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Abstract. Hierarchy of approximations involved in simplification of microscopic
theories, from sub-cellural to the whole brain level, is presented. A new approxima-
tion to neural dynamics is described, leading to a Platonic-like model of mind based
on psychological spaces. Objects and events in these spaces correspond to quasi-
stable states of brain dynamics and may be interpreted from psychological point
of view. Platonic model bridges the gap between neurosciences and psychologi-
cal sciences. Static and dynamic versions of this model are outlined and Feature
Space Mapping, a neurofuzzy realization of the static version of Platonic model,
described. Categorization experiments with human subjects are analyzed from the
neurodynamical and Platonic model points of view.

1.1 Introduction

There is no doubt that higher cognitive functions result from the activity of the brain
and thus should be implementable by neural networks. The present shortcomings
of neural networks are connected with the lack of modularity and low complexity
of the models rather then with the inherent limitations of the neural modeling it-
self. Computational cognitive neuroscience [1], recent descendant of neurodynam-
ics, tries to unravel the details of neural processes responsible for brain functions.
On the other end of the spectrum artificial intelligence aims at building intelligent
systems starting from the processing of symbols [2]. Between neurochemicals and
symbols a whole spectrum of theories at different levels of complexity exist. Reduc-
tion of simplified higher level theories to more detailed lower level theories may not
be feasible but it is worthwhile to consider approximations that may at least justify
the use of some higher level concepts.

Several books on application of the theory of dynamical systems to human de-
velopment process appeared recently [3]. Although useful as a metaphoric language
dynamical systems theory and connectionist modelling have not yet produced quan-
titative explanations of the brain functions. Computational Cognitive Neuroscience
[1] allows for comparison of computer simulations with experimental investigations,
at least for low-level cognition. Development of topographical feature maps, for ex-
ample in the visual system (cf. Erwinet al. [4]), is a good example of theoretical
and experimental interplay at the microscopic level. One obvious drawback of the
whole information processing paradigm from the cognitive science perspective is its
lack of overlap with psychology. Mind is rarely mentioned in computational cogni-
tive neuroscience [1] because current approximations to neural dynamics lead only



to a description of behavior. Cognitive science seems to be a collection of loosely
related subjects without central theory [5]. A new language to speak about mind
events, linking neurodynamics with cognitive psychology, is needed. The main goal
of this paper is to show that a theory connecting neuroscience and psychology fits
into the hierarchical scheme of approximations between simplified theories of neu-
rodynamics and theories of behavior based on symbolic and finite-state approaches.
I will call it “Platonic model” because it treats the mind and its ideas (objects) seri-
ously. In the next section models and approximations to neural functions at various
levels, from sub-cellural to the large brain structures, are discussed. Relations be-
tween different levels of modeling are of particular interest. In the third section
basic ideas of the Platonic model of mind are introduced and in the next section
Feature Space Mapping neurofuzzy network, a realization of the static version of
the Platonic model, is presented. In the fifth section Platonic model is applied to two
problems in category learning, as studied by psychology. A brief discussion on the
future of the Platonic model closes this paper.

1.2 Hierarchical approximations to neurodynamics

Nervous system has distinct organization that may be investigated at many temporal
and spatial scales or levels [1], starting from single molecules (spatial scale10−10

m), through synapses, neurons, small networks, topographical maps, brain systems,
up to the whole brain and central nervous system level. Each level of description has
its specific theories, methods and goals. The very notion of “levels” is approximate
since different levels cannot usually be decoupled. Main levels of approximations
are presented [6] in Table 1.

1. Quantum level. Processes at the genetic and molecular level have direct in-
fluence on the states of the brain and contents of mind. Ira Black may be right [7]:
information processing is ultimately done on the molecular level, states of the brain
are concentrations of different neurochemicals. Understanding the qualia problem
[8], including consciousness, may depend directly on the molecular level. Regarding
consciousness as physical states of the brain endowed with structures of sufficient
complexity, with specific control and feedback architecture, avoids the philosophi-
cal problems of the information processing paradigm.

2. Molecular and synaptic level. Computer simulations of synaptic processes
gives results comparable in many details with the results of neurophysiological mea-
surements [9]. Mechanisms of fast changes, leading to action potentials, are better
understood than those responsible for slow, permanent changes, although the role of
Long Term Potentiation (LTP) and Long Term Depression (LTD) in memory pro-
cesses is slowly uncovered [1]. Permanent synaptic changes cannot be decoupled
from the molecular and genetic level, while understanding of action potentials is
possible at the bioelectrical level.



Cognitive phenomena Levels and Models Theories/Methods

Reasoning,
problem solving, think-
ing, creativity

Brain, ra-
tional mind; knowledge-
based systems, symbolic
processing

Artificial Intelligence,
Psychology of Thinking

Behavior, com-
plex learning, immediate
reactions (t ≈ 1 s)

Large brain structures;
probabilistic and finite
state automata

Cognitive and Behav-
ioristic Psychology, Ma-
chine Learning

Intuition, categorization,
recognition

Computational
maps, transcortical neu-
ral assemblies; Platonic
models, feature spaces

