 = 57× 10−24cm−3 (16-14)

Furthermore,

e2 = R a0 (16-15)

where R is the Rydberg constant and a0 is the Bohr radius. Following tradition the

electric quadrupole moment Q is expressed in barns with

1barn = 10−24cm2 (16-16)

To obtain P in cm−1 we take

R = 109736cm−1 and a0 = 0.5292× 10−8cm (16-17)

Taking the above values together with I = 5
2

and Q in barns we obtain from (16-9)

Elliott’s estimate of

P = +Q× 4

125
× e2A0

2〈r2〉
∆2

× 〈r−3
e 〉

= +Q× 4× 2× 109736× 0.5292× 10−8 × 70× 57

125× 1015

= +1.46Q× 10−4cm−1

= +4.38Q MHz (16-18)

Elliott’s estimate for P could be brought up-to-date using modern values but the

change is relatively small. Before exploring the subject further let us consider the

impact of spin-orbit interaction of the 5D0 state with the ground state 7F0. To that

end we must first consider the Coulomb interaction among the three 5D states of 4f 6

to determine the linear combination of the three 5D states corresponding to the lowest
5D term.

16.3. The Lowest 4f 6 5D Term

The detailed calculation can be found in Judd2 S8-7. The three 5D states are labelled

as

|(210)(20)5D〉, |(210)21)5D〉, |(111)(20)5D〉 (16-19)
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The Coulomb matrix evaluates as









15E0 + 6E1 + 858
7
E2 + 11E3 468

√
33

7
E2 22

√
14

7
E3

468
√

33
7

E2 15E0 + 6E1 − 1131
7
E2 + 18E3 12

√
462

7
E3

22
√

14
7
E3 12

√
462

7
E3 15E0 + 9E1 − 11E3









(16-20)

Judd chose to diagonalise the matrix (16-20) using 4f−hydrogenic eigenfunction ratios

for the Slater integrals and obtained the eigenfunction for the lowest 5D term as

|5D〉 = −0.196|(210)(20)5D〉+ 0.770|(210)21)5D〉 − 0.607|(111)(20)5D〉 (16-21)

16.4. Spin-orbit Interaction Between 7F0 and the Lowest 5D0

To calculate the spin-orbit interaction we first note that

〈ℓnαSLJM |
n
∑

i=1

(s · ℓ)|ℓnα′S ′L′J ′M ′〉

= δJ,J ′δM,M ′(−1)S
′+L+J

√

ℓ(ℓ+ 1)(2ℓ+ 1)

6

{

S S ′ 1

L′ L J

}

× 〈ℓnαSL‖W (11)‖α′S ′L′〉 (16-22)

Judd2 p203 gives a table of some of the relevant spin-orbit matrix elements. In

particular he tabulates the 〈7F1|Hso|5D1〉 matrix elements. We however want the

corresponding matrix elements for J = 0. We can obtain these by noting from (16-22)

that

〈7F0|Hso|5D0〉
〈7F1|Hso|5D1〉

=
3
√

2

4
(16-23)

and hence

(

|(210)(20)5D〉 |(210)21)5D〉 |(111)(20)5D〉
〈7F0| −

√
42
7
ζ4f −

√
154
7

ζ4f 2
√

3 ζ4f

)

(16-24)

Making use of (16-21) and (16-24) then leads, for the lowest 5D0 level, to

〈7F0|Hso|5D0〉

= (−0.196×−
√

42

7
+ 0.770×−

√
154

7
− 0.607× 2

√
3) ζ4f

= −3.3 ζ4f (16-25)

Let us suppose that the 5D0 is above the 7F0 level by an amount E and try to estimate

the amount of |5D0〉 character that gets mixed into the |7F0〉 ground state by spin-orbit

interaction. Using the previous results we have the energy matrix

(

|7F0〉 |5D0〉
〈7F0| 0 −3.3 ζ4f

〈5D0| −3.3 ζ4f E

)

(16-26)

to consider.
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16.5. Note on rank two matrices

Consider a rank two matrix of the form

(

|α〉 |β〉
〈α| 0 a

〈β| a E

)

(16-27)

The two eigenvalues λ± may be found from the requirement that
∣

∣

∣

∣

−λ a

a E − λ

∣

∣

∣

∣

= 0 (16-28)

leading to the secular equation

λ2 − Eλ− a2 = 0 (16-29)

with

λ± = 1
2

[

E ±
√
E2 + 4a2

]

= 1
2
E

[

1±
√

1 +
4a2

E2

]

(16-30)

If E >> a then we can approximate the square root to get the two eigenvalues as

λ+ = E +
a2

E
and λ− = −a

2

E
(16-31)

The corresponding eigenvectors will be

|λ+〉 = x|α〉+ y|β〉 and |λ−〉 = y|α〉 − x|β〉 (16-32)

with

xx∗ + yy∗ = 1 (16-33)

. We may choose x, y to be real. The components (x, y) may be determined from the

requirement that
(

0 a

a E

)(

x

y

)

= λ±

(

x

y

)

(16-34)

leading to

y = λ±
x

a
(16-35)

Noting (16-33) we may write

x = eiθ
a

√

a2 + λ2
±

(16-36)
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Fixing the phase angle θ so that eiθ = +1 leads to the two eigenvectors

|λ−〉 =
1√

E2 + a2
(E|α〉 − a|β〉) (16-37a)

|λ+〉 =
1√

E2 + a2
(a|α〉+ E|β〉) (16-37b)

Returning to (16-26) and choosing E = 18, 000cm−1 and ζ4f = 1015cm−1 we obtain

from (16-32)

E(7F0) = −623cm−1 and E(5D0) = +18, 623cm−1 (16-38)

and from (16-37a,b) the eigenvectors

|E(7F0)〉 = 0.983|7F0〉+ 0.183|5D0〉 (16-39a)

|E(5D0)〉 = −0.183|7F0〉+ 0.983|5D0〉 (16-39b)

The preceding calculation should be regarded as an illustrative example and certainly

not as an optimised calculation. The main conclusion to be drawn is that the mixing

of the 7F0 and 5D0 states via the spin-orbit interaction is relatively small and will

certainly not remedy the Elliott mechanism. That we take up in the next lecture.
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Lecture 17 :The JLS Anomalous Quadrupole Coupling Mechanism in Crystals

What an imperfect world it would be if every symmetry was perfect

17. Introduction

In this lecture we outline the early attempt of Judd, Lovejoy and Shirley’s attempt81

to reconcile the discrepancy between Elliott’s mechanism80 for the groundstate of

europium ethylsulphate and the experimental observation that the splitting had about

twice the predicted magnitude and the opposite sign.

17.1. The Experimental Results

Judd et al fitted their experimental data to a predominantly quadrupolar Hamiltonian

H = P

[

M 2
I −

1

3
I(I + 1)

]

(17-1)

reporting81 for the two I = 3 isotopes Eu152 and Eu154

P152 = −(6.7± 0.5)× 10−4cm−1 (17-2a)

P154 = −(8.3± 0.7)× 10−4cm−1 (17-2b)

These results are clearly of opposite sign to that predicted by Elliott. The breakdown

of Russell-Saunders coupling, considered in the previous lecture, is at least two orders

of magnitude too small to account for the negative sign of P .

