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Abstract. We establish the complete decompositions of the symmetrized Kronecker squares
of the basic harmonic representationsSpf(2n, R) conjectured by Grudzinski and Wybourne
(Grudzinski K and Wybourne B G 1998. Phys. A: Math. Gen. 29 6631-41) and give
analogous complete results for the symmetrized cubes. Equivalence relationships are shown to
exist between certain pairs of plethysms.

1. Introduction

The non-compact symplectic grou§p(2n, R) is well known as the dynamical group of
the isotropicr-dimensional harmonic oscillator [12] and finds significant applications in
symplectic models of nuclei [1, 9] and in the mesoscopic properties of quantum dots
[3, 4, 13]. A central problem in making applications is the resolution of Kronecker powers
of the two fundamental irreducible unitary representations (unirreps), which, following King
and Wybourne [6], we shall designate égO)) and (%(1)), into their various symmetry
types. This problem has recently been studied by Grudzinski and Wybourne [2] who, on
the basis of numerical calculations, conjectured the explicit decompositions

(200) ® (2} = ;u(m)) @
(300) ® (1%} = §<1<2+ 4i)) @)
(3(D) ® {2} = ;<1<2+4i)> ®)
(3() @ {17} = (1(1%) + Y _(1(40)). 4)

izl
It was shown that the validity of such conjectures implies some unusfiaiction identities
which they duly established, but without establishing a rigorous proof of the conjectured
equivalences. Herein we supply a formal proof of equations (1) to (4). Moreover, the
methods introduced lead to the establishment of a complete resolution of the Kronecker
cubes of the fundamental irreps 8p(2n, R). These results are then used to demonstrate
the existence of a symmetry relationship linking plethysms of(l%(@)) unirrep to those
of (2(1)).
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2. Background and notation

Our notation is as in [10, 6] for characters, and as in [11] for symmetric functions. The
Sp(2n, R) | U(n) branching rule for the harmonic series representat@km)) is given
[10, equation (3.9)], [6, equation (5.6)] by the equation:

(2k(0) = €2 {{A )5 Dy}n (5)

where N = min(n, k), and{xs}’;\, is the signed sequence of terat§p} such thatt[p] is
equivalent to L] under the modification rules o (k) ( see [10]). For example, the terms
(1(m)) arising in the right-hand sides of (1)—(4) hat/én) content forn > 2:

(10m)) — € {({m} — {m, 2}), - D2}, (6)
while

(1(1) — € {1}D2}, 7
and

(1(1%) — € {{1%} Dy}, . )

We will also need equation (8.18) of [6], giving the tensor product of two harmonic series
representations afp(2n, R) as

k() x (A1) = (%<k +O (Al - (1} D))H;,n) ©)

where((1))i+1,, is defined to be zero unlegg < n andi’ + A, < k41 in which case})
is retained. For example

(300) x (3(0) = Y (1(20)) (10)
i>0

(300)) x (3(D) =Y (12 + 1)) (11)
i=0

(3(D) x (3(D) = (1(1H) + Y _(1(2)). (12)

i1

Finally, the branching rul&p(2nk, R) | Sp(2n, R) x O (k) [6, equation (4.3)] is given
by

A — Y (3k) x [A] (13)
A
wherea runs over partitions satisfyingf, +15 < k andi; < n. The harmonic representation

Aoy of Sp(2nk, R) has the following restrictions under the chdip(2nk, R) D Sp(2n, R) x
Ok) D Sp(2n,R) x 1:

Aoui — Z(%k(k)) x [A] — Azxnk
P

As pointed out by the second referee, the Kronecker products can also easily be obtained
by means of theorem 3.1 of [7].
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3. Decomposition of symmetrized squares

In this section we give a proof of equations (1)—(4).
Let us first look at the/ (n) content of the left-hand-side of (1) and (3). We know that
underSp(2n,R) | Un) [2]