Psychology, Neurobiol-
ogy, Machine learning

Memory effects Small networks; recur-
rent neural networks and
dynamical systems

Computational Neu-
roscience, EEG, MEG,
fMRI

Basic learning, internal
representations

Neural assemblies; spik-
ing neurons

Neurophysiology, single
and multielectrode
recordings

Conditioning, basic
forms of learning

Single neurons, electric
compartmental models,
LTP, LTD

Biophysics,
Neurophysiology

Moods, habits,
addictions

Molecular and synap-
tic level, biophysics of
ion channels, membrane
properties

Neurochemistry, Genet-
ics, Biophysics,
Psychopharmacology

Quantum level, small
molecules

Neurochemistry,
Biophysics

Table

1. Levels of modeling, from neurochemistry to psychology of thinking.

3. Single neuron level. Simulations reproduce experimental results with suf-
ficient accuracy to give us confidence that the bioelectrical description of single
neuron based on the Hodgkin-Huxley equations is essentially correct [9]. Ander-
son and van Essen [10] write that “the firing rates of cortical neurons encode an
irregular, but complete, sampling of Probability Density Functions (PDF’s) of mul-
tidimensional space”. In particular they analyze multimodal topographical maps
of the superior colliculus in terms of PDFs, maps integrating sensory and motoric
components (saccadic eye movements) and discuss computation of PDFs by visual
cortex. Bayesian analysis [11] of neuron responses allows to compute the poste-
rior probabilityP (s|r) = P (stimulus|response) for responses of many neurons
r = (r1, r2, ...rN ). Assuming that the estimation ofP (ri|s) is known from multi-
electrode measurements:

P (s|r) = P (s|r1, r2, ...rN ) =
P (s)

∏N
i=1 P (ri|s)∑

s′ P (s′)
∏N

i=1 P (ri|s′)
(1.1)



where a uniform prior is usually assumed forP (s). This method showed much
faster convergence to correct stimuli than the population vector method [11]. Metric
properties of trains of spikes are directly related to stimuli [12]. Both the absolute
time and the intervals between the spikes carry information allowing for discrimi-
nation of different clusters of stimuli.

4. Neural assemblies. Comparison of general trends observed in live slices of
neural tissue or in some brain structures with computer simulations based on the
simplified spiking neuron models are quite successful [13]. The noisy “integrate-
and-fire” neurons are the only well-justified approximate models of real neurons.
It is commonly believed that the activity of a neuron, proportional to the number
of spikes per second, grows in sigmoidal fashion until saturation, corresponding to
the maximum firing rate, is reached. In fact neurons are able to recognize specific
combination of inputs. Using a small number of dendritic inputs and changing the
phases and frequencies of the incoming spike trains quite complex output patterns
may be observed (Duch and Ludwiczewski, in prep.). This leads to non-monotonic
transfer functions. Associative memories based on neurons with such functions have
larger capacities and are able to escape from local minima [14]. In the most com-
mon models of simplified neurons for a fixed norm of weights and input signals the
activity I = W ·X = Imax − d(W,X)2 is a function of distanced(·) between
inputs and weights. Large activation is obtained when positive weights (excitatory
synapses) are matched with positive dendritic inputs (frequencies of spikes above
the average), while negative weights (inhibitory synapses) are matched with nega-
tive inputs (frequencies below average). Therefore neural models based on localized
transfer functions, where weights play the role of prototypes, are approximations to
spiking models.

5. Small networks. Every representational scheme has to face a problem of
combinatorial explosion: concepts are combined in an infinite number of ways cre-
ating new concepts [15]. To solve this problem Neural Cell Assemblies (NCA),
groups of neurons that strongly activate each other, were proposed already in 1949
by Donald Hebb [16]. The cerebral cortex has a very modular structure [17] and
cortical minicolumns [17] are natural candidates for NCAs. These vertically ori-
ented cords of neurons contain in almost all neocortical areas about 110 cells. The
diameter of such a column is about 30 microns and the number of minicolumns in
the neocortex is about 500 millions. Hundreds of such minicolumns are gathered
into cortical columns (maxicolumns). Connections between different columns are
reciprocal. In addition the thin neocortex has a hierarchical, layered structure, with
six principal layers. Minicolumns behave as oscillators and recurrent excitations
of such oscillators leads to an entrainment and synchronization of neuronal pulses,
called also “synfire chains” [18].

In computer simulations and experiments with real neurons Traubet al. [13]
showed how groups of minicolumns synchronize and communicate over larger dis-
tances. 40 Hz gamma oscillations sustained by inhibitory neurons provide a local
clock and spikes produced by excitatory piramidal cells appear about 5 ms after the
main beats, forming a kind of “doublets” and binding the activity of widely sepa-



rated groups of neurons. Several authors [19] stress the activity of whole populations
of neurons. Modeling brain structures should take into account lamination of corti-
cal layers, columnar structure, geometry of connections, modulation of densities of
different type of cells, formation of topographic maps.

6. Transcortical neural networks. Recordings of the single-neuron activity in
the infero-temporal cortex of monkeys performing delayed match-to-sample tasks
show that the activity of a neural cell assembly has attractor dynamics [20]. Several
stable patterns of local reverberations may form, each coding a specific percep-
tual or cognitive representation. Via axon collaterals of pyramidal cells extending
at distances of several millimeters, each NCAs excites other NCAs coding related
representations. Mental events are correlated with attractor dynamics of local and
transcortical neural cell assemblies (TNCAs). The low level cognitive processes, re-
alized mostly by various topographical maps, define features of internal representa-
tions: analog sensory signals, linguistic tokens, iconic images. In visual system local
form, color and texture are passed to the infero-temporal (IT) cortex which imple-
ments the memory of the visual objects. Sensory information from visual, auditory
and somatosensory areas converges in multiple areas in such subcortical structures
as superior colliculus. These areas probably integrate also motor responses, cre-
ating “multisensory multimotor map”. Neurons responding to multimodal features
act as higher order feature detectors. Mind objects are composed primarily of pre-
processed sensory data, iconic representations, perception-action multidimensional
objects and abstract symbols. Successful models of memory, such as the tracelink
model of Murre [21], make good use of modular neocortex structure, postulating
that each episodic memory is coded in a number of TNCAs (simultaneously acti-
vated memory traces). Their attractors compete to dominate the global dynamics of
the brain, reinstating similar neural state as during the actual episode.