17.2. Configuration Interaction Mechanisms

Given the failure to explain the observed quadrupole splittings in terms of interactions

confined to the states of the 4f 6 configuration it is natural to investigate the

possibility of explaining the discrepancy by including the interactions with other

electron configurations. In the following we shall, in the main, use the notations

of Judd et al writing the Coulombic interelectronic interaction as

VA =
∑

i>j

e2

rij
(17-3)

Judd et al note that since the crystal field parameters are deduced from experiment

rather than by explicit calculation they already accommodate the contributions from

mechanisms such as

〈4f 65s2 7F0|VA|4f 65s5d 7F0〉〈4f 65s5d 7F0|Vcryst|4f 65s2 7F2〉〈4f 65s2 7F2|VEQ|4f 65s2 7F0〉
× [∆1∆2]

−1 (17-4)



158 Brian G Wybourne

where

∆1 = E(4f 65s5d 7F0)− E(4f 65s2 7F0) (17-5a)

∆2 = E(4f 65s2 7F2)−E(4f 65s2 7F0) (17-5b)

While the first pair of matrix elements in the mechanism

〈4f 65s2 7F0|VA|4f 65s5d 7F0〉〈4f 65s5d 7F0|VEQ|4f 65s2 7F2〉
× 〈4f 65s2 7F2|Vcryst|4f 65s2 7F0〉 [∆1∆2]

−1 (17-6)

along with the energy denominator ∆1 amount to a shielding correction to the matrix

element

〈4f 6 7F0|VEQ|4f 6 7F2〉 (17-7)

Judd et al note that such a mechanism cannot account for the required change of sign.

Judd et al suggest that the most likely configuration interaction mechanism must

be of the form

− 2
〈4f 6 7F0|Vcryst|T 7L2〉〈T 7L2|VEQ|4f 6 7F0〉

E(T )
(17-8)

where T denotes an excited electron configuration of even parity at an energy E(T )

above the groundstate. Of course, several configurations T may contribute. Attention

is focussed upon the ratio

R =
〈4f 6 7F0|Vcryst|T 7L2〉〈T 7L2|VEQ|4f 6 7F0〉 ×∆2

〈4f 6 7F0|Vcryst|4f 6 7F2〉〈4f 6 7F2|VEQ|4f 6 7F0〉 ×E(T )
(17-9)

The operators, Vcryst and VEQ, are single particle operators and hence at second-order

we can restrict the excited configurations T to those involving the excitation of a single

electron. Let us suppose a single electron nℓ is excited into an orbital n′ℓ′. Cancelling

out the common angular dependencies of the matrix elements in R leaves the ratio as

R = A
〈nℓ|r2|n′ℓ′〉〈n′ℓ′|r−3|nℓ〉 ×∆2

〈4f |r2|4f〉〈4f |r−3|4f〉 × E(T )
(17-10)

where A contains residual angular factors that do not cancel and vanishes if the triad

(ℓ, ℓ′, 2) does not satisfy the usual triangular condition.

17.3. The Angular Factor A

Let us consider the angular factor contained in (17-10). First we note that the nuclear

factors appearing in R as defined in (17-9) necessarily cancel and hence for an axial

field

A =
〈4f 6 7F0‖C(2)

e ‖T 7L2〉〈T 7L2‖C(2)
e ‖4f 6 7F0〉

〈4f 6 7F0‖C(2)
e ‖4f 6 7F2〉〈4f 6 7F2‖C(2)

e ‖4f 6 7F0〉
(17-11)
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Note that the tensor operators C
(k)
e are orbital operators and hence are diagonal in

all spin quantum numbers. JLS considered the case where the electron configuration

T involves the excitation of a single electron from a closed shell, nℓ4ℓ+2, to nℓ4ℓ+1n′ℓ′.

Thus the full description of a typical initial state in (17-11) would be of the form

|4f 6 7F (nℓ4ℓ+2)1S;7 F00〉 (17-12a)

and a typical excited state of the form

|4f 6 7F (nℓ4ℓ+1n′ℓ′)1D;7 L20〉 (17-12b)

with L restricted to

F ×D = P +D + F +G+H, i.e. L = 1, . . . , 5 (17-13)

Recall that C
(2)
e is a single particle operator so that the bra and ket vectors of a given

matrix element can differ in, at most, a single particle state.

The dependence of the matrix elements in (17-11) upon the total angular

momentum quantum numbers JMJ is such as to cancel between the numerator and

denominator and hence we can rewrite A as

A =

∣

∣

∣

∣

∣

〈4f 6 F (. . .)S;F‖C(2)
e ‖4f 6 F (. . .)∗D;L〉

〈4f 6 F (. . .)S;F‖C(2)
e ‖4f 6 F (. . .)S;F 〉

∣

∣

∣

∣

∣

2

(17-14)

where for brevity we have indicated the closed shell as (. . .) and (. . .)∗ the single

particle excitation.

Exercise 17-1 Verify that (17-14) follows from (17-11).

Exercise 17-2 Show that

∣

∣〈4f 6 F (. . .)S;F‖C(2)
e ‖4f 6 F (. . .)S;F 〉

∣

∣

2

=
∣

∣〈3‖C(2)‖3〉〈4f 6 7F‖U (2)‖4f 6 7F 〉
∣

∣

2

= 〈3‖C(2)‖3〉2

=
28

15
(17-15)

Now to compute the numerator of (17-14). The action of C
(2)
e is such that

〈F (. . .)S;F‖C(2)
e ‖F (. . .)∗D;L〉

= (−1)3+2+3+2
√

7(2L+ 1)

{

3 2 L

2 3 0

}

〈(nℓ4ℓ+2)S‖C(2)
e ‖(nℓ4ℓ+1n′ℓ′)D〉

= −(−1)L
√

2L+ 1

5
〈ℓ‖C(2)

e ‖ℓ′〉〈(nℓ4ℓ+2)S‖U (2)
ℓℓ′ ‖(nℓ4ℓ+1n′ℓ′)D〉 (17-16)

where

〈nℓ‖uℓℓ′‖n′ℓ′〉 = 1 (17-17)
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leading to

〈(nℓ4ℓ+2)S‖U (2)
ℓℓ′ ‖(nℓ4ℓ+1n′ℓ′)D〉 =

1
√

(2ℓ+ 1)
(17-18)

and hence (17-16) becomes

= −(−1)L

√

2L+ 1

5(2ℓ+ 1)
〈ℓ‖C(2)‖ℓ′〉 (17-19)

JLS consider the case of a 5p→ 6p excitation for the closed shell 5p6 and putting

ℓ = 1 in (17-19) and then returning, with (17-15), to (17-14) we obtain

A =
3

70
(2L+ 1) (17-19)

To compute the total contribution from each value L we should replace A by its sum

over L to get

A =
3

70
[3 + 5 + 7 + 9 + 11] = 3

2
(17-20)

in agreement with JLS. Thus for a 5p→ 6p excitation we obtain the ratio R as

R = 3
2

〈5p|r2|6p〉〈6p|r−3|5p〉 ×∆2

〈4f |r2|4f〉〈4f |r−3|4f〉 × E(T )
(17-21)

where we assume that the energy spread of the excited states with respect to L is

small compared to E(T ). JLS compute the relevant quantities in (17-21) and find a

negative value for 〈5p|r2|6p〉 leading to a negative value for R. One could, of course,

extend the calculation of R to include other single-particle excitations and use more

sophisticated methods to calculate the radial integrals than were available at the time

of the JLS estimate.
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Lecture 18: Hyperfine Induced Transitions