(30) ® {2} — (ez Z{Zm}) ® (2) =eh2[2h2m}
m=0 m=0
and
L) ®(2) - (e% > (em + 1}) ® {2} = Ehz[z hzmﬂ]
m>0 m=0

where for later convenience the right-hand side has been rewritten in terms of symmetric
functions following the notation of [8]. Hence, the sum of the left-hand sides correspond
to the terms of even degree in the series

holo1] = hz[z hom + Z hm+1]

m=>0 m=0
= hz[z hzm} + (Z th) : (Z hzmﬂ) + hz[z hzmﬂ}
m=>0 m=0 m=>0 m=0

which (up to the factor), describes thé/(n) content of A ® {2}. Therefore, to compute
the sum

(30)® {2+ (3(1)) ® (2
it is sufficient to evaluate
A®{2} = (3(0)) ® {2} + (3(1) ® {2} + (3(0)) x (3(1)). (14)

We can now resolvei%n into its symmetric and antisymmetric part by regarding it as the
restriction of A4, underSp(4n, R) | Sp(2n, R) and introducing the chain of groups

Sp(4n,R) D Sp(2n,R) x O(2) D Sp(2n,R) x S».
Indeed, undeSp(4n, R) | Sp(2n, R) x S,, we have

Ra— (B2 ®12) x @ + (B2 ® (12)) x (12)
UnderSp(4n, R) | Sp(2n,R) x O(2), the branching rule (13) gives

Agy = (1(1%) x [17] + D (1G)) x [il.

i=0

The restrictionO (k) ¢ Sk is given [5, 11] by

[A] > (1) ® {/G} (15)
whereG = {0} + {1} — {21} -+ - involves only self-conjugate partitions, so that
[17] — (1) ® ({12} + (1)) = (1)

and, fork = 2, [1°] — ((1 Ns, = (1%) reduces to the alternating representatiorsof For
i>1

14 Mo+ -1
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where, forsS,, (1) ® {j} reduces ta(2) for j even and ta1?) for j odd. Therefore, the
restriction

As, | Sp(2n,R) x S,

is equal to
(1(1%) x (1) + (10) x 2 + Y (1) x [(2) + (19)]
i>1
so that
A®{2) =) (1) (16)
i=0
A® {17 = (1(1%) + Y _(1()). (17)

izl
If we consider the restriction of (14) t& (n), (%(O)) ® {2} yields symmetric functions of

degreed = 0 mod[4], (3(1)) ®{2} gives terms of degre¢ = 2 mod[4] and(3(0)) x (3(1))
the terms of odd degree. From equations (16) and (11) we have

Loy R+ 3w e2 = 2&(1(21')). (18)
Comparing equations (18) and (10), we obtain
(3(0) @ {1} = (3(1) ® {2} (19)
(since (3(0))? = (3(0)) ® {2} + (3(0)) ® {17}).
In conclusion, consider th& (n) content of the difference
(3(0) ® {2 - (3(0)) ® {17} = (3(0)) ® p2 (20)

where p, is the second power sum. Under restrictionLtg:), the right-hand side is given
in terms of symmetric functions

1
P2|:62 Zh2n1| =€ sz [h2.] .
n=0 n=0

This expression can be expanded in the basis of Schur functions

2n
Y palhal =) ) (—D san i (21)

n=0 n>0 k=0

Under restriction toU (n), the left-hand-side of (20) corresponds to the even terms in the
series obtained by taking the difference of the two expressions

> (1) | <e (Z h4i)01[h2] -~ e(Z sﬁ,z)al[hﬂ)

i=0 i=0 izl d=0[4]

and

> (1) (e (Z h4,-)al[hz] - e(Z s4i+z,z)ol[hz])

i=0 i=0 i>0 d=2[4]

We can extract these terms by taking the real part of

ailha] [Z(it)"hn - Z(it)”sn,z}

n=0 n>=2



Fundamental unirreps of Sp(2n, R) 1077
which, fort = 1, is equal to
1 1
o1[h2] [Ui — 0j (s2 - is1> + TSl + Slzi| . (22)

We want to show that in two variablds, y}, the symmetric functions coincide with the
right-hand side of (21).