7. Large brain structures. Topographical maps are found in the neocortex, in
the old cortex and in some subcortical nuclei [1]. Another type of computational
map, called population coding, seems to be an ubiquitous mechanism of the brain
information processing. Both information and its significance is present in the pop-
ulation coding mechanism. Arbitrary vector field corresponding to a complex in-
formation encoded by a population of neurons is a linear combination of elemen-
tary basis fields. Sensorimotor functions are described by non-euclidean coordinate
transformations in frames of reference intrinsic to biological systems [22]. Statis-
tical mechanics of neocortical interactions (SMNI) [23], a mesoscopic theory of
neural tissue, averages neural activity at multiple spatial and time-scales and is able
to explain the lifetimes and the magic number7 ± 2 of short-term memories [2] as
quasi-stable dynamical patters in the model brain with typical size and shape.

8. Symbols, reasoning and the rational mind. Cognitive processes are based
on memory, internal representations and categorization of the data provided by en-
vironment. Symbols corresponding to perceptual or abstract categories correspond
to quasi-stable attractor states of brain dynamics. The next step – rational mind –
requires understanding of the long-term dynamics of transitions between the attrac-
tor states. Although the architecture of human mind seen at the highest, cognitive



level has been considered mainly from the symbolic artificial intelligence perspec-
tive [2] symbols, logic and reasoning should result from an approximation to the
dynamical systems behavior. A drastic, although quite natural simplification of the
neurodynamics leads to a discrete finite automata (DFA), such as the hidden Markov
models. Elman [24] writes that cognition (and language in particular) are best un-
derstood as the behavior of a dynamical system. In his view mind objects are not
abstract symbols but rather regions of the state space, and rules and logics are em-
bedded in the dynamics of the system. Grammatical constructions are represented
by trajectories in the state space.

Understanding higher mental activity directly in terms of neural processes in the
brain does not seem likely. Computational neuroscience may be our best approach
to ultimate understanding of the brain and mind but chances that neural models are
going to explain all aspect of cognition are small. Although chemistry has been
reduced to physics long time ago the work of experimental chemists has hardly
been affected by the development of quantum chemistry. Language of neuroscience
and language of psychology is quite different. Understanding of the mind requires
intermediate theories, between neural and mental, physical and symbolic. Perhaps
specific theories at different levels of complexity and a few bridges between them is
all we can hope for.

1.3 Platonic mind

Approximations discussed in the previous section describe behavior without refer-
ring to the mind. A model describing the stream of mind events – recognition of
objects, categorizations, trains of thoughts, intuitive decisions and logical reason-
ings – is needed to place cognitive science on solid grounds. In this section a model
based on a more subtle approximation to neurodynamics than finite state models is
introduced. It is called “the Platonic model” since it treats the space in which mind
events take place seriously [25] and represents concepts as idealized objects in this
space. However, in contrast to what Plato believed in, the content of our minds is just
a shadow of neurodynamics taking place in the brain, rather than being a shadow of
some ideal world.

Large-scale neurodynamics responsible for behavior sometimes takes place in
low-dimensional spaces. For example, Kelso [3] has observed that although the
dynamics of movements of fingers is controlled by millions of neurons there are
simple phase transitions which are described in a low-dimensional (in fact one-
dimensional) spaces. His analysis is based on the enslaving principle of synergetics
developed by Haken [26], stating that in some circumstances all modes of a com-
plex dynamical system may be controlled (enslaved) by only a few control modes.
Attractors of such systems lie on a low-dimensional hyperplane in the state space
which has a huge number of dimensions. Recently Edelman and Intrator [27] pro-
posed in context of perceptual problems that learning should be viewed as extraction
of low-dimensional representations. In the Platonic model mind events, including
learning, take place in relatively low dimensional feature spaces. Objects in these



feature spaces correspond directly to the attractors of TNCA dynamics. In the olfac-
tory system the dynamics is chaotic [1] and reaches an attractor only when a specific
external input providing a proper combination of features is given as a cue. TNCAs
recognize input vectors (cues) that fall into local basin of attractor and adopt pat-
terns of activations that are interpreted by other TNCAs as multidimensional fuzzy
internal representations (objects) containing output decisions. This process will be
presented in feature spaces (Fig. 1.1).

2

1

Fig. 1.1. Relation between attractors representing correlation of the spiking activity of a group
of neurons (here just two) in the space ofNi, i = 1..n and objects in the feature space
Mi, i = 1..m, wheren � m.

General description. A coordinate system based on features of mental repre-
sentations obtained from lower-level modules, such as topographical maps or pop-
ulation coding computational maps, defines a multidimensional space [25], called
here “the mind space”, serving as an arena in which mind events take place. In this
space a “mind function” is defined, describing fuzzy “mind objects” as regions of
space where the mind functionM(X) has non-zero values. The size and shape of
these mind objects (contours ofM(X)=const) should correspond to basins of at-
tractors of the underlying neurodynamical processes. HighM(X) value means that
if a specific combination of featuresX is given as an input to the neurodynami-
cal system, the time to reach an attractor will be short. The internal variables of
neurodynamics may influence the topography of mind space but are not explicitly
represented. The name “mind space” is replaced by more modest “feature space” for
Platonic models using inputs of single modality, such as computational maps. Pla-
tonic models are constructed either as an approximation to neurodynamics (cf. next



section) or using information about similarities, associations and response times
from psychological experiments.

The model hasthree time scales. Very slow evolutionary processes determine
the type of available information, creating basic framework for mind spaces and
their topography. Learning, or changes in the topography of mind spaces, creation
of new objects, forgetting or decay of some objects, changing their mutual relations,
requires long time scale. Dynamics of activation of mental representations, trains of
thoughts or perceptions is faster. At a given moment of time combination of input
features activates one object. “Mind state”, given by a fuzzy point (underlying neu-
rodynamics is noisy), evolves in the mind space and “activates” different objects – a
searchlight beam lighting successive objects is a good metaphor here [28]). Human
conceptual space is better approximated by a number of linked low-dimensional
spaces rather than one large mind space. Local feature spaces model complex fea-
ture extraction at the level of topographical maps, providing even more complex
components building higher-level “hypothesis” feature spaces that integrate multi-
modal representations, and at the highest level creating the space in which mind
events take place (Fig 1.2). Values provided by the emotional system changeM(X)
gradients in the mind space, influencing evolution of the mind state. The idea of a
“mind space” or “conceptual space” is metaphorical, but the same is true for such
concepts of physics as space-time or a wavefunction. Somedefinitions and prop-
erties of the Platonic model are summarized below.