His advisor, Harold Davenport, was an eminent number theorist. ”He gave me a

very difficult problem - proving a conjecture that said every integer can be written

as the sum of thirty seven numbers, each raised to the fifth power. When I told

him that I had solved it, he didn’t believe me.” But the proof was correct. Charles

Seife, Interview with John Horton Conway88

18. Introduction

In this lecture I discuss the subject of hyperfine induced transitions. This might seem

out of place in a series of lectures largely concerned with hyperfine interactions in

lanthanides in crystalline environments. I had suggested16 in 1962 that under certain

circumstances highly forbidden transitions might become allowed in a crystalline

environment by a nuclear magnetic moment mixing nearby crystal field levels,

particularly in the case of holmium salts. Baker and Bleaney89 had reported an

apparent violation of selection rules in their paramagnetic resonance studies and

suggested a mechanism based on the Jahn-Teller effect. It was only in the late

1980’s that high resolution optical studies of hyperfine structure by Popova and her

associates49 revealed that indeed the interaction of nuclear magnetic dipole and electric

quadrupole moments with 4f−electrons lead to the observation of the “forbidden

transitions”. Remarkably, the possibility of hyperfine induced transitions started

with the spectroscopic observation of gaseous nebulae. In this lecture we first define

what is meant by forbidden transitions and after a brief sketch of the early history of

hyperfine induced transitions we outline the calculation of such processes in atoms and

ions focussing particularly upon the recently observed highly forbidden transition90

(2s2p) 3P o
0 → (2s2) 1Se0 in N IV .

18.1. Forbidden Transitions

In atomic spectroscopy all transitions that violate the rigorous selection rules for

electric dipole radiation in free atoms are termed forbidden transitions91

Table 18-1 Selection rules for atomic spectra91

Electric Dipole Magnetic Dipole Electric Quadrupole

∆J = 0,±1 ∆J = 0,±1 ∆J = 0,±1,±2

0 6↔ 0 0 6↔ 0 0 6↔ 0, 1 or 1
2
6↔ 1

2

∆M = 0,±1 ∆M = 0,±1 ∆M = 0,±1,±2

parity change no parity change no parity change

∆ℓ = ±1 ∆ℓ = 0 ∆ℓ = 0,±2

∆n = 0

∆S = 0 ∆S = 0 ∆S = 0

∆L = 0,±1 ∆L = 0 ∆L = 0,±1,±2

0 6↔ 0 0 6↔ 0 0 6↔ 0, 1
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The earliest observation of electric quadrupole transitions were in the 2D〈− >2 S

transitions of potassium by Datta92 in 1922 followed by Lord Rayleigh’s observations

on Hg spectra93 in 1927. Babcock94 observed in Aurora Borealis a green line at

5577.3Å which was later attributed to the forbidden O I line resulting from the

transition (2p4)1Se0 → (2p4)1De
2. This line I found was readily observed in Aurora

Australis using a pocket spectroscope. Bowen95 found in 1928 that many of the strong

spectral lines found in gaseous nebulae were attributable to forbidden transitions in

O II, O III and N II. In a sense gaseous nebulae form an extraterrestial atomic

spectroscopy laboratory because they constitute physical conditions appropriate to

the observation of strongly forbidden transitions that would be impossible to realise

on earth. The very low densities but very large volume of gaseous nebulae reduce the

possibilities of collisional de-excitation. The calculation of the transition probabilities

of magnetic dipole and electric quadrupole transitions has been reviewed by Garstang91

who was largely responsible for introducing the Racah methods to the subject (See

references therein).

18.2. Note on the early history of hyperfine induced transitions

In 1930 Huff and Houston96 appended to their paper the following:-

Note add August 15: Dr. Bowen has called our attention to the fact that the

line λ2270 in Hg is probably due to the coupling of the nuclear spin with the

electronic angular momentum. An estimate based on the relative separation of

the multiplets and the hyperfine structure gives the right order of magnitude for

the intensity. The statements made above with respect to J really refer strictly

to the total angular momentum.

That note appears to be the first time that the possibility of hyperfine induced

transitions was considered. Much of the early history is covered in an important

article by Garstang97 who also outlines details of the calculation of line intensities for

hyperfine induced transitions. Here I propose to illustrate some of the methodology in

the particular case of the highly forbidden transition (2s2p) 3P o
0 → (2s2) 1Se0 in N IV

alluded to previously.

18.3. Low Lying Energy Levels of N IV

The lowest energy levels of triply ionised nitrogen are associated with the (2s2) and

(2s2p) electron configurations which are of opposite parity. Their energy levels are

given in cm−1 in Table 18-2. The transition (2s2p) 3P o
0 → (2s2) 1Se0 occurs at 1487Å

and is thus expected to occur in the vacuum ultraviolet and to be extraordinarily weak.

It violates the ∆J = 0 0 6↔ 0 selection rule as well as the spin selection rule ∆S = 0.

To overcome the spin selection rule one might consider the effect of spin-orbit mixing

but there is only one J = 0 state in (2s2p) while to overcome the J selection rule it

would require an interaction that couples different J values. This would suggest that

a combination of nuclear magnetic hyperfine interactions and spin-orbit interaction
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might be required. To that end we shall first consider the calculation of the energy

levels of the (2s2p) and (2s2) electron configurations in N IV .

Table 18-2 The 2s2 and 2s2p energy levels of N IV

Configuration Term J Level

2s2 1Se 0 0.0

2s2p 3P o 0 67209.2

1 67272.3

2 67416.3

2s2p 1P o 1 130693.9

18.4. The Electron Configurations (2s2p) and (2s2) in N IV Ions

The Coulomb matrix elements for the two terms, 3P and 1P of the (2s2p) configuration

may be calculated by standard tensor operator methods to give

E(3P ) = F0(2s, 2p)−G1(2s, 2p) (18-1a)

E(1P ) = F0(2s, 2p) +G1(2s, 2p) (18-1b)

The spin-orbit interaction matrices may likewise be computed in terms of the spin-

orbit coupling constant, ζ2p, to give

(

J = 2 |3P2〉
〈3P2| 1

2

)

(

J = 1 |3P1〉 |1P1〉
〈3P1| −3

2

√
2

2

〈1P1|
√

2
2

0

)

(

J = 0 |3P0〉
〈3P0| −1

)

(18-2)

We can estimate the size of the spin-orbit coupling constant by noting (18-1a) and

(18-2) to give, in cm−1,

E(3P2)−E(3P0) = 3
2
ζ2p = 67416.3− 67209.2 = 207.1 (18-3)

and hence

ζ2p = 138.1cm−1 (18-4)

We can now estimate the Coulomb integral, G1(2s, 2p), by noting that

E(1P1)−E(3P1) ∼ 2G1(2s, 2p) + 1
2
ζ2p = 63421.6 (18-4)

and hence

G1(2s, 2p) = 36726cm−1 (18-5)
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Returning to (18-1a) we are led to the estimated value of

F0(2s, 2p) = 104073cm−1 (18-6)

We are now in a position to estimate the spin-orbit mixing between the 3P1 and
1P1 states of the (2s2p). We have the energy matrix for the two J = 1 states as