Indeed
pz[z th] = % [01+0_1]

n>0

_pz|: 1 . 1 :|
S 2lA-0A-y)  A+x)A+y)

e
S 2lA-x)A-y)  @AH+AHA+)?)
and, using the specialization of

1
o1 [ha(x, )] = 01 [x2+xy +y2] - 1-xA—-xy)1—y?

1
(1—ix)(1—1iy)
and so on, we see that the specializatioof (22) is equal to

O‘i(-x9 )’) =

s )
21 =X)L -y A+x)H(A+y?)

i y 4 x 4+ x3y% 4 x?%y3
1+ x)(L+y)A— )L - xy)(L—»?)
and we now have the result that
(300) ® {2} — (3(0) @ {17} = ) _(1(4i)) — Y _(1(4i +2)). (23)
i=0 i=0

From equations (23) and (10) we obtain (1) and (2), and taking into account equations (19)
and (12), we obtain (3) and (4).

4. Symmetrized cubes

We shall now establish similar decompositions for the symmetrized cubes of the fundamental
representation(;% (0)) and (%(1)). As above, we obtairzﬁzxn3 by restriction ofAg, through
the chain

Sp(6n,R) S Sp(2n, R) x 0(3) O Sp(2n, R) x S3 O Sp(2n, R).

To obtain the plethysni\,, ® {1}, we need to determine the restriction fran(3) to Ss.
We first remark that in the restrictio (3) | Ss only the partitions [3], [»] and [, 1] are
retained. Sincemn, 1] = [m]* and n]* | S3 = sgnx [m] | S3 (see [10]), it is enough to
determine f1] | Ss (clearly, [1°] — sgn). Applying (15), we find

[m] { (1) @ {m/G} = (1) ® {m} + (1) ® {m — 1}.
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The value of(1) ® {m} for S; is equal to the coefficient of in the series

X n 1 -
(L= 2)h, (H) = ,11 = 2 K @a 0

An

(cf [11]) where K, 1x(z) are the Kostka—Foulkes polynomials. In particular, foe= 3,
[m] | S3 is the sum of the coefficients af* andz”* in

1 313 2
S 1 21 3. 24
F(z) (1—z2)(1—13)[z( )+ (2% +2)(2D) + (3)] (24)
Writing
1
L 25
1-291-23 ;az (25)
we obtain

F(2) = (Z anz")<3) + <Z 22" + an_lz")(zl) + (Z an—32">(13)

n=>0 n=>1 n>3

and after simplification, one finds that
[m] | S3= (am + an-1)3) + (@m-1+ 2am_2 + an-3) 2D + (@3 + an-2)(1%
[m, 11} S3 = (an-3+ an-23) + (@n-1 + 2an 2+ ap-3) 2D + (@n + an-1) (1%
and

[1°] | S5 = sgn= (L°).

Hence

Az, | Sp(2n) x S3=Y (3(m))Ex(m) + Y _(3(m, D)) Eo(m) + (3(1%))(1%)
m=0 m>=1

where

E1(m) = (ay + an-1)3) + (@n-1+ 242 + aw-3)(2D) + (an-3 + apm-a)(1%)
and

E(m) = (am—3 + an-0)(3) + (@n—1 + 2am—2 + @y-3)(21) + (@ + am-1)(13).
On the other hand, sinc& = (3(0)) + (3(1)),

A® (3= (30)® 3+ (3(1) ® {3} + (3(0) x (3(1) ® {2}

+(3(1) x (300) ® {2} (26)
A® {21} = (3(D) ® {21 + (5(0)) ® {21} + (3(0)) x (3(D) ® {2}

+(3(D) x (300) ® (2} + (3(0)) x (3(1) ® {17}

+(3(D) x (2(0) ® {17} (27)
and
A®{1% = (3D) ® {13 + (3(0) ® {13} + (3(0)) x (3(D) ® {17}

+(3(D) x (3(0)) ® {17}. (28)
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To extract the plethysms} (1)) ® {*} from these expressions, we rewrite the left-hand-sides
as (26), (27) and (28), and we manage to subtract the contribution of the crossed products
(3) x (3G — D) @ {n}, (ul = 2).