Global dynamics

Frontal lobes

Mind space
New objects temporarily constructed

Long-term memory

Modulation due to 
limbic system connections

Primary sensory
and motoric maps

Vision Auditory Motor Other maps

Fig. 1.2. Local feature spaces provide complex features for intermediate level, with compet-
ing local “hypothesis spaces” based on long-term memory, providing data for the highest-
level “mind space”.



– Mind objects, represent long-term memory traces, are defined as points, sets
of points or local maxima ofM(X) proportional to the confidence of assigning
the combination of features at the pointX to certain object. In particularM(X)
may be a sum of all joint probability density functions for all objects contained in
the mind space, withX corresponding to all relevant features, including symbolic
names treated as one of the dimensions. Several prototypes may create a complex
shape corresponding to category that cannot be defined by simple enumeration of
features (Fig. 1.3). Some objects may continuously change into other objects (ex:
color or emotions) in which case density will have maxima only in the subspace
corresponding to labels (names) of the objects and change continuously in other
dimensions.

– Knowledge is contained in the topography of mind spaces, while reasoning and
logic are approximations to mind state dynamics. Learning is equivalent to creation
of new objects and changing topographical relations among existing mind objects.
Topography may also be partially fixed bya priori design (evolutionary processes)
or deep-rooted knowledge. Recognition or categorization of unknown combination
of featuresX is based on similarity and is done by finding local maxima of the
mind function. Learning and recognition form static version of the Platonic model
that should be sufficient to explain immediate (“intuitive”) reactions in short-time
frame experiments. “Intuition” is based on the topography of the mind space.

P2

P3

P1

Fig. 1.3. Mind objects (contours ofM(X) =const are shown here) corresponding to cate-
gories are more than enumeration of features or sets of exemplars.

– Evolution of the mind state, including the dynamics of activation of mind
objects, forms the dynamic part of the Platonic model, described here only very
briefly [6]. In analogy to physics concepts like inertia (the tendency to stay inside
areas of highM(X), momentum of the mind state (proportional to the derivative
Ẋ(t) = ∂X(t)/∂t of the state vector), potential functionV (X) = −M(X) and en-
ergy to overcome barriers (proportional to the difference:maxM(X)−minM(X))
may be defined. Transition probabilitiesp(A → B) from mind objectA to mind
objectB are given by the conditional expectancies. An object represented by the
densityO(X (i)) is “activated” when the mind stateX(t) ∈ O(X (i)) points at or
belongs to it. In the hierarchical model each feature space (Fig. 1.2) has separate



evolution providing information based on local mind states to spaces higher in hier-
archy.

– Short-term memory (STM) mechanisms are identified with the highest “mind
space” level in the hierarchical Platonic model. Here new objects appear and decay
after a short time. Primary objects are composed of preprocessed sensory data and
are stored permanently after several repetitions in one or more feature spaces. Sec-
ondary objects (for example mathematical concepts) are defined as combinations of
more abstract features. Mind space plays similar role to frames in AI – once a par-
tial frame is build feature spaces provide more details and the competition among
them is won by those that fit in the STM space (cf. Baars theory [29]). Since STM
capacity is limited creation of complex object relies on the “chunking” mechanism,
which is the basic mechanism of creating higher levels of abstraction [2]. Symbols
or linguistic labels are particularly effective (facilitating faster recognition) in identi-
fying complex objects, therefore chunking mechanism relies primarily on symbols.
Inductive learning and problem solving requires structured mind objects at the STM
level, using something like the Evolving Transformation Systems [30], which has
quite natural geometrical interpretation, including parametrized distance functions.

It is interesting to note that common English language expressions: to put in
mind, to have in mind, to keep in mind, to make up one’s mind, be of one mind
... (space) are quite natural in this model. Platonic model allows to discuss mental
events using concepts that are justified by neuroscience. As a simple illustration
consider the masking phenomenon [8] in which a disk is briefly shown on the screen.
The actual mind state is pushed by the external inputs in the direction of the object
representing perception of such disk (Fig 1.4), but because of the inertia it takes
about 500 ms to activate this object and send the information to the higher level
mind space. The effect of priming may shorten this time by placing the state of mind
closer to objects that will be activated in near future. The duration of the perceptual
input has to be sufficiently long to force the change of momentum of the mind state
to reach and activate the object invoking the perception of a disk. If it is too short, or
if after brief 30 ms exposure another object is shown the mind state will be pushed
in direction of the new object, without activation of the first one. This is analogous
to the scattering phenomena in physics and leads to masking of the first stimuli
by the second. The same analysis may be done at the level of neurodynamics but
connections with mental events are not so obvious as in the case of Platonic model.