(

J = 1 |3P1〉 |1P1〉
〈3P1| F0(2s, 2p)−G1(2s, 2p)− 1

2
ζ2p

√
2

2
ζ2p

〈1P1|
√

2
2
ζ2p F0(2s, 2p) +G1(2s, 2p)

)

(18-7)

Putting in the numerical values for the integrals and diagonalizing the matrix to obtain

the eigenvalues and eigenvectors leads to

E(3P1) = 67278cm−1 (18-8a)

|E(3P1)〉 = .9999988|3P1〉 − .00154214|1P1〉 (18-8b)

E(1P1) = 130600cm−1 (18-9a)

|E(1P1)〉 = .00154214|3P1〉+ .9999988|1P1〉 (18-9b)

There is thus a very small amount of spin-mixing of the two J = 1 states that could

lead to a very small breakdown of the spin selection rule. However, that, by itself,

cannot explain the observed transition unless there is also some J−mixing - for that

we need to consider the role of the nucleus. Note that the small spin admixture in

(18-8b) is to a very good approximation

− (

√
2

2
ζ2p)/(2G1(2s, 2p) + 1

2
ζ2p) (18-10)

18.5. Nuclear Properties of the Stable Isotopes of Nitrogen

We can obtain information on the nuclear properties of the stable isotopes of nitrogen

from the WEB98 where we find the following data

Table 18-3 Nuclear properties of the stable isotopes of nitrogen

Isotope Atomic mass Abundance Nuclear spin(I) Magnetic moment
14N 14.003074002 99.632 1 0.4037607

15N 15.00010897 0.368 1
2

-0.2831892

We note that indeed both isotopes of nitrogen have nuclear magnetic moments. It is

significant that while the 1487Å spectral line occurs in triply ionized nitrogen there is

no analogous spectral line seen in 12C which has no nuclear spin and hence no nuclear

magnetic moment.
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18.6. Nuclear Magnetic Dipole Hyperfine Matrix Elements in (2s2p)

The calculation of the matrix elements of the magnetic dipole hyperfine matrix

elements among the various states of the (2s2p) electron configuration is a fairly

straightforward, though somewhat tedious, tensor operator task. One is essentially

calculating the matrix elements of the scalar product (N(1) · I(1)) where

N (1) =
∑

i

[

ℓ
(1)
i −

√
10(s(1)C(2))

(1)
i + (8π/3)δ(ri)s

(1)
i

]

(18-11)

where the last term in (18-11) is the Fermi contact term that arises when s− orbitals

are involved. Basically the matrix elements will involve the hyperfine constants ap
and as. Using the results of Chapter Two it is left as exercise to derive the relevant

formulae for the matrix elements. Below we give the results for I = 1
2

and I = 1 which

covers the nuclear spins of the stable isotopes of nitrogen. The results are given for

LS-basis states.

For I = 1
2

we obtain

(

F = 5
2

|3P2〉
〈3P2| 1

20
(8ap + 5as)

)

(18-12a)









F = 3
2

|3P2〉 |3P1〉 |1P1〉
〈3P2| − 3

40
(8ap + 5as)

√
5

40
(6ap − 5as)

√
10

40
(ap − 5as)

〈3P1|
√

5
40

(6ap − 5as)
1
8
(4ap + as) −

√
2

8
(ap + as)

〈1P1|
√

10
40

(ap − 5as) −
√

2
8

(ap + as)
1
2
ap









(18-12b)









F = 1
2

|3P1〉 |3P0〉 |1P1〉
〈3P1| −1

4
(4ap + as)

√
2

4
(3ap − as)

√
2

4
(3ap + as)

〈3P0|
√

2
4

(3ap − as) 0 −1
4
(2ap − as)

〈1P1|
√

2
4

(3ap − as) −1
4
(2ap − as) −ap









(18-12c)

and for I = 1 we obtain

(

F = 3 |3P2〉
〈3P2| 1

10
(8ap + 5as)

)

(18-13a)









F = 2 |3P2〉 |3P1〉 |1P1〉
〈3P2| − 1

20
(8ap + 5as)

√
3

20
(6ap − 5as)

√
6

20
(ap − 5as)

〈3P1|
√

3
20

(6ap − 5as)
1
4
(4ap + as) −

√
2

4
(ap + as)

〈1P1|
√

6
20

(ap − 5as) −
√

2
4

(ap + as) ap









(18-13b)
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













F = 1 |3P2〉 |3P1〉 |1P1〉 |3P0〉
〈3P2| − 3

20
(8ap + 5as)

√
15

60
(6ap − 5as)

√
30

60
(ap − 5as) 0

〈3P1|
√

15
60

(6ap − 5as) −1
4
(4ap + as)

√
2

4
(ap + as)

√
3

3
(3ap − as)

〈1P1|
√

30
60

(ap − 5as)
√

2
4

(ap + as) −ap −
√

6
6

(2ap − as)
〈3P0| 0

√
3

3
(3ap − as) −

√
6

6
(2ap − as) 0















(18-13c)

(

F = 0 |3P1〉 |1P1〉
〈3P1| −1

2
(4ap + as)

√
2

2
(ap + as)

〈1P1|
√

2
2

(ap + as) −2ap

)

(18-13d)

In the above results we omit in the bra and ket vectors the quantum numbers I, F

which may be readily inferred.

It is not difficult to derive the corresponding results for a jj−coupling basis for

I = 1 which we give below. Note again the quantum numbers I, F have been omitted

as well as the principal quantum numbers, those of the fixed 2s1
2

state.

(

F = 3 |p3
2
, 2〉

〈p3
2
, 2| 1

10
(8ap + 5as)

)

(18-14a)















F = 2 |p3
2
, 2〉 |p3

2
, 1〉 |p1

2
, 1〉

〈p3
2
, 2| − 1

20
(8ap + 5as)

1
20

(8ap − 15as)
√

2
4
ap

〈p3
2
, 1| 1

20
(8ap − 15as)

1
12

(8ap − 3as) −
√

2
12
ap

〈p1
2
, 1|

√
2

4
ap −

√
2

12
ap

1
6
(8ap + 3as)















(18-14b)























F = 1 |p3
2
, 2〉 |p3

2
, 1〉 |p1

2
, 1〉 |p1

2
, 0〉

〈p3
2
, 2| − 3

20
(8ap + 5as)

√
5

60
(8ap − 15as)

√
10

12
ap 0

〈p3
2
, 1|

√
5

60
(8ap − 15as) − 1

12
(8ap − 3as)

√
2

12
ap

1
3
ap

〈p1
2
, 1|

√
10

12
ap

√
2

12
ap −1

6
(8ap + 3as)

√
2

6
(8ap − 3as)

〈p1
2
, 0| 0 1

3
ap

√
2

6
(8ap − 3as) 0























(18-14c)
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







F = 0 |p3
2
, 1〉 |p1

2
, 1〉

〈p3
2
, 1| − 1

12
(8ap − 3as)

√
2

12
ap

〈p1
2
, 1|

√
2

12
ap

1
6
(8ap + 3as)









(18-14d)

18.7. The MAPLE Procedures used to Calculate the Hyperfine Matrix Elements

The preceding hyperfine matrix elements were calculated using MAPLE. The

procedure “njsym” is a collection of MAPLE routines for calculating the various

3njsymbols. Note that the nuclear spin is designated by the lower case “i” since

MAPLE reserves “I” for
√
−1. To run the programme you will need to have in

your MAPLE directory the two files njsym and hsp.map. Once MAPLE is running

you need to issue the command <read”hsp.map”;>. To compute the matrix element

〈(2s2p)3P1, I = 1, F = 1|Hhfs|(2s2p)3P0, I = 1, F = 1〉 you issue the command

<hsp(1,1,1,0,1,1);> and MAPLE should respond with

3
1
2ap− 1/3 3

1
2as

We list below the actual MAPLE procedures.