From equations (1)—(4), we obtain

(3(D) x (3(0) ® {2} = (3(1) x Y _(1(4)) (29)
i=0
(3(D) x (3(0) ® {17} = (3(1)) x Y _(1(4i +2)) (30)
i=0
(300) x (3(D) ® (2} = (3(0)) x Y _(1(4i +2)) (31)
i=0
and
(3(0)) x (3(1) ® {1%} = (3(0)) x <<1<12>> + Z<1<4i)>>. (32)
izl
From equation (9) we find
() x (10) = > (32 + 1) (33)
i=0
and form # 0
@) x (Am) =Y (30m +2i, 1)) + (30m +2i + 1)) (34)

i>0
Let po(m) = f’"T*lL the number of partitions of: into parts not greater that 2, given by
the generating function

1
> pa(m)z" =i a5

m=>0
Expanding the right-hand side of (29) by means of (33) and (34), we get
(B3) x (30) @2 =) (3@ + D)+ Y (34 +2/, D)+ (34 +2j + 1)

i>0 i>1
j=0

=Y GQi+1)+ Y pam—2 (3@m, )+ (32n + 1))
i=0 m=>=1
where 4 + 2j = 2m and p,(m — 2) comes from the rearrangement

Z 1= Z 1= po(m —2).

izl j=0 k=0, j=0
2i4j=m 2k+j=m—2

For equation (31) we have a similar expression. #0g£ 0
(3(0) x (1m)) = > (30m+2j + L. 1) + (30m + 2j))

j>0
then
(300) x (3@ (2 =)D (34 +2j + 1. D) + (34 +2j))

i20 j>1

=Y pam =D (3@ +1,1) + (3@2m))).

m>=1
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Now it is possible to give a closed expression for
(300) @ (31 + (3(V) ® {3)
=A® {3} - (3(0) x (3() ® {2} — (3(D) x (3(0) ® {2}

ie.
(300) @ {3+ (3(1) ® {3} = Y (@ + aw-D)(30m) + Y _(an-3+ an-a)(3(m, 1))
m=0 m>3
— Y (3@i+D) =) palk —2) (32, 1) + (32K + 1))
i>0 k=1
=Y P2tk =D (32 + 1, 1) + (3(2K))) . (35)

k=1

We can now give the coefficients 6§ (m)) and(3(m, 1)) in (35). The coefficient ot3 (m))
is equal to

am + am—1 — 172(2k - 1) =dap + Ap—1 — A2x—1 — A2k—2 — A2%-3 for m = 4k
A + A1 — p2(2k) = @y +am_1— 1 —ag_1— ax_» — ax_3 for m = 4k 42

amt+an1—1—patk—2)=a, +au_1—1—ar2—ay_3—dy_4 form=2k+1
and the coefficient otg(m, 1)) is equal to

ap-3+ ap_4— p2(k —2) =a,_3+an_4 — ax_2 — Qr_3 — ax_4 for m = 2k

-3+ am_s— pa(k = 1)) = a3+ s — ar_1 — A—2 — ar_3 form = 2k + 1.

