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Abstract. The Judd-Ofelt theory of f ←→ f transitions was originally

developed as a non-relativistic theory nearly 40years ago. Modifications

to include the effects of spin-orbit effects have been developed by various

researchers. The inclusion of relativistic effects both for the Judd-Ofelt

theory of intensities and for crystal field effects has been hindered, until

recent times, by the lack of adequate relativistic radial integrals. It is

now possible to obtain reliable relativistic integrals and we show how

both the Judd-Ofelt theory and crystal field theory may be modified to

accommodate relativistic effects. These extensions involve new effective

operators. We include some historical remarks on the development of

the Judd-Ofelt theory.
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1. Introduction

The first successful theoretical treatment of the transition probabilities of the f ←→ f

transitions so characteristic of the lanthanides and actinides in solid and liquid

environments was developed, independently, almost forty years ago by Judd1 and

Ofelt2 forming what has been commonly known as the Judd-Ofelt theory of intensities.

For a general reference see3 and references contained therein. In this account, one of

us (BGW) gives a brief personal account of the origins of the Judd-Ofelt theory and

then we outline the implications for crystal field theory and the Judd-Ofelt theory of

relativistic effects.

2. A Historical Note (BGW)

The possibility of calculating the spectroscopic properties lanthanides and actinides

owes much to Giulio Racah’s paper4 The Theory of Complex Spectra IV (Unna5 gives

a fascinating account of Racah’s appointment to the Hebrew University of Jerusalem).

That paper, together with his three earlier papers on complex spectra6−8 created the

machinery for calculating properties of fn configurations. Nuclear physicists such

as Jahn9, Flowers10 and others were quick to exploit Racah’s methods. Atomic

spectroscopists were slow to abandon the tried and trusted methods ensconced in

the book of Condon and Shortley11. In 1953 Edith Reilly12 used Racah’s methods

to calculate the electrostatic interaction matrices for the f 4 configuration. The mid-

1950’s saw Judd13−15 in England and Jørgensen16,17 in Denmark starting to make

specific applications to rare earths. The publication, in 1958, by Elliott, Judd and

Runciman18 showed to a much wider audience how Racah’s methods could be applied

to the making of practical calculations. In 1957 Alan Runciman came as a senior

lecturer to the University of Canterbury and I commenced my PhD thesis under his

supervision. The objective was to calculate as much as possible of the properties

of rare earths using Racah’s methods and a Monroe calculator and eventually the

Sydney SILLIAC computer. Runciman and I reported our first results at a conference

in Melbourne. W M Lomer reported18 in Nature

A CONFERENCE was held at Melbourne on “Solid State Physics” during August

17-21 under the auspices of the Australian Branch of the Institute of Physics. Grants

... enabled several Americans, a Canadian and three Englishmen to attend. Other

States of the Commonwealth of Australia and New Zealand were well represented.....

On the third day attention was swung to optical properties of solids... The analysis

of rare-earth spectra in crystals is getting steadily more detailed and very large-scale

calculations are rapidly elucidating the details of interactions within the f electron

shell. ...

Attending the conference was fortunate because in a Sydney bookshop I came

across a book20 that I bought, at what seemed to a poor student an exorbinant price.

I returned to New Zealand, wrote up my thesis and completed my PhD with B R



Judd being my “Overseas Examiner”. The following year, with family, I went by boat

through the Panama Canal and train to Baltimore to become a very young Assistant

Professor at Johns Hopkins University in the group of G H Dieke. I had read the book

bought in Sydney while on the boat. By then I knew how to calculate matrix elements,

energy levels etc but what about Van Vleck’s rare earth puzzle21 - the intensities of

transitions in rare earths in crystals and in solutions? The time was ripe to tackle the

problem. Fano and Racah’s book20 supplied some of the tools and the masterly book

of Griffith22 a number of ideas. It was clear how to proceed - use the odd terms in the

crystal field to couple configurations of opposite parity and make use of perturbation

theory - an ideal PhD student project - which I assigned to my very first PhD student

- George Ofelt. George completed the problem at speed and I told him to write it up

for the Journal of Chemical Physics. Little did we know that on the opposite side of

the continent at Berkeley B R Judd was, completely independently, writing a paper

on the same subject for the Physical Review and thus was the celebrated Judd-Ofelt

theory of intensities of rare earth ions born.

3. Relativistic crystal field theory

Relativistic crystal field theory23 started with attempts to calculate the electric

quadrupole moment of the ground state 4f 76s2[8S7
2
] of neutral europium in an atomic

beam24,25, a problem very analogous to the crystal field splitting of the ground state

4f 7[8S7
2
] of trivalent gadolinium. If we solve Dirac’s equation for an electron nℓj in

a central field we obtain two radial functions, F and G, that are associated with the

small and large components of the Dirac wavefunction, respectively, and which depend

on the total angular momentum j of the electron. To give a specific example, assume

a crystal field potential

V = A0
2r

2C
(2)
0 + A0

4r
4C

(4)
0 + A0

6r
6C

(6)
0 + A6

6r
6(C

(6)
6 + C

(6)
−6 ) (1)

For a single f−electron we have the fourteen states

|7
2
± 1

2
〉, |7

2
± 3

2
〉, |7

2
± 5

2
〉, |7

2
± 7

2
〉, |5

2
± 1

2
〉, |5

2
± 3

2
〉, |5

2
± 5

2
〉 (2)