# These procedures compute the matrix elements of the magnetic and contact#

# hyperfine interactions in the sp electron configuration in the LS basis #

# (hsp) or in the jj basis (hjj)#

read”njsym”;

hss:=proc(S1,J1,S2,J2,i,F)

local result,X,Y,Z,as;

X:=(-1)ˆ (S2)*sqrt(6*(2*S1+1)*(2*S2+1))*sixj(S1,1,S2,1/2,1/2,1/2)/2;

Y:=(-1)ˆ (S1+J2)*sqrt((2*J1+1)*(2*J2+1))*sixj(J1,1,J2,S2,1,S1)*X;

Z:=(-1)ˆ (J2+i+F)*sqrt(i*(i+1)*(2*i+1))*sixj(J2,i,F,i,J1,1)*Y*as;

result:=combine(simplify(Z));

end:

hsp1:=proc(S1,J1,S2,J2,i,F)

local result,X,Y,Z,ap;

X:=(-1)ˆ (J2+i+F)*sixj(J2,i,F,i,J1,1)*sqrt(i*(i+1)*(2*i+1));

Y:=0;

if (S1=S2) then

Y:=(-1)ˆ (S1+J1)*sqrt(6*(2*J1+1)*(2*J2+1))*sixj(J1,1,J2,1,S1,1);

end if;

Z:=(-1)ˆ (S1+1)*3*sqrt(5*(2*J1+1)*(2*J2+1)*(2*S1+1)*(2*S2+1))*ck(1,1,2)

*sixj(S1,1,S2,1/2,1/2,1/2)*ninej(S1,S2,1,1,1,2,J1,J2,1);

result:=combine(simplify(X*(Y+Z)))*ap;

end:
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hjp:=proc(j1,J1,j2,J2,i,F)

local result,X,Y,Z,ap;

X:=sqrt(6*(2*j1+1)*(2*j2+1))*((-1)ˆ (j1+(1/2))*sixj(j1,1,j2,1,1/2,1)

+3*ninej(1/2,1/2,1,1,1,2,j1,j2,1));

Y:=(-1)ˆ (j2+J1+(3/2))*sqrt((2*J1+1)*(2*J2+1))*sixj(J1,1,J2,j2,1/2,j1)*X;

Z:=(-1)ˆ (J2+i+F)*sqrt(i*(i+1)*(2*i+1))*sixj(J2,i,F,i,J1,1)*Y*ap;

result:=combine(simplify(Z));

end:

hjs:=proc(j1,J1,j2,J2,i,F)

local result,X,Y,Z,as;

if (j1¡¿j2) then result:=0;

else

result:=combine(simplify((-1)ˆ (i+F+j1+(3/2))*sqrt(i*(i+1)*(2*i+1)*(2*J1+1)

*(2*J2+1)*6)*sixj(J2,i,F,i,J1,1)*sixj(J1,1,J2,1/2,j1,1/2)/2)*as);

end if;

end:

hsp:=proc(S1,J1,S2,J2,i,F)

local result;

result:=hsp1(S1,J1,S2,J2,i,F)+hss(S1,J1,S2,J2,i,F);

end;

hjj:=proc(j1,J1,j2,J2,i,F)

local result;

result:=hjp(j1,J1,j2,J2,i,F)+hjs(j1,J1,j2,J2,i,F);

end;

By careful inspection of the above procedures you should be able to reconstruct

the tensor operator formulae used in the calculations.

Having established the forgoing results the next step would be to explore the

mechanisms contributing to the observation of the highly forbidden transition observed

in triply ionised nitrogen.
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Lecture 19 : Magnetic Dipole Transitions in Crystals

Six hours a-day the young students were employed in this labour; and the professor

shewed me several volumes in large folio already collected, of broken sentences,

which he intended to piece together; and out of those rich materials to give the

world a compleat body of all the arts and sciences; .....Jonathan Swift Gulliver’s

Travels (1726)

19. Introduction

Here I return to the question of the role of magnetic dipole transitions in crystals.

Much attention is given, and rightly so, to forced electric dipole transitions in crystals

so much so that the possibility of magnetic dipole transitions is often overlooked. In

the following we outline the principal features of magnetic dipole transitions and those

characteristics that distinguish them from electric dipole transitions.

19.1. Magnetic Dipole Transitions in Atoms and Ions

We already noted in Table 18-1 the selection rules for magnetic dipole transitions in

free atoms or ions. They involve transitions between states of the same parity within a

given electron configuration, and in the absence of spin-orbit coupling, with the same

LS multiplet. The basic theory was worked out by Pasternack99 and Shortley100. The

magnetic dipole moment is given by

µ = − e

2mc
(L + gsS) (19-1)

We notethat the selection rules are essentially the same as in the Zeeman effect.

19.2. Polarisation of Light and Transitions

Polarisation of light gives an important experimental tool for distiguishing between

electric dipole and magnetic dipole transitions. In electric dipole transitions it is

the electric vector of the light that is active whereas in magnetic dipole transitions

the magnetic vector is active. Recall that in light the directions of the electric

vector, magnetic vector and direction of propagation are mutually perpendicular to

one another. Consider a uniaxial crystal; the light path parallel to the crystallographic

axis will be termed the “axial” spectrum while for a light path perpendicular to the

axis will be termed the “transverse” spectrum. The transverse spectrum is split into

π or σ spectra depending on whether the axis of polarisation is such that the direction

of the electric vector is parallel to or perpendicular to the crystal axis. If a line in the

axial spectrum and σ spectra coincide the transition is electric dipole while if the axial

and π spectra coincide the transition is either magnetic dipole or electric quadrupole.

Electric quadrupole transitions are usually a couple of orders of magnitude weaker

than magnetic dipole transitions and will henceforth be ignored. Practically, in the

absorption of light in a uniaxial crystal the incident light may be polarised so that
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the axial or transverse spectra are observed and conversely in flourescence the axial

and transverse spectra are determined by examining the polarisation of the emitted

radiation.

19.3. Selection Rules for Transitions in Crystals

In many cases a given transition between a pair of crystal field levels of an ion located

at a site whose symmetry is characterised by a particular crystallographic point group

G may be determined to be of electric dipole or magnetic dipole origin by determining

the polarisation state of the photons emitted or absorbed by the transition. In the

case of electric dipole transitions the transformation of the components (x, y, z) with

respect to the operations of the group G lead directly to the symmetry selection rules

whereas for magnetic dipole transitions one needs the transformation of the rotation

components (Rx, Ry, Rz) or equivalently those of (Lx, Ly, Lz). If components (x, y, z)

transform according to different representations ofG than those of (Lx, Ly, Lz) then the

electric dipole transitions may be unequivocally distinguished from those of magnetic

dipole transitions by experimentally determining the polarisation of the transitions.