Mathematical realization. FunctionM(X(t)) describing topography of the
feature spaces has natural realization in form of a modular neural network, such
as the mixture density network modeling joint probability distributions of the in-
puts (cf. next section). Transition probabilities in psychological experiments with
similarity judgments are not symmetric or transitive. This has been a problem for
Shepard [31], who proposed that the likelihood of invoking the same response by
two stimuli should be proportional to the proximity of these stimuli in a psycho-
logical representation space. Symmetry is broken if local coordinate systems for
mind objects are used. The distance fromA to B should be measured using local
metric atA, since activation ofA represented by local NCA spreads to the NCA
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Fig. 1.4. Illustration of the masking phenomenon.

representing objectB, and the time it takes to activateB should be proportional
to the distance in the feature space. Metric functions are defined only at maxima
of M(X). Second approach is based on Finsler geometry [32]. If time is used as a
measure of distance (as is frequently the case on the mountain paths) than the dis-
tance between pointsA, B connected via a curveX(t) parametrized byt should
depend not only on the intermediate positionsX(t + dt) but also on the deriva-
tive s(A,B) =

∫ B

A
L(X(t), Ẋ(t))dt, whereL() is the metric function (Lagrangian

in physics). The distance betweenA andB may than be taken as a minimum of
s(A,B) over all curves connecting the two points, which leads to a variational
problem (this integral is called “action” and all fundamental laws of physics may
be presented in such variational form). Finsler metric function is defined by the
mind function:

s(A,B) =
∫ B

A

exp
[
α(∇M(X(t))2 − βM(X(t))

]
dt (1.2)

whereα andβ are constants and the gradient is calculated along theX(t) curve.
For flat densities (constantM(X)) s(A,B) is proportional to Euclidean distance,
for linearly increasingM(X(t)) it grows exponentially witht and for linearly de-
creasingM(X(t)) it grows slowly like1 − e−Ct. Finsler metric may be obtained
from psychophysical distance measures between different stimuli, which are de-
rived from similarity matrices applying multidimensional scaling (MDS) in low-
dimensional spaces. A metric for feature space may also be derived directly from the
comparison of trains of impulses [12], population vector analysis [1], or Bayesian
analysis (Eq. 1.1) of stimuli. In the last case the matrixP (s|r) may be subjected to
MDS analysis in the same way as the matrix of psychophysical responses.

Neural dynamics should be replaced by simpler dynamics in feature spaces.
Symbolic approach to dynamics [33] and the cell mapping method of Hsu [34]
provide simplified trajectories preserving sufficient information about basins of at-
tractors and transition probabilities. For some stimuli (input states)X ∈ O(A) be-
longing to the basin of attractorA averaged responsesY of the system (for example,
calculated using Bayesian analysis Eq. 1.1) are collected. TransientsT (number of
iteration steps to reach an attractor, or response time in psychological experiments)



from a given initial value ofX should be measured and averaged over different
internal states. Local maximum ofM(X,Y ) covers all pointsX corresponding to
T ≈ 0 and leading to the responseY . The distance (in Finsler metric sense) between
the point(X,Y ) and the area representing the attractor should be equal to the value
of the transient. For simple dynamical systems we have defined theM(X,Y ) values
in such a way that the number of steps in a simple gradient dynamics searching for
maximum ofM(X,Y ) by moving a fixed step size in the direction of gradient is
equal to the number of iteration steps needed to reach an attractor.

Related work and possible extensions. Anderson and van Essen [10] regard
the firing rates as sampling of probability density functions, and objects in feature
spaces are essentially such densities. In the perception-related similarity experi-
ments discussed by Shepard [31] psychological representation spaces are always
low-dimensional. In rotation-invariant object recognition experiments Edelman, In-
trator and Poggio [35] obtained quite good results using nearest-neighbor similarity
based computations, while a small number of principal component basis functions
was sufficient for high accuracy of shape recognition. In vision problems although
the measurement space (number of receptive fields) is huge internal representation
of shapes seems to be low dimensional [27]. Processing of spatial information by the
sensory and motoric systems is basically three-dimensional, although the number of
internal dimensions is very large – many muscles work synchronously in simplest
tasks. In philosophy the idea of conceptual spaces is pursued by Peter G¨ardenfors
and his collaborators (see http://lucs.fil.lu.se/Projects/Conceptual.Spaces/).Van Loocke
presented a connectionist approach to the dynamics of concepts [36]. It would be
interesting to repeat some of his results using the Platonic mind model.

In linguistics the idea of mental spaces, called also conceptual spaces or fea-
ture spaces, is well established. The problem of deep semantics across heteroge-
neous sources has become especially acute in the Digital Library Initiative (see
http://www.grainger.uiuc.edu/dli/), a large-scale project aimed at building digital
repositories of scientific and engineering literature. Searching for information in re-
lated fields the meaning of keywords is captured using concept spaces, based on co-
ocurrence analysis of many terms. In 1995 two symposia on semantic spaces were
organized (in Montreal and Pittsburg, see http://locutus.ucr.edu/hds.html). Seman-
tic spaces are used for modeling of lexical ambiguity, typicality effects, synonym
judgments, lexical/semantic access, priming effects and other linguistic phenomena.
Conceptual spaces are used to solve the co-reference problems in linguistics [37]. In
an experiment by Rippset al. [38] subjects rated similarities between pairs of words
that were names of 13 birds and 12 mammals. We (Duch and Naud, unpublished)
have used 30 verbal descriptions (features) of the same animals creating mind ob-
jects in the feature space and comparing the multidimensional scaling (MDS) maps
obtained from experimental similarity data and from MDS projections of mind ob-
jects. The two maps are almost identical and show higher order category formation
(domestic birds, etc.).

Platonic model may also include a subspace for emotions. In a paper by Yanaru
et al. [39] an “engineering approach” to emotions has been presented. 8 primary



emotions (joy, anger, expectation, hate, sadness, fear, surprise, acceptance) are used
to define 68 linear combinations corresponding to “mixed emotions”. The goal of
this approach is to be able to predict the change of emotional state when prompted
by external inputs (words, sentences, advertisements). Despite some shortcomings
representation of emotional space and analysis of emotion dynamics by following
the trajectories in such space may at least partially be feasible. Moreover, it seems
possible to connect results of psychological experiments with EEG measurements
allowing to differentiate between emotional states of subjects.

All applications mentioned above are only special cases of the static version of
the Platonic model.

