Admissible partitions and the square of the Vandermonde determinant

Brian G Wybourne
Instytut Fizyki,
Uniwersytet Mikołaja Kopernika - Poland

$$
\text { July } 2002
$$

Dedicated to the memory of Claude Itzykson

$$
(1938-1995)
$$

Claude Araks

Claude Itzykson's Letter

- Indeed you seem to have discovered a striking phenomenon which deserves an explanation ...
- The subject seems to me to be still widely open $=$ For instance, is there a rule for the signs of the coefficients?
- What is the meaning of the vanishing terms you have found?
- What is their general feature?
- Is it significant that you found them starting at $N=8$? etc..
- Claude Itzykson March 11994

Expansion of the Laughlin wavefunction

- Laughlin (1983) described the fractional quantum Hall effect in terms of a wavefunction

$$
\begin{equation*}
\Psi_{\text {Laughlin }}^{m}\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{2 m+1} \exp \left(-\frac{1}{2} \sum_{i=1}^{N}\left|z_{i}\right|^{2}\right) \tag{1}
\end{equation*}
$$

The Vandermonde alternating function in N variables is defined as

$$
\begin{align*}
& V\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right) \tag{2}\\
& \frac{\Psi_{\text {Laughlin }}}{V}=V^{2 m}=\sum_{\lambda \vdash n} c^{\lambda} s_{\lambda} \tag{3}
\end{align*}
$$

where $n=m N(N-1)$ and the s_{λ} are Schur functions.

Coefficients of the expansion

- The coefficients c_{λ} are signed integers. Henceforth we consider the case where $m=1$. The partitions, (λ), indexing the Schur functions are of weight $N(N-1)$. Algorithms exist for computing the expansions and complete results have been obtained for $N \leq 10$. For a given N the partitions are bounded by a highest partition $(2 N-2,2 N-4, \ldots, 0)$ and a lowest partition $\left((N-1)^{N-1}\right)$ with the partitions being of length N and $N-1$. Let

$$
\begin{equation*}
n_{k}=\sum_{i=0}^{k} \lambda_{N-i}-k(k+1) k=0,1, \ldots, N-1 \tag{4}
\end{equation*}
$$

Admissible Partitions

- Di Francesco et al define admissible partitions as satisfying Eq(4) with all $n_{k} \geq 0$. They computed the number of admissible partitions A_{N} for $N \leq 29$ and conjectured that A_{N} was the number of distinct partitions arising in the expansion, $\mathrm{Eq}(3)$, provided none of the coefficients vanished.
- The conjecture fails for $N \geq 8$. We find the number of admissible partitions associated with vanishing coefficients as

$$
(N=8) \quad 8,(N=9) \quad 66,(N=10) \quad 389
$$

Admissible partitions whose coefficients vanish

- Reversed partition symmetry
- The coefficients of s_{λ} and $s_{\lambda_{r}}$ are equal if

$$
\begin{equation*}
\left(\lambda_{r}\right)=\left(2(N-1)-\lambda_{N}, \ldots, 2(N-1)-\lambda_{1}\right) \tag{5}
\end{equation*}
$$

- We list the 8 partitions for $N=8$ as reverse pairs

$$
\begin{array}{lll}
\left\{1311985^{2} 41\right\} & \left\{13109^{2} 6531\right\} & (Q 1) \\
\left\{13119854^{2} 2\right\} & \{1310987531\} & (Q 2) \\
\{1311976541\} & \left\{1210^{2} 96531\right\} & (Q 3) \\
\left\{121197^{2} 4^{2} 1\right\} & \left\{1210^{2} 7^{2} 532\right\} & (Q 4)
\end{array}
$$

The q-discriminant

- Let $q \mathbf{x}=\left(q x_{1}, q x_{2}, \ldots, q x_{N}\right)$ and the q-discriminant of \mathbf{x} be

$$
\begin{equation*}
D_{N}(q ; \mathbf{x})=\prod_{1 \leq i \neq j \leq N}\left(x_{i}-q x_{j}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{N}(q ; \mathbf{x})=\prod_{1 \leq i \neq j \leq N}\left(x_{i}-q x_{j}\right)\left(q x_{i}-x_{j}\right)=\sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x}) \tag{7}
\end{equation*}
$$

So that

$$
\begin{equation*}
V_{N}^{2}(\mathbf{x})=\prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)^{2}=R_{N}(1 ; \mathbf{x}) \tag{8}
\end{equation*}
$$

Introduce q-polynomials such that

$$
\begin{equation*}
R_{N}(q ; \mathbf{x})=\sum_{\lambda} c^{\lambda}(q) s_{\lambda}(\mathbf{x}) \tag{9}
\end{equation*}
$$

The q-polynomials

$$
\begin{gathered}
R_{N}(q ; \mathbf{x})=\frac{(-1)^{N(N-1) / 2}}{(1-q)^{N}} \\
\sum_{\nu \subseteq(N-1)^{N}}\left((-q)^{|\nu|)}+(-q)^{N^{2}-|\nu|}\right) \\
\times s_{(N-1)^{N} / \nu}(\mathbf{x}) s_{\nu^{\prime}}(\mathbf{x})
\end{gathered}
$$

Such expansions have been evaluated as polynomials in q for all admissible partitions for $N=2 \ldots 6$ with many examples for $N=7,8,9$.