19.4. The Example of D3h Symmetry

The point symmetry groupD3h is associated with a wide range of uniaxial crystals such

as is found in the lanthanide trichlorides and ethylsulphates. The group character table

is given below56 with the spin (or projective) representations being separated from

the ordinary irreducible representations by an empty line. The ordinary irreducible

representations (Γi, i = 1, . . . , 6) are associated with an even number of electrons and

the spin irreducible representations (Γi, i = 7, . . . , 9) with an odd number of electrons.













































Γi E Ē σh σ̄h 2C3 2C̄3 2S3 2S̄3 3C ′
2 3C̄ ′

2 3σv 3σ̄v

Γ1 1 1 1 1 1 1 1 1 1 1 1 1

Γ2 1 1 1 1 1 1 1 1 −1 −1 −1 −1

Γ3 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

Γ4 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1

Γ5 2 2 −2 −2 −1 −1 1 1 0 0 0 0

Γ6 2 2 2 2 −1 −1 −1 −1 0 0 0 0

Γ7 2 −2 0 0 1 −1
√

3 −
√

3 0 0 0 0

Γ8 2 −2 0 0 1 −1 −
√

3
√

3 0 0 0 0

Γ9 2 −2 0 0 −2 −2 0 0 0 0 0 0













































Table 19-1 The characters of D3h

For electric dipole transitions z transforms as the Γ4 representation with (x, y)

spanning the Γ6 representation. For magnetic dipole transitions Lz transforms as the

Γ2 representation with (Lx, Ly) spanning the Γ5 representation. Since the irreducible
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representations of D3h are all real we may succintly write the magnetic dipole (md)

and electric dipole (ed) selection rules as

Γi × Γj ⊃



















Γ2 σ md

Γ5 π md

Γ4 π ed

Γ6 σ ed

(19-1)

The Kronecker products Γi × Γj for the ordinary irreducible representations may be

readily evaluated56 to give

























Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ2 Γ2 Γ1 Γ4 Γ3 Γ5 Γ6

Γ3 Γ3 Γ4 Γ1 Γ3 Γ6 Γ5

Γ4 Γ4 Γ3 Γ2 Γ1 Γ5 Γ6

Γ5 Γ5 Γ5 Γ6 Γ6 Γ1 + Γ2 + Γ6 Γ3 + Γ4 + Γ5

Γ6 Γ6 Γ6 Γ5 Γ5 Γ3 + Γ4 + Γ5 Γ1 + Γ2 + Γ6

























(19-2)

and for the spin irreducible representations









Γ7 Γ8 Γ9

Γ7 Γ1 + Γ2 + Γ5 Γ3 + Γ4 + Γ6 Γ5 + Γ6

Γ8 Γ3 + Γ4 + Γ6 Γ1 + Γ2 + Γ5 Γ5 + Γ6

Γ9 Γ5 + Γ6 Γ5 + Γ6 Γ1 + Γ2 + Γ3 + Γ4









(19-3)

Noting (19-1) and (19-2) it is a simple matter to deduce that for an even number of

electrons the D3h symmetry electric dipole selection rules are

























Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 − − − π − σ

Γ2 − − π − − σ

Γ3 − π − − σ −
Γ4 π − − − σ −
Γ5 − − σ σ σ π

Γ6 σ σ − − π σ

























(19-4)

and for an odd number of electrons









Γ7 Γ8 Γ9

Γ7 − σπ σ

Γ8 σπ − σ

Γ9 − σ π









(19-5)
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Note the appearance of σπ transitions - these effectively correspond to elliptical

polarisation.

In an exactly similar manner we can deduce the corresponding selection rules for

magnetic dipole transitions for an even number of electrons in D3h symmetry as

























Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 − σ − − π −
Γ2 σ − − − π −
Γ3 − − − σ − π

Γ4 − − σ − π −
Γ5 π π − π σ −
Γ6 − − π − − σ

























(19-6)

and for an odd number of electrons









Γ7 Γ8 Γ9

Γ7 σ − π

Γ8 − σ π

Γ9 π π σ









(19-7)

Comparison of the selection rules for electric dipole transitions with those for magnetic

dipole transitions show significant differences and allow us to often distinction,

experimentally, between the two types of transitions.

19.5. Exercises





























E Ē 2C3 2C̄3 3σv 3σ̄

Γ1 1 1 1 1 1 1

Γ2 1 1 1 1 −1 −1

Γ3 2 2 −1 −1 0 0

Γ4 2 −2 1 −1 0 0

Γ5 1 −1 −1 1 i −i
Γ6 1 −1 −1 1 −i i





























(19-8)

Table 19.2 The characters table of the point group C3v

Ex 19.1 Use the character table for the point group C3v to construct two tables of

Kronecker products, one for the ordinary irreducible representations and one for the

spin irreducible representations of C3v.

Ex 19.2 Given that z transforms as Γ1, and (x, y) as Γ3 deduce the selection rules for

electric dipole transitions for even and odd numbers of electrons for C3v symmetry.

Ex 19.3 Given that Lz transforms as Γ2 and (Lx, Ly) as Γ3 deduce the selection

rules for magnetic dipole transitions for even and odd numbers of electrons for C3v

symmetry.
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19.6. Oscillator Strengths of Magnetic Dipole Transitions

The oscillator strength, fσ, of a magnetic dipole transition may be written as101,102

fσ =
8π2mc

3he2
σ

∣

∣

∣

∣

−e
2mc
〈αSLJMJ |(L + gsS)(1)

ρ |αSLJ ′M ′
J〉
∣

∣

∣

∣

2

η

= 4.028× 10−11σ
∣

∣〈αSLJMJ |(L + gsS)(1)
ρ |αSLJ ′M ′

J〉
∣

∣

2
η (19-9)

where σ is in units of cm−1 and η is the refractive index of the medium. Using the

Wigner-Eckart theorem, the matrix elements of (L + gsS)
(1)
ρ are given by

〈αSLJMJ |(L + gsS)(1)
ρ |αSLJ ′M ′

J〉 = (−1)J−MJ

(

J 1 J ′

−MJ ρ M ′
J

)

× 〈αSLJ‖(L+ gsS)(1)‖αSLJ ′〉 (19-10)

where ρ = 0 gives the z component of the magnetic vector and will correspond to the

absorption or emission of σ−polarised light and ρ = ±1 gives the x± iy components

corresponding to π−polarised light. The calculation of the matrix elements in (19-10)

is exactly similar to that for the Zeeman effect discussed in S2.

19.7. The Oscillator Strengths for the 7F00↔ 7F1M Transitions

Magnetic dipole transitions are well-known in trivalent Europium and divalent

Samarium. In both cases the ground multiplet is 4f 6 7F . In the free ion the spin-

orbit interaction results in seven levels 7FJ with J = 0, 1, . . . , 6. The groundstate

has J = 0 and in the absence of hyperfine interactions is non-degenerate. The first

excited level is 7F1. In a crystal with D3h point symmetry the 7F1 level splits into

two sub-levels. In terms of the crystal quantum numbers introduced in S10.2 the

sublevels may be labelled as µ = 0 and µ = ±1 or in terms of D3h group labels as

Γ2 and Γ5 with the latter being two-fold degenerate. The groundstate corresponds

to a Γ1 level. Absorption from the groundstate to the two sub-levels involves two

distinct transitions, Γ1 → Γ2 and Γ1 → Γ5. Inspection of (19-4) shows that these two

transitions are electric dipole forbidden whereas inspection of (19-6) shows that both

transitions are magnetic dipole allowed with the Γ1 → Γ2 transition being σ−polarised

and the Γ1 → Γ5 transition being π−polarised.