1.4 Feature Space Mapping network.

Feature Space Mapping (FSM) network [40,41] is an implementation of the static
version of the Platonic model. FSM may be viewed as a neural network based on
estimation of joint probability densities, as a fuzzy expert system based on rep-
resentation of knowledge by fuzzy sets or as a generalization of memory-based
approaches in which exemplar and prototype theories of categorization [42] find
natural extension. Rough description of the topography of the mind space is created
using clustering techniques based on dendrograms or simplified decision trees [43].
This method of initialization is much more effective [43] than adding one neuron
at a time in the constructive RBF methods [44] and sometimes FSM networkbe-
fore learning gives results of similar quality to the final results obtained by other
approaches.

Preliminaries: given a set of training examplesD = {X k, Y k} createM(X,Y ;P )
in a network form (P are parameters), giving outputs approximating the landscape
of the joint probability densityp(X,Y |D). FunctionM(X,Y ;P ) should be neither
equal to, or proportional to, this density; all that is required is that the maxima of
conditional probabilitiesYp(X) = max Y p(Y |X,D) agree with the corresponding
maxima ofM(X,Y ;P ) obtained by calculation ofYM (X) = max Y M(X,Y ;P ).
This task is simpler than the full estimation of the joint or conditional probabilities.

Transfer functions: FSM uses separable transfer functions for description of
the feature space objects. Separable transfer functionss(X;P ) =

∏N
i=1 si(Xi;Pi)

are chosen because: 1) calculation of projections of N-dimensional objects on arbi-
trary subspaces is easy, facilitating learning and recognition in lower-dimensional
subspaces; 2) fuzzy logic interpretation is straightforward, withs i(Xi;Pi) being lo-
cal, or context-dependent, membership functions; 3) separable functions are more
flexible than radial basis functions; we have compared the convergence of various
neural networks on classification and approximation problems and found products
of sigmoids (biradial functions) to be superior [45] to Gaussian and other functions.
Increasing the slopes these functions change into a window-type rectangular func-
tionsL(Xi; ti, t′i) = σ(Xi + ti)(1 − σ(Xi + t′i)) → Θ(Xi + ti)(1 −Θ(Xi + t′i)),
whereΘ is a step function, Smooth change from the convex to cuboidal density



contours corresponds to change from fuzzy to crisp logic interpretation of network
nodes.

Rotation of densities. An important drawback of RBF and other density net-
works is their inability to provide simple description of skewed distributions in high-
dimensional spaces using rotated densities. In practice for high-dimensional inputs
covariance matrices in Mahalanobis distance calculations are always diagonal. Ro-
tations are used in FSM in two ways. In the initialization phase [43] rotation matrix
is replaced with a series of2 × 2 transformations which are fixed during learning.
If this is not sufficient vectorK of adaptive parameters is used during learning. In
N-dimensional space a “slice” of density perpendicular toK is cut:

S(X; t, t′,K) = L(K · X, tN , t
′
N )

N−1∏
i=1

L(Xi, ti, t
′
i) (1.3)

Learning: a robust constructive algorithm is used to build the FSM network.
Feature selection is performed by adding penalty term encouraging dispersions to
grow:

E(P ) = E0(P ) + λ
N∑
i

1/(1 + σi) (1.4)

whereE0(P ) is the standard quadratic error function andP represents all adap-
tive parameters, such as positionsti and dispersionsσi = |ti− t′i| of localized units.
The sum runs over all inputs for the most active node. Ifσ i includes the whole range
of input data the connection toXi is deleted. An alternative approach to feature
selection is to expand dispersions after several training epochs as much as possi-
ble without increasing the classification error. Details of the learning algorithm are
described in [6,40]. New nodes are added using similar criteria to RAN networks
[44], and removed by checking the qualityQ k (estimated by dividing the number
of correctly classified vectors through the number of all vectors handled by this
node). Low quality units are removed from the network, allowing it to grow more
“healthy” nodes. FSM network may contain a number of recognition, or identifica-
tion, modules and some modules implementing logical operations [40]. This design
corresponds to a number of separate mind spaces, each with its own coordinate sys-
tem based on the unique input features. There is no division between supervised
or unsupervised learning since any partial input is used to improve the mind space
topography in the subspace in which it is defined. Completion of partially known
inputs or inverse problems are treated in the same way as simple classifications, i.e.
by finding the local maxima ofM(X,Y ) function first in the subspace of known
inputs and then in the remaining dimensions.

FSM as fuzzy expert system. Representation of data by fuzzy regions of high
density in the mind space make the FSM model equivalent to a fuzzy expert system.
The rules of such systems are of the following type:
IF (x1 ∈ X1 ∧ x2 ∈ X2 ∧ ...xN ∈ XN ) THEN(y1 ∈ Y1 ∧ y2 ∈ Y2 ∧ ...yM ∈ YN )
These and more general rules may be directly programmed in the FSM network. A
number of logical problems have been solved using FSM density estimation as a



heuristic in the search process. Representing discrete changes of variables for any
additiveA = B+C, multiplicativeA = B·C or inverse additiveA−1 = B−1+C−1

law as∆A = + for increase,∆A = − for decrease and∆A = 0 for no change 13
out of 27 facts in 3-dimensional feature space(∆A,∆B,∆C) are true (∆A = 0 if
both∆B = ∆C = 0, etc.). If many such laws are applicable forN variables out
of 3N possible solutions only a few are in agreement with all laws. For example, if
A1 = A2⊕A3;A2 = A3⊕A4 ... AN−2 = AN−1⊕AN only4N+1 solutions exist.
FSM can create the mind space corresponding to product of densities generated
by all A = B ⊕ C laws and use it effectively in the input completion task. An
application to the analysis of a simple electric circuit using network that knows
Ohm and Kirchoff laws [40] shows how such symbolic knowledge helps to find a
solution to a problem that for most neural networks is too difficult.

Two-dimensional maps of the mind space objects centered around the identified
object help to visualize the multidimensional relations among mind objects. These
maps are obtained by minimization of the measure of topographical distortion:

0 ≤ Dn(r) =
N∑

i>j

(Rij − rij)
2

/
 N∑

i>j

r2ij +
N∑

i>j

R2
ij


 ≤ 1 (1.5)

Herer are distances in the target space (minimization parameters) andR are
distances in the input space. This measure estimates the loss of information when
low-dimensional representations replace high-dimensional.