To separate the components(éf0)>®{3} and(%(l))®{3}, we consider theit/ (n) contents.
It is enough to see that the terms (c#(O)) ® {3} are those(g(x)) with |A| even and the
terms of(%(l)) ® {3} are those withA| odd:

(3(0) ® {3} = > (ag + am—1 — 1 — an—1 — an— — an—3)(3(4k))
k=0

+ Y (aar2+ amer — 1 — an-1 — ag—2 — an—3)(3(4k + 2))
>0

+ Z(azk—z + an-3 — -1 — ax—2 — ax-3)(3(2%k + 1, 1)) (36)
>0
and

(3) @ (3} = (ams1+ax — 1— a2 — ar_3 — ar-a) {32k + 1))
k>0

+ Z(azk—s + aop—a — Ax—2 — aj_3 — ak—4)(%(2k, D). (37)
k>0
The derivation of the other plethysms is similar. The right-hand-side of (32) becomes
(30) x )1 =) (3@ +1D)+ > (34)

i=0 i1

+ Y (3@ +2j - 1D) + (34 +2)))

i>1 j>1
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= > G@+10)+) (34

i=0 i=1
+ ) patm —3) ((3@m — 1. 1) + (3(@2m))
m>=3

and for equation (30) we obtain
(3D) x (300) @ {17} =D > (34 +2j + D) + (34 +2j, 1))

i>0 j>1

= pam =1 (3@m. 1) + 3@2m + 1))).

m=>1

Subtracting the contributions of the crossed products in (28) we obtain
(3(D) ® (%) + (3(0) ® {1¥) = A® (1%} — (3(0)) x (3(D) ® {1%)

—(3(D) x (3(0) ® {1}
and this gives
(3(0) ® (1%} + (3(1) ® (L%} = ) (am-3+an-a)3(m) + Y_(an +an-1(30m, 1))

m=0 m=4

HE@) =Y GRi+1D) - ) (3@)

i>0 i>1

= pa(m =3 (3@2n — 1. 1)) + (3(2m)))

m=>3
= patm = 1) ((22m. 1) + (32m +1))).
m=1

We can now write down the coefficients Qg(m)) and (%(m, 1)). We first give the
coefficient of (3 (m)):

a3+ Q-4 — 1- P2(2k - 3)

=ap3+an4—1—ax_3—ax_4—axy_s for m = 4k
An-3~+ a4 — p2(2k —2) = an 3+ am_4—az 2 — ax_3— a4 form = 4k + 2
ap-3~+ an_4— p2tk —1) = ap_3+ m_s — axr_1 — ax_2 — ay_3 form=2k+1

and then the coefficient off (m, 1)):

ap + -1 — p2tk — 1) = ay +ap_1— -1 — a2 — a3 for m = 2k
amt+an_1—1—prtk—2)=a, +an_1—1—ar_2—ap_3—ay_4 for m =2k + 1.
Separating the terms as above, we obtain

(300) ® (1%} = (am—3+ a4 — 1 — az—s — ax—a — azs)(3(4k))

k=0

+ 2(04/(71 + dag—2 — agk—2 — azk—3 — azk—a) {3 (4k + 2))
>0

+ Z(flzk+1 +au —1— a2 — ar3 — a—a)(3(2%k + 1, 1)) (38)
>0
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and

(3(D) ® (1) = > (az-2 + a3 — ar-1 — ar—2 — ax-3)(3(2k + 1)

k=0

+ ) (an +an 1 — a1 — s — ar-3)(3(2k, D) + (3(1%).

k=1
Finally

(3(D) ® {21} + (3(0)) ® {21}

=A®{21} — (3(0)) x (3(D) ® {2} — (3(D) x

(300)) ® {2}

—(30)) x (3(D) ® {1?} — (3()) x (3(0)) ® {17}

which yields

(300) ® 2L + (1) ® (21 = Y (30m)) @1+ 2am 2+ an_3)

m=>0

+ ) (30m, D)1+ 22+ ams) — Y (32 + 1)

m>1 i=0

=Y patk = 2 ((3(2k, 1) + (32K + 1))

k=1

=Y pam =3) ((32m — 1. ) + (3(2m)))