To calculate the oscillator strengths of these transitions we first note that

〈7F0‖(L+ gsS)(1)‖7F1〉 = −2
√

3(gs − 1) (19-11)

Evaluation of the 3j−symbol in (19-10) then yields

〈7F00|(L+ gsS)
(1)
0 |7F10〉 = −2(gs − 1) (19-12a)

〈7F00|(L+ gsS)
(1)
±1|7F10∓ 1〉 = 2(gs − 1) (19-12b)

The two matrix elements are, to within a sign, equal. To a good approximation we

can take gs = 2 and hence the squares of both matrix elements become the integer 4.
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Using these values in (19-9), and remembering that the Γ5 is two-fold degenerate we

find for the two transitions the oscillator strengths as

f(Γ1 → Γ2) = 1.6× 10−10ση (19-13a)

f(Γ1 → Γ5) = 3.2× 10−10ση (19-13b)

The ratio of the two oscillator strengths is 1 : 2 and independent of σ. Thus we would

expect this ratio to be the same for both Sm2+ and Eu3+ when in the same medium.

19.8. Intermediate Coupling and 5D1 ↔ 7F0 Transitions

The selection rules for magnetic dipole transitions, given in Table 18.2, are highly

restrictive and at first sight seem to preclude the possibility of magnetic dipole

transitions between states belonging to different multiplets, for example,5D1 ↔ 7F0

transitions. Nevertheless polarisation studies show these transitions to be definitely of

magnetic dipole origin. This possibility arises as a result of intermediate coupling via

the spin-orbit interaction. Let us consider the case of Eu3+ in a LaCl3 lattice where

the Eu3+ is located at a site of D3h symmetry. Ofelt103 has diagonalised the complete

Coulomb + Spin-orbit energy matrices for a set of parameters appropriate to this case

and given the eigenfunctions for many levels. In particular he gives for the two levels

being considered here the principal components of their eigenvectors as

|7F0〉 = 0.9680|7F0〉+ 0.0016|5D0〉+ 0.1659|5D′
0〉 − 0.1815|5D′′

0〉 (19-14a)

|5D1〉 = −0.2096|7F1〉 − 0.2066|5D1〉+ 0.7162|5D′
1〉 − 0.5561|5D′′

1〉 (19-14b)

For brevity let us write

Hmd = (L+ gsS)(1) (19-15)

Using the eigenvectors we can write

〈7F0‖Hmd‖5D1〉 = −0.2028〈7F0‖Hmd‖7F1〉+ 0.2201〈5D1‖Hmd‖5D1〉 (19-16)

The reduced matrix elements evaluate as

〈7F0‖Hmd‖7F1〉 = −2
√

3 (19-17a)

〈5D1‖Hmd‖5D1〉 = −
√

6 (19-17b)

leading to the numerical value, again putting gs = 2,

〈7F0‖Hmd‖5D1〉 = 0.1634 (19-18)

Use of (19-10), with evaluation of the 3j−symbols leads to the oscillator strengths of

the two transitions as

f(Γ1 → Γ2) = 3.58× 10−13ση (19-19a)

f(Γ1 → Γ5) = 7.17× 10−13ση (19-19b)

At first sight the above oscillator strengths appear much smaller than those found in

(19-13) however the factor σ is ∼ 300cm−1 in (19-13) but ∼ 19, 000cm−1 in (19-19)

leading to the two sets of oscillator strengths being comparable.
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19.9. Oscillator Strengths for the 5D1 ↔ 7F1 Magnetic Dipole Transitions

Ofelt103 gives the principal components of the eigenvector of the |7F1〉 state as

|7F1〉 = 0.9742|7F1〉+ 0.0052|5D1〉+ 0.1472|5D′
1〉 − 0.1645|5D′′

1〉 (19-20)

Making use of the corresponding expansion for the |5D1〉 state given in (19-14b) we

obtain the reduced matrix element as

〈7F1‖Hmd‖5D1〉 = −0.2042〈7F1‖Hmd‖7F1〉+ 0.1959〈5D1‖Hmd‖5D1〉 (19-21)

In this case the two reduced matrix elements on the left-hand-side of (19-21) are both

equal to

〈7F1‖Hmd‖7F1〉 = 〈5D1‖Hmd‖5D1〉 =

√
6

2
(gs + 1) (19-22)

As a result there is strong cancellation of the two terms in (19-21) and as noted by

Judd104 the 5D1 ↔ 7F1 are of electric dipole character rather than magnetic dipole.

19.10. J−Mixing and “Intensity Borrowing”

In the preceding sections we have seen how intermediate coupling, via the spin-orbit

interaction can overcome the usual selection rules on the spin, S, and orbital, L,

quantum numbers while still leaving J as a “good” quantum number. The presence

of a crystal field can destroy J and MJ as “good” quantum numbers leading to J−
and M−mixing. This can make possible some transitions which at first sight seem to

be highly forbidden. A case in point would be the transition 7F0 ↔ 5D0. Evidence

that such a transition can come from J−mixing via a cryatal field comes from the

observation that the groundstate of Eu3+ in crystals exhibits an electric quadrupole

hyperfine splitting coming from the crystal field coupling via the axial crystal field

term B2
0C

(2)
0 . This results in the groundstate having a small admixture of |7F20〉

character. We can estimate the amount of mixing by calculating the matrix element

〈7F00|C(2)
0 |7F20〉 = (−1)0−0

(

0 2 2

0 0 0

)

〈3‖C(2)‖3〉〈7F0‖U (2)‖7F2〉

= − 2

15

√
21〈7F0‖U (2)‖7F2〉

= − 2

15

√
21(−1)3+3+0+2

√
1× 5

{

3 2 3

2 3 0

}

〈7F‖U (2)‖7F 〉

= − 2

15

√
3〈7F‖U (2)‖7F 〉

= +
2

15

√
3 (19-23)

where in the last step we have used

〈7F‖U (2)‖7F 〉 = −1 (19-24)
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Let

∆20 = E(7F20)− E(7F00) (19-25)

Then recalling the S16.5 note on rank two matrices we can express the groundstate

energy as

E(7F00) ∼ E(7F00)− 4

75

(B2
0)

2

∆20
(19-26)

and the corresponding groundstate eigenvector as

|7F00〉 ∼ 1

1 +
√

3B2
0

15∆20

(

|7F00〉 − 2
√

3

15

B2
0

∆20
|7F20〉

)

(19-27)

We can estimate the value of the crystal field parameter from the observed crystal

field splitting of the 7F1 level in D3h symmetry. Calculating in a similar manner to

(19-23) we readily find that

〈7F10|B2
0C

(2)
0 |7F10〉 = +

1

5
B2

0 (19-28a)

〈7F1± 1|B2
0C

(2)
0 |7F1± 1〉 = − 1

10
B2

0 (19-28b)

and hence the splitting, ∆1, of the 7F1 level by such an axial field is approximately