To summarize, FSM is an ontogenic density network realization of the static part
of the Platonic model. It creates mind objects using training data and laws constrain-
ing possible values of inputs. It enables symbolic interpretation of the objects repre-
sented by densities in feature spaces. Initialization is based on clusterization, asso-
ciations are based either on the distance between mind objects (between local max-
ima) or on the overlaps of the densities representing mind objects. Learning is done
by a combination of supervised and unsupervised techniques, adding and removing
nodes of the network. Generalization is controlled by the adaptive parameters such
as dispersions and by the degree of complexity of the FSM network. Implementation
of typical expert system production rules is straightforward. Memory-based reason-
ing and input completion tasks are easily solved by identifying the relevant nodes
and focusing on a single unknown variable each time. Formation of categories and
metaconcepts for groups of objects is possible by investigating their projections on
various subspaces. In input completion problems a projection of mind objects on a
subspace of known inputs is made. Separable functions allow to drop the unknown
factors and quickly find the relevant nodes selecting the most active ones. FSM may
also answer questions of the type: find all objects similar toX and evaluate their
similarity. This network has been applied to a number of classification problems,
logical rule extraction, task completion problems and logical reasoning problems
[41,46] with very good results.



1.5 Categorization in psychology: a challenge

Categorization, or creation of concepts, is one of the most important cognitive pro-
cesses. Current research on category learning and concept formation ignores con-
straints coming from neural plausibility but there is enough experimental data from
psychology, brain imaging and recordings of neural activity in monkeys [20] to
make the understanding of category learning from several perspectives a feasible
task for cognitive sciences. Several models of categorization of perceptual tasks
have been compared by Cohen and Massaro [47], including Fuzzy Logical Model
of Perception (FLMP), Gaussian Multidimensional Scaling Model (GMM), Theory
of Signal Detection (TSD), Feedforward Connectionist Model (FCM) and Interac-
tive Activation and Competition Model (IAC). All these models predict probabilities
of responses in a prototypical two and four-response situations in an almost equiv-
alent way. To show that these models contain some truth one should try to justify
them as approximations to neural dynamics. These categorization models [47] may
be derived as static approximations to the Platonic model described here.

A classic category learning task experiment has been performed by Shepardet
al. in 1961 and replicated by Nosofskyet al. [48]. Subject were tested on six types of
classification problems for which results were determined by logical rules of grow-
ing complexity. For example, Type II problems had the XOR structure (i.e. XOR
combination of two features determines which category to select). Although the ex-
act equations governing brain dynamics in category learning are unknown they may
be simplified to a prototype dynamics, with two inputs and one output. In the XOR
case:

V (x1, x2, x3) = 3x1x2x3 +
1
4

(
x2

1 + x2
2 + x2

3

)2
; ẋi = − ∂V

∂xi
(1.6)

Taking a general quartic polynomial form ofV (x1, x2, x3;λij , λijk , λijkl) one
may adapt such 117 parameter system to training data. Equations given above may
be treated as a canonical or prototype dynamics for all tasks in which decisions are
based on the XOR rule. Starting from examples of patterns serving as point attrac-
tors it is possible to construct dynamical system using a set of frequency locking
nonlinear oscillators [26] modeling cortical minicolumns. The system Eq. 1.6 has
attractors at(0, 0, 0), (−1,−1,−1), (1, 1,−1), (−1, 1, 1), (1,−1, 1); the first at-
tractor is of the saddle point type and defines a separatrix for the basins of the other
four.

In case of Shepard experiments [48] the feature space contains axes for shape,
color and size. In the feature space (Fig. 1.5) the four vertices of the cube repre-
sent the shortest transients of the trajectories. Eq. 1.6 were solved for large number
of points in a cube containing the attractors. For each initial point the number of
iterations in the Runge-Kutta procedure needed for convergence to the point attrac-
tor were recorded in aT (x1, x2, x3) matrix. These values were fitted to several
functionsM(x1, x2, x3), with best results obtained using hyperbolic tangent basis
functions (accuracy within a few percent). Original dynamics based on differential



(0,1,1)

(1,0,1)

(0,0,0)

(1,1,0)

Fig. 1.5. Direct representation of the attractors in the Type II problems. The density of lo-
calized function at a given point depends on the time to reach an attractor from such initial
conditions. Arrows show local gradients of this density.

equations was than replaced by gradient dynamics, with most trajectories looking
very similar to the original ones (Duch and Kisielewski, unpublished).

Inverse base rate effects. People learn relative frequencies (base rates) of cat-
egories and use this knowledge for classification - this is known as “the base rate
effect”. Frequently repeated stimuli create large densities of feature space objects
(deep basins of attractors) and the size of these objects depends on the inherent
noise and variability of the stimuli. In some cases predictions contrary to the base
rates are made [49]. Names of two diseases, C (for Common) and R (for Rare),
are presented to participants, the first linked to symptoms I and PC, and the second
I and PR. Here PC and PR are perfect predictors of the disease C and R. Asso-
ciations (I,PC)→ C are presented 3 times more often than (I,PR)→ R. After a
period of learning participants are asked to predict which disease corresponds to
a combination of symptoms. For a single symptom I or combination of symptoms
PC+I+PR most (about 80% and 60%, respectively) predict C, in agreement with the
base rates. However, about 60% of participants associate symptoms PR+PC with
the disease R, contrary to the base rate expectations. For many years this effect
has eluded explanation until Kruschke and Erickson [50] have introduced a model
integrating six psychological principles of human category learning: error-driven
association learning, rapid shift of attention, base rate learning, short term memory
effects, strategic guessing and exemplar-based representations. Except for strategic
guessing all other principles may be absorbed in construction of representations of
categories rather than in processes acting on these representations.