m=>3

=Y pam =D ((3@m. D) + (3(2m + 1))

m=1
and hence the coefficient Qg(m)) is
am-1~+ 2apm-2 + am-3 — 1 — pa(2k — 1) — pa(2k —3)
=ap-1+2am—2+an-3—1—ay-1—ax—2
—2ay 3 — a4 — az—s5
am-1+ 20,2 + am—3 — p2(2k) — p2(2k — 2)
=ap-1+2n_2+ ap_3 — ax_1
—2a5_2 — 2a_3 — ax—4
Q-1+ 20,2 + ap_3 — p2(k — 1) — pa(k — 2)
=au-1+ 20,2+ an_3 — a1
—2ay_2 — 2ax_3 — Qx4
and that of(3(m, 1)) is
am-1+ 202 + am-3 — p2(k — 1) — p2(k — 2)

=Y palk = 1) ((340)))

k>1

for m = 4k

form =4k +2

form=2k+1

= y—1+ 202+ Q-3 — Ar_1 — 2052 — 2053 — A4 for m = 2k

(39)

(40)

(41)

(42)

(43)
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ap-1+ 20 -2 + an-3 —1— pa(k — 1) — pa(k — 2)
=ap1+2n 2+ an-3—1—ar_1—2a;_>
—2a;_3— Qx_a form = 2k + 1. (44)
To separate the terms «)%(O)) ® {21} and (%(1)) ® {21} we again make use of thé(n)
content of(3(0)) ® {21} + (3(1)) ® {21}, which yields

(2(0) ® (21} = ) (a1 + 2as—2 + ag—3 — 1 — a1 — an—» — 2az_3
k=0

— ag—s4 — az—s){3(4k)) + 2(041(4-1 + 2a4 + ag_1 — ax_1 — 2ax._»
>0

— 203 — ax—4) {3 (4 +2)) + Z(a2k +2ax 1+ax _2—1—a;1
>0

— 242 — 2ar-3 — ax—4)(3(2k + 1, 1)) (45)
and

(3) @ {21} =) “(an + 2ap-1 + az—2 — a1 — 2a,_ — 2a;_3 — ar_a)(3(2%k + 1))
k=0

+ Y (a1 + 2an_o + au-3 — a1 — 2y,
k>0

— 2013 — ar-4)(3(2k, 1)). (46)

5. Star equivalent Sp(2n, R) unirreps and plethysm

Recall the modification rule fo© (k)
W=D a—n* h=24'-k>0 (47)

where a continuous strip of boxes of lendthstarting at the foot of the first column and
working up along the right edge and ending in columis removed from the Ferrers graph

of (A). The constraints on partitiong.) corresponding to unirreps}k(k)) of Sp(2n, R)

allows us to restrict our attention to those cases corresponding to removing boxes from just
the first column. Thus for the unirrep@k(k)) of Sp(2n, R), we have

A — (L —h)* h=20'—k>0 (48)

and conversely we may add boxes to the first column of a standard partitidor O (k)
to produce ai + h) that is non-standard fo® (k) but standard foSp(2n, R):

A+h)—> Q" h=k—2x>0. (49)
Unirreps of Sp(2n, R) will be said to bestar equivalent if
(3kO))* = (k) = (3k(L £ h)) (50)

which for brevity we shall write as
(3k(1)) = (30 £ h)) (51)

where it is assumed that< n. Thus(3(0)) = (3(1)) is a pair of star equivalent unirreps
of Sp(2n, R).
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Bearing in mind the preceding remarks and definitions, consider the leading terms in
the plethysm(3(0)) ® {3}:

(300) + 3) + (3(6) + (3(8) + (3(9D) + (3(10)) +2(3(12)) + (313 D)
+(3(14)) + (315 D) + 2(3(16)) + (3(17 D) + 2(3(18)) + (3(19 )
+2(3(20)) +2(3(21 1)) + 2(3(22)) + (3(23 D).