Some q-polynomials

$$
\begin{array}{cccc}
\mathrm{N}=2 & {[1]} & q & \{2\} \\
& {[-3]} & -\left(q^{2}+q+1\right) & \left\{1^{2}\right\} \\
\mathrm{N}=3 & {[1]} & q^{3} & \{42\} \\
& {[-3]} & -q^{2}\left(q^{2}+q+1\right) & \left\{41^{2}\right\}+\left\{3^{2}\right\} \\
& {[6]} & +q\left(q^{2}+q+1\right)\left(q^{2}+1\right) & \{321\} \\
& {[-15]} & -\left(q^{2}+q+1\right)\left(q^{4}+q^{2}+q+1\right) & \left\{2^{3}\right\} \tag{3}\\
\mathrm{N}=4 & {[1]} & q^{6} & \{642\} \\
& {[-3]} & -q^{5}\left(q^{2}+q+1\right) & \left\{641^{2}\right\}+\left\{63^{2}\right\}+\left\{5^{2} 2\right\} \\
& {[6]} & +q^{4}\left(q^{2}+q+1\right)\left(q^{2}+1\right) & \{6321\}+\{543\}
\end{array}
$$

$$
N=8 q-\text { polynomials where } c_{\lambda}(1)=0
$$

The q-polynomials for the four pairs of partitions designated earlier as $Q(1) \ldots Q(4)$ are

$$
\begin{array}{cc}
Q(1) & -q^{17}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)^{5}(1-q)^{4} \\
Q(2) & +q^{16}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{6}(1-q)^{4} \\
Q(3) & +q^{16}\left(q^{2}-q+1\right)^{2}\left(q^{2}+1\right)^{3}\left(q^{2}+q+1\right)^{5}(1-q)^{4} \\
Q(4) & +q^{14}\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{5}(1-q)^{4} \\
& \times\left(q^{10}+q^{9}+3 q^{8}+4 q^{6}+q^{5}+4 q^{4}+3 q^{2}+q+1\right)
\end{array}
$$

Note the factor $(q-1)^{4}$.

Some Conjectures

- If a q-polynomial is of the form $(-1)^{\phi} q^{p} Q(q)$ then under $N \rightarrow N+1$

$$
\phi \rightarrow \phi, p \rightarrow p+N, Q(q) \rightarrow Q(q),\{\lambda\} \rightarrow\{2 N-2, \lambda\}
$$

- Define

$$
Q S(N)=\sum_{\lambda} c_{\lambda}(q)
$$

then

$$
Q S(N)=\prod_{x=0}^{[N / 2]}(-3 x+1) \prod_{x=0}^{[(N-1) / 2]}(6 x+1)
$$

Sum of Squares Problem

- Di Francesco etal establish the remarkable result that the sum of the squares of the coefficients of the second power of the Vandermonde with $q=1$ is

$$
\frac{(3 N)!}{N!(3!)^{N}}
$$

What is the corresponding result for the q-polynomials?

- For $N=4$ one finds

$$
\begin{gathered}
q^{24}+6 q^{23}+22 q^{22}+58 q^{21}+128 q^{20}+242 q^{19} \\
+418 q^{18}+646 q^{17}+929 q^{16}+1210 q^{15}+1490 q^{14} \\
+1670 q^{13}+1760 q^{12}+1670 q^{11}+1490 q^{10}+1210 q^{9} \\
+646 q^{8}+418 q^{6}+242 q^{5}+128 q^{4}+58 q^{3}+22 q^{2}+6 q+1
\end{gathered}
$$

Note the polynomial is symmetrical and unimodal!

References

- G V Dunne, Slater Decomposition of Laughlin States, Int. J. Mod. Phys. B7,4783 (1993)
- P Di Francesco, M Gaudin, C Itzykson and F Lesage, Laughlin's wave functions, Coulomb gases and expansions of the discriminant
Int. J. Mod. Phys. A9,4257 (1994)
- T Scharf, J-Y Thibon and B G Wybourne, Powers of the Vandermonde determinant and the quantum Hall effect J Phys A:Math. Gen. 27, 4211 (1994)
- This work has benefited from interaction with R C King and J-Y Thibon
- Support from the Polish KBN is acknowledged
- Admissible partitions and the square of the Vandermonde determinant
- Brian G Wybourne, Instytut Fizyki, Uniwersytet Mikołaja Kopernika Poland
- The Vandermonde alternating function in N variables is defined as

$$
\begin{aligned}
& V\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}^{N}\left(z_{i}-z_{j}\right) \\
& \frac{\Psi_{\text {Laughlin }}}{V}=V^{2 m}=\sum_{\lambda \vdash n} c^{\lambda} s_{\lambda}
\end{aligned}
$$

where $n=m N(N-1)$ and the s_{λ} are Schur functions.

Principal Topics Considered

- Determination of the signed integers $c_{\lambda} N=2, \ldots, 10$
- Admissible partitions and zero coefficients
- The q-discriminant and q-polynomials $c_{\lambda}(q)$
- A conjecture

$$
Q S(N)=\sum_{\lambda} c_{\lambda}(q)=\prod_{x=0}^{[N / 2]}(-3 x+1) \prod_{x=0}^{[(N-1) / 2]}(6 x+1)
$$

- Sum of squares - the q-polynomial is symmetrical and unimodal