In such experiments the answers are determined by the sizes of basins of attrac-
tors represented by the shapes of objects in the feature space. The memory function
describing these objects may be fitted to obtain observed probabilities of answers,
as is usually done in psychological modeling [47]. Unfortunately they are defined
in 4-dimensional space and are therefore hard to visualize. The C basin is larger,
extends between I and PC+I vertices, forcing the R basin to be flatter and be closer
to the PR+PC vertex than the C basin is, leading to the inverse base rate effect. Neu-



rodynamical/Platonic model interpretation is compared with psychological point of
view in Table 2. Our simulations of the inverse base rate effect predict a weak de-
pendence of the probability of categorization on the order (PC, PR) or (PR, PC),
and on the timing of presentation, due to the “trapping” of the mind state by differ-
ent attractors. Psychophysical experiments confirm the idea that object recognition
is affected not only by their similarity but also by the order in which images are
presented [51].

Neurodynamical point of view Psychological point of view

Learning Learning
I+PC more frequent →
stronger synaptic connections, larger
and deeper basins of attractors.

Symptoms I, PC typical for C because
they appear more often.

To avoid attractor around I+PC leading
to C deeper, localized attractor around
PR is created.

Rare disease R - symptom I is mislead-
ing, attention shifted to PR associated
with R.

Probing Probing
Activation by I leads to C because
longer training on I+PC creates larger
common basin than I+PR.

I → C in agreement with base rates,
more frequent stimuli I+PC are re-
called more often.

Activation by I+PC+PR leads more
frequently to C because I+PC puts the
system in the middle of C basin.

I+PC+PR→ C because all symptoms
are present and C is more frequent
(base rates again).

Activation by PR and PC leads more
frequently to R because the basin of at-
tractor for R is deeper.

PC+PR → R because R is dis-
tinct symptom, although PC is more
common.

Table 2. Comparison of neurodynamical and psychological points of view in the
inverse base rate problem.

1.6 Summary

Understanding human mind and its relation to information processing by the brain
is the greatest challenge that science has ever faced. A fruitful approach to this prob-
lem is to identify a hierarchy of models describing the brain processes at different
levels of details and to look for approximations allowing to justify, at least in princi-
ple, simplified higher level theories as approximations to more detailed lower level
models. Neural dynamics of large groups of neurons is usually approximated by
finite state automata, leading to description of behavior but not mind. Internal repre-
sentations, or objects of mind, supported by quasi-stable (attractor) neurodynamics,
may be identified with objects defined in relatively low dimensional feature spaces
endowed with Finsler metrics. This leads to a Platonic model.

Why should the Platonic model make the theory of mind easier than psychologi-
cal theories that we have today? First, it may be (at least in principle, and sometimes
in practice) derived as an approximation to neurodynamics. Second, psychologists



already use the concept of “psychological (feature, conceptual) spaces” [42]. It is
easier to discuss mental phenomena using the language of feature spaces than to
talk about neural states. Third, psychology lacks the concept of space understood
as an arena of mind events. It was only after concepts of space and time were es-
tablished that physics started to develop. Fourth, data from neural responses as well
as behavioral experiments may be combined to determine topography of the mind
space. Categorization problems in psychology are one area of research where mod-
els of higher cognition may meet computational neuroscience on the middle ground
of the Platonic models. Fifth, Platonic model has already inspired models of neuro-
fuzzy systems [40,41] useful for technical applications and cognitive modeling. The
static version of the Platonic model has been implemented and applied in a number
of problems.

Platonic model of mind, geometric model treating these feature spaces as an
arena for mental events, has a great potential to bridge the gap between neuroscience
and psychology. It may integrate several trends in cognitive science, in particular lin-
guistics, vision research (object recognition) and psychology (categorization, emo-
tions), providing a useful language for analysis of mental phenomena. It may bene-
fit from modern geometry, theory of dynamical systems, probability and estimation
theory, neural networks, pattern recognition and inductive methods of artificial in-
telligence. Although Platonic model is in the initial stage of development in future it
may play an important role in our understanding of the brain information processing
capabilities.

Acknowledgements: Support by the Polish Committee for Scientific Research,
grant 8T11F 00308, is gratefully acknowledged. It is a pleasure to thank prof. Jerzy
Korczak for his hospitality at the Louis Pasteur Universit´e in Strasbourg, France,
where this paper was finished, and to Rafał Adamczak and Norbert Jankowski, who
were involved in development and applications of the FSM system.

References

1. Gazzaniga M. S, ed.The Cognitive Neurosciences (MIT, Bradford Book 1995); Church-
land P.S, Sejnowski T.J,The computational brain. (Bradford Book 1992)

2. Newell A,Unified theories of cognition. (Harvard Univ. Press, MA 1990)
3. Thelen E, Smith L.B,A Dynamic Systems Approach to the Development of Cognition and

Action (MIT Press 1994); Kelso J.A.S,Dynamic Patterns, Bradford Book, MIT Press 1995
4. Erwin E, Obermayer K, Schulten K,Models of Orientation and Ocular Dominance

Columns in the Visual Cortex: A Critical Comparison. Neural Comp.7 (1995) 425-468
5. Stillings N.A., Feinstein M.H, Garfield J.L, Rissland E.L, Rosenbaum D.A, Wiesler S.E,

Baker-Ward L.Cognitive Science (MIT Press 1987)
6. At http://www.phys.uni.torun.pl/kmk/publications.html address a longer version of this

paper is available with numerous references.
7. Black I,Information in the Brain. (Bradford Book 1994)
8. Dennett D.C, Consciousness explained (Little Brown, Boston 1991)
9. Bower J.M, Beeman D,The Book of GENESIS: Exploring Realistic Neural Models with

the GEneral NEural SImulation System. (Springer 1994)



10. Anderson C, van Essen D,Neurobiological computational systems, in: Computational
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