∆1 =
3

10
B2

0 (19-29)

In europium ethyl sulphate the observed splitting is ∼ 42cm−1 leading to

B2
0 ∼ 145cm−1 (19-30)

leading to the numerical value

〈7F00|B2
0C

(2)
0 |7F20〉 =∼ 33.5cm−1 (19-31)

Given that experimentally the 7F1 level is about 1100cm−1 above the groundstate we

can deduce that the groundstate is, to a first approximation,

|7F00〉 = 0.9995|7F00〉 − 0.03041|7F20〉 (19-32)

While the mixing coefficient is very small there is nevertheless some possibility, even

at this level, of the nominally 7F0 ↔ 5D0 transition going by “borrowing intensity”

from the electric dipole transition, allowed via the Judd-Ofelt mechanism. Clearly

our calculation is overly simplistic. Ideally we should consider a complete crystal

field J−mixing calculation that includes J−mixing in at least the 5D multiplet. The

square of the coefficient of |7F20〉 in (19-27) gives a direct measure of the “borrowing of

intensity” from the 7F2↔ 5D0 transition. The whole subject of J−mixing as affects

the 7F0↔ 5D0 transition has been extensively studied by Tanaka and Kushida and

their associates105−112 both theoretically and experimentally.

We might ask “Are there other contributing mechanisms?” That will be the

subject of the next lecture.
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Lecture 20 : The Wybourne-Downer Mechanism

Although Wybourne suggested the possible importance of these linkages in 1968,

neither Wybourne nor subsequent investigators ever introduced them into any

quantitative intensity analysis113,114

20. Introduction

So far we have looked at two distinct contributions to the line strength of a transition,

the forced electric dipole as developed in the Judd-Ofelt theory (see S10) and the

magnetic dipole as developed in the previous section. Thus the square root of the line

strength of a generic transition could be written as the sum of two terms viz.,

S
1
2 (αΓi ↔ α′Γj) = S

1
2 (αΓi ↔ α′Γj)ed + S

1
2 (αΓi ↔ α′Γj)md (20-1)

Recall the relevant quantity for the oscillator strength is the line strength, the square

of (20-1) and hence interference terms may arise if both electric dipole and magnetic

dipole terms are simultaneously involved. The situation becomes more complicated if

one considers other possible contributions to the square root of the line strength. One

such contribution is the so-called Wybourne-Downer mechanism41,42,113−115

20.1. The Wybourne-Downer Mechanism

The term Wybourne-Downer mechanism appears to have been so-named by Tanaka

and Kushida116 and arose in attempts to explain the origin of the observed 5D0 ↔ 7F0

transitions of Eu3+ and Sm2+ in low symmetry sites. I suggested41,42 that these

transitions could arise as a result of two mechanisms that involve linked terms of the

form (apart from appropriate energy denominators)

∑

L,J,L′,J ′

〈f 6 7F0|V odd
c |f 5d 7LJ〉〈f 5d 7LJ |

∑

i

(s · l)i|f 5d 7L′
J ′〉

× 〈f 5d 7L′
J ′|er|f 6 5D0〉 (20-2)

and

∑

J,L,J ′

〈f 6 7F0|V even
c |f 6 7FJ〉〈f 6 7FJ |V odd

c |f 5d 7LJ ′〉

× 〈f 5d 7L′
J |er|f 6 7F0〉〈f 6 7F0|

∑

i

(s · l)i|f 6 5D0〉 (20-3)

The second mechanism “borrows” intensity principally from the 0↔ 2 transitions and

is essentially as discussed in S19.10. The first mechanism is the so-called Wybourne-

Downer (WD) mechanism, suggested by Wybourne41,42 and initially developed by

Downer and his associates113−115. Note that in the above representation of the

two mechanisms d−orbitals are indicated whereas in reality one must consider also

g−orbitals and charge transfer states. The WD mechanism involves spin-orbit
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interaction among states of the excited configuration and if there is a breakdown

of LS−coupling in the excited configuration this will be reflected into the fn

configuration even if there is not a breakdown in the fn configuration. Thus the WD

mechanism can lead to a violation of the spin selection rule and in the J−selection

rules. As a result both mechanisms can contribute to the strongly forbidden 7F0 ↔ 5D0

transition. Furthermore, interference between the two mechanisms can occur116.

Recall that in computing line strengths one sums the square root of the line strength

for each contribution and then squares the resultant sum.

The 7F0 ↔ 5D0 transition is commonly associated with Eu3+ and Sm2+ ions in

crystals of low symmetry. These are the hosts that exhibit hypersensitive transitions.

20.2. Hypersensitive Transitions

Back in 1940 Freed et al117 noted that some transitions involving europium salts

seem unusually sensitive to changes in their environment. These were considered

in some detail by Jørgensen and Judd118. A noteworthy feature of hypersensitive

transitions is that they involve a selection rule ∆J <= 2 and in the Judd-Ofelt theory

of intensities seem to be associated with the parameter T2 and the matrix elements of

the rank 2 tensor operator U(2). We note that the Judd-Ofelt and Wybourne-Downer

mechanisms both involve odd rank k crystal field interactions. Generally, k is limited

to the values k = 3, 5, 7 (k = 3, 5 for d−orbitals, k = 3, 5, 7 for g−orbitals). Only in

the low symmetry fields C1, C2, Cs, C2v is it possible for k = 1 to arise. An odd rank

k = 1 crystal field component can only contribute to the matrix elements of the tensor

operator U(2) and its associated Judd-Ofelt parameter T2. Such hypersensitivity is

well known for the 7F2 ↔ 5D0 and 7F0 ↔ 5D2 transitions in Eu3+ and Sm2+ ions in

low symmetry sites as opposed to the corresponding transitions in higher symmetry

sites. The enhancement of these transitions leads, by the “borrowing” and Wybourne-

Downer mechanisms, to an enhancement of the 7F0 ↔ 5D0 transition.

20.3. Other Third-Order Contributions

We note that other third-order, and higher, are possible42. I have discussed these

elsewhere41,42 and will not pursue them in detail here. These contributions involve

effects such as Coulomb interactions between excited configurations. Some of the

effects contribute angular factors identical to those of the Judd-Ofelt contribution and

hence are already accommodated in the parameters of the Judd-Ofelt theory. Others

introduce angular factors that go beyond the Judd-Ofelt theory. In some cases odd

rank operators arise in addition to the usual even rank operators of the Judd-Ofelt

formalism. In other cases double tensors arise with a spin rank and hence lead directly

to a violation of the ∆ = 0 spin selection rule.

What never? Well hardly ever!

Gilbert and Sullivan “HMS Pinafore”
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20.4. Relativistic Contributions

Relativistic effects, as noted in S12, also lead to further contributions that go beyond

the Judd-Ofelt formalism. It is clear that the multitude of contributions make any

meaningful parametric fitting to observed spectral intensities impossible. The problem

of estimating the relative size of the various contributions is considerable. Many of

the relevant radial integrals can be calculated ab initio using modern implementations

of relativistic Hartree-Fock-Dirac theory. However, this has still not given a truly ab

initio computation of the crystal field parameters. Furthermore, our knowledge of

the odd crystal field parameters, essential in understanding intensities remains very

limited. These are undoubtedly problems for the future.
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