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Introdution� Groups in Chemistry and Physis� Types of Groups in Appliations� Compat and Non-Compat Groups� Dynamial Groups� Groups and Harmoni Osillators� Groups and Thermodynami Partition Funtions� Groups and Quantum Dots� Conluding Remarks
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Groups in Chemistry and Physis� Groups are a natural tool for exploiting symmetry in physialproblems� There are both stati geometrial symmetries and dynamialsymmetries� Symmetries may be �nite or ontinuous e.g. Compare a squarewith a irle� Symmetries lead to seletion rules whih tell us what is notpossible - not what is possible� Via the Wigner-Ekart Theorem they lead to the alulation ofmatrix elements
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Types of Groups in Appliations� Finite Groups 32 Point Groups, 230 Crystallographi SpaeGroups, Magneti Spae Groups, Blak and White Groups,Permutation Groups Sn� Finite Groups:- Finite number of group elements, representationsand all representations of �nite dimension� Lie groups In�nite number of group elements and of unitaryrepresentations. Examples SO(2), SO(3), SO(4), SO(5), SU(2),SU(3),SO(3; 1), SO(4; 1), SO(4; 2) et.� H-atom, Harmoni osillators, Jahn-Teller e�et,Thermodynami Partition Funtions, Maxwell's Equations et.
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Compat and Non-Compat Lie Groups� Compat Lie groups have an in�nite number of �nite dimensionalunitary irreduible representations. f. Rotation group SO(3).Used to desribe systems with a �nite number of states. e.g.States of the 3d5 eletron on�guration.� Non-ompat Lie groups have an in�nite number of unitaryirreduible representations with the important di�erene - all thenon-trivial unitary irreduible representations are of in�nitedimension. Useful in desribing systems having an in�nitenumber of states. e.g. The omplete set of disrete states of aH-atom. Representations may be disrete or ontinuous - may beunbounded from above, below or both.
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Compat and Non-Compat Lie Groups� In making appliations we need to be able to:-� Label representations� Compute Group Subgroup Branhing Rules� Resolve Kroneker Produts and symmetrized powers ofrepresentations� Construt invariants and Integrity bases
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Dynamial Groups� Bohr's �rst paper energy levels of H-atom (in appropriate units)En = � 1n2 with n = 1; 2; : : :2(n)2 degeneray hidden� Pauli notes that in a Coulombi entral �eld for a single eletronthe Runge-Lenz vetor leads to the higher degeneray and thedegeneray group for the H-atom is SU(2)� SO(4)� Muh later Barut and Kleinert show that all of the in�nite set ofdisrete states of a H-atom span a single representationH0 = f1(�0; 0)g of a non-ompat group SO(4; 2) � SU(2; 2) thatontains the orbital degeneray group SO(4) as a subgroup
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Dynamial Groups� The SO(4) symmetry is broken for more than one eletron� Nevertheless, it an be useful to onsider n�eletron statesonstruted from symmetrized powers of H0 = f1(�0; 0)g� Using the theory of symmetri funtions it has been possible todevelop algorithms for resolving symmetrized powers andbranhing rules for both ompat and non-ompat Lie groups� H0 
 f2g = 1Xk�0f2(2k; 2k)g (S = 0)

H0 
 f12g = 1Xk�0f2(2k + 1; 2k + 1)g (S = 1)� Knowing the relevant U(2; 2) irreps is a signi�ant �rst step
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Groups and Harmoni Osillators� The energy levels of a d�dimensional isotropi harmoniosillator are given byEn = (n+ d2 ) with n = 0; 1; 2; : : :� Eah level has an orbital degeneray,Dd(n), depending on d,D1(n) = 1; D2(n) = n+ 1; D3(n) = (n+)(n+ 2)2 ; : : :� The orbital degeneray group of an isotropi d�dimensionalharmoni osillator is U(d) with the degenerate states spanningthe symmetri representations fng� The even parity states have n even and the odd parity n odd
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Groups and Harmoni Osillators� For N�noninterating partiles in d dimensions the dynamialgroup is the metapleti group Mp(2Nd). The in�nite set ofstates span the fundamental representation ~�. UnderMp(2Nd)! Sp(2Nd;<) ~�! �+ +��where �� are the two basi irreps of Sp(2Nd;<) with D+ontains all the states of even parity and �� those of odd parity� Sp(2Nd;<) has a rih subgroup struture. e.g.Sp(2Nd;<) � Sp(2d;<)�O(N) � U(d)� S(N) � O(d)� S(N)� With spin the omplete dynamial group is SU(2)�Mp(2Nd)and the degeneray group is SU(2)� U(d)
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Groups and Harmoni Osillators� Before one an attempt pratial appliations one must developappropriate algorithms for handling both ompat andnon-ompat Lie groups� Methods for omputing all the relevant branhing rules,Kroneker produts, symmetrized powers have been developed� Basi to the whole programme has been the development ofalgorithms for alulating group properties in terms of theombinatorial properties of symmetri funtions� Detailed examples of the enumeration of states for 12 partileshave been given elsewhere
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Appliations for harmoni osillator many-bodysystems� The sympleti model of nulei has been extensively studied andprovides a natural link between shell models and olletivemodels� The sympleti models used for nulei are largely transferable toproblems involving many-eletrons in quantum dots� Sympleti models lead to a natural way of ounting states andas suh are a useful tool for omputing thermodynami partitionfuntions for �nite numbers of bosons and fermions and shedlight on relationships between boson and fermion many partilesystems
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Thermodynami Partition Funtions for Bosonsand Fermions� The development of traps that on�ne a �nite number ofultraold atoms in a harmoni potential requires the developmentof thermodynami partition funtions for a �nite number N ofnon-interating bosons and fermions� ZN (�) = T r �e��H� � = (kBT )�1with H = NXi=1Hithe Hamiltonian, the sum of N idential single partileHamiltonians, with a spetrum of energy eigenvalues E1; E2; : : :(with possible degeneraies)
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Thermodynami Partition Funtions for Bosonsand Fermions� For a single boson or fermionZ1(�) =Xi=1 e(��Ei)� Introdue a set of variables (x) = (x1; x2; : : : ), not neessarily�nite in number with xi = e(��Ei).� Using the properties of symmetri funtions we obtainZN (�)� = Xj�j=N "�� z�1� Z1(��)