Noting that26

〈sℓj||C(k)||sℓj ′〉 = 〈ℓ||C(k)||ℓ〉(−1)s+ℓ+j+k
√

(2j + 1)(2j ′ + 1)

{

j k j ′

ℓ s ℓ

}

(3)

leading to

〈sℓjm|rkC(k)
q |sℓj ′m′〉

= 〈ℓ||C(k)||ℓ〉Rjj′(−1)j−m

(

j k j ′

−m q m′

)

× (−1)s+ℓ+j+k
√

(2j + 1)(2j ′ + 1)

{

j k j ′

ℓ s ℓ

}

(4)



where each non-relativistic radial integral

Rk
ℓℓ =

∫ ∞

0

Rnℓ(r)rkRnℓdr, (5)

is now replaced three relativistic radial integrals Rk
jj′ such that
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with the + referring to j = ℓ + 1
2

and the − to j = ℓ− 1
2
.

For fourteen states of a single f−electron we obtain the crystal field matrices
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If in the above matrices we were to make all the radial integrals Rk
jj′ of the same rank

k equal we would obtain the standard non-relativistic crystal field matrices. The next

problem is to extend the formulation to many-electron configurations. Two ways are

open (1). Do the entire calculation in a jj−coupling basis; or (2). Follow Sandars and

Beck24 and continue to use the traditional LS−coupling basis by making the operator

replacements

rkC(k) →
∑

κ,κ′

bk(κκ′)w(κκ′)k, (8)

where the w(κκ′)k are single-particle tensor operators26 and the bk(κκ′) involve the

relativistic radial integrals. One finds that

r2C(2) → b2(11)w(11)2 + b2(13)w(13)2 + b2(02)w(02)2, (9a)

r4C(4) → b4(13)w(13)4 + b4(15)w(15)4 + b4(04)w(04)4, (9b)

r6C(6) → b6(15)w(15)6 + b6(06)w(06)6, (9c)

where
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Not surprisingly, calculation with the replacement operators yields exactly the same

results, for a single electron, as found in Eq.(7a-c). For states involving n equivalent

electrons the w(κκ′) are simply replaced by

W(κκ′) →
n

∑

i=1

w(κκ′) (11)

and the matrix elements may be evaluated in the usual non-relativistic LS−coupling

basis but with the associated radial integrals being taken from appropriate relativistic

Dirac-Hartree-Fock wavefunctions. The important point to notice is that the

replacement operators are double tensor operators that act in both the spin and orbital

spaces whereas the non-relativistic crystal field operators act only in the orbital space.



It is this property that leads to a second-order contribution to the ground state

splitting for rare earth and actinide ions having a half-filled f−shell23,27,28. We have

recently given detailed calculations of a relativistic crystal field for S−state f electron

ions28. Free ion non-relativistic calculations were performed using Froese-Fischer’s

MCHF programme while the relativistic radial integrals were evaluated using the

GRASP2 package. The inner s and p orbitals are contracted and hence the effective

nuclear charge seen by the f−orbitals is decreased and the orbitals expand. It is

planned to present further numerical calculations in the near future.

4. Relativistic f ←→ f transitions in crystal fields

Here we have products of the electric dipole and crystal field matrix elements coupling

the fN configuration to those of opposite parity. Again, whereas in the non-relativistic

Judd-Ofelt theory transitions depend on the tensor operators U(k) the relativistic

treatment leads to double-tensor operators W(κκ′)k. In the Judd-Ofelt theory the single

particle unit tensor operators u(nℓ, n′ℓ′)(kodd) link a ground configuration orbital nℓ to

an orbital n′ℓ′ in an excited configuration and closure results in single particle tensor

operators u(nℓ, nℓ)(keven). In the relativistic extension the double tensor operators

w(nℓ, n′ℓ′)(κκ′)k couple the orbitals and closure results in single particle double tensor

operators w(nℓ, nℓ)(κκ′)k where again k is even but κ′ is even or odd as κ is 0

or 1 respectively. The effective operators obtained in the detailed analysis29−32

generalize the standard Judd-Ofelt effective operators, the latter becoming a limiting

case of the former. Whereas in our discussion of relativistic crystal field theory we

limited ourselves to action within the f−shell here the action takes place between

configurations and the radial functions are more complex, involving f−orbitals and

orbitals of opposite parity.

5. Concluding Remarks

In terms of the angular parts which reflect the symmetry properties of f−orbitals

there is a remarkable, and understandable, similarity between crystal field theory and

the theory of f ←→ f transitions. In the non-relativistic theory both involve, to

second-order, the matrix elements of the unit tensor operators U(k) with k = 0, 2, 4, 6

while in the extension to the relativistic theory both involve the replacement of the

U(k) operators by the double tensor operators W(κκ′)k. The fundamental difference

comes in the radial integrals involved. It is only in relatively recent times that

it has become possible to give serious consideration to detailed calculation of such

integrals. Future work will undoubtedly be more directed to such calculations and

to estimates of the significance of relativistic effects both for crystal field interactions

and transition intensities. One expects these effects to become increasingly important

as the calculations, and hopefully experiments, are made on the heavy actinides. It

may well be that in the future studies will be directed towards calculations in the



jj−coupling basis which is the natural basis to use when relativistice effects become

significant.
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