Replacing each unirrep by its star equivalent gives the leading terrﬂ%@)‘)) ® {3)* as

(3(1%) + (34D) + (3(6D) + (3BD) + (3(9)) + (3(10 ) +2(3(12 1) + (3(13))
+(3(14 D) + (3(15)) + 2(3(16 D) + (3(17)) + 2(3(18 1)) + (3(19))
+2(3(20 1) + 2(3(21)) + 2(3(22 1)) + (3(23))

which are precisely the leading terms(igl(O)) ® {13):

(3(1%)) + (3(4D) + (3(6D) + (3(BD) + (3(9) + (3(10 D) +2(3(12 1) + (3(13))
+(3(14 D) + (3(15)) + 2(3(16 D) + (3(17)) + 2(3(18 1)) + (3(19))
+2(3(20 D) +2(3(21)) +2(3(22 1) + (3(23)).

Similarly, the leading terms i(3(0)) ® {21})* are

(32) + G@) + 36D) + (3(6) + (3(TD) +2(3(8)) + (3(9D)) + 2(3(10))
+2(3(11 D) +2(3(12)) + 2(3(13 D) + 3(3(14)) + 2(3(15 )
+3(3(16)) +3(3(17 D) + 3(3(18)) + 3(3(19 D) + 4(3(20))
+3(3(21 1) +4(3(22)) + 4(3(23 D)

which are identical to the leading terms (i%I(O)) ® {21}):

(32) + G@) + 36D) + (3(6) + (3(TD) + 2(3(8)) + (3(9D)) + 2(3(10))
+2(3(11 D) +2(3(12)) + 2(3(13 D) + 3(3(14)) + 2(3(15 )
+3(3(16)) + 3(3(17 D) + 3(3(18)) + 3(3(19 1)) + 4(3(20))
+3(3(21 1) +4(3(22)) + 4(3(23 D).

The above results lead us to conjecture that

(30 ® (A = (D) ® (V) (52)

That the conjecture holds fart- 2 is evident from (1) to (4).That the conjecture holds for
A+ 3 follows by noting that

(3m)) = (3(m, 1))
and
20) = (3(1%).
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Application of these star equivalences to the results obtained for the symmetrization of the
cubes of the star equivalent pa(i%(O)) = (%(1)), together with inspection of the given
coefficients, noting in particular (40) to (44), completes the verification of (52) for all
(M) F 2, 3. Proof that the conjecture (52) holds for &ll) will be given in a later paper
(with R C King) together with a proof of a more general star equivalence

k() = (Gk(uth) ® (X'}  kodd (53)

Il

(3k( %)) ® {1} k even. (54)

6. Concluding remarks

It is now possible to establish results for higher powers by applying the same methods
to obtain the plethysms. But because longer partitions are involved the calculations
rapidly become cumbersome. For example, the branching®@@® | S, is obtained by
examination of partitions of the form {1, [m, 1, 1], [m, 2], [m, 1] and fn]. One remarks

that fn, 1, 1] = [m, 1]* and [¥] = [0]* and one needs to examine only the partitions of the
form [m], [m, 1], [m, 2]. One applies the formula to give:] | S4, [m, 1] | Sa, [m, 2] | S4

which is equivalent to

[m] | (1) ® {m/G}

[m, 1] | (1) ® {m1/G}
and

[m,2] | (1) ® {m2/G}.
Now, to obtain the result, one writes thit, j} = {m}{j} — {m + 1}{j — 1} and finally
1H@{m, j} =) @{m) * (1) @{jH — (D) ®@{m+1}h * (1) &{j —1D.

These remarks are sufficient to give a method to compute the fourth power. The existence of
the star equivalence operation for unirrepsspt2n, R) implies certain one-to-one mappings
between thav-particle states in even parity orbitals and those in odd parity orbitals.
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