where "+ = 1; "� = (�1)j�j�`(�) and z� =Qi�1 imimi!
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Thermodynami Partition Funtions for Bosonsand Fermions� Thus the anonial partition funtion for N -noninteratingbosons or fermions is ompletely determined by the singlepartile partition funtion. The oe�ients sum to unity forbosons (+) and to zero for fermions (�). For example:-Z5(�)� = 1120 (24Z1(5�)� 30Z1(4�)Z1(�)� 20Z1(3�)Z1(2�)+20Z1(3�)Z1(�)2 + 15Z1(2�)2Z1(�)� 10Z1(2�)Z1(�)3 + Z1(�)5�

However, this assumes a single spin state. For fermions of spins = 12 the partition funtion is appropriate to �ve suh fermionswith maximal spin projetion MS = 52 . The omplete partitionfuntion ZT5 overing the omplete set of spin states an beonstruted to give
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Thermodynami Partition Funtions for Bosonsand Fermions� ZT5 = Z"5 (�) + Z"4 (�)Z#1 (�) + Z"3 (�)Z#2 (�)+Z"2 (�)Z#3 (�) + Z"1 (�)Z#4 (�) + Z#5 (�)

where the Z"n(�) indiates that the spin projetion is MS = n2and Z#n(�) a spin projetion MS = �n2 . Analogous results an beonstruted for other spin states of both fermions and bosons.We note the lose orrespondene with the LL�oupling ofatomi physis.
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Groups and Quantum Dots� The eletrons of a quantum dot are on�ned in an approximatelyparaboli potential. Close relationship with a many-eletronsystem subjet to a harmoni osillator potential.� V (ri; rj) = 2V0 � 12m�
2jri � rj j2m� eletron e�etive mass and V0 and 
 are positive parameters� For an N�eletron quantum dot eah with a harge �e, ag�fator g�, spatial oordinates ri and spin omponents sz;ialong the z�axis with a magneti �eld B along the z�axis thespatial part of the Hamiltonian an be written asHspae = 12m� Xi �pi + eAi �2 + 12m�!20Pi jrij2 +Pi<j V (ri; rj)
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Groups and Quantum Dots� and the spin part asHspin = �g��BBXi sz;i

� The momentum and vetor potential assoiated with the i� theletron pi = (px;i; pi;y) Ai = (Ax;i; Ay;i)For a irular gauge Ai = B(�yi=2; xi=2; 0) we haveHspae = 12m� Pi p2i + 12m�!20(B)Pi jrij2+Pi<j �2V0 � 12m�
2jri; rj j2� !2 Pi Lz;i

where !0(B) = !20 + !2=4 and ! = eB=m�.
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Groups and Quantum Dots� The dynamial algebra for a mesosopi N�eletron system in ddimensions (usually d = 1; 2) is the non-ompat Lie groupSp(2Nd;<)� Subalgebras of Sp(2Nd;<) formed by subsets of the de�ninggenerators that lose under ommutation. For exampleSp(2Nd;<) � Sp(2;<)�O(Nd) � Sp(2;<)�O(N)�O(d)� U(1)�O(N)�O(d)

Note the separation of the spatial O(d) and partile O(N)dependenies
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Groups and Quantum Dots� The Hamiltonian may be written in terms of the generators ofSp(2;<), O(d) and Sp(2N;<). Pratial alulation theninvolves the evaluation of matrix elements of the groupgenerators in a harmoni osillator basis, a well-known problemin sympleti models of nulei.� For further details see:� Grudzi«ski K and Wybourne B G, Sympleti models ofn�partile systems Rept. Math. Phys. 38 251 (1996)� Rowe D J, Rept. Prog. Phys. 48 1419 (1985)� King R C and Wybourne B G, J. Phys.A: Math. Gen. 18 3113(1985)


