
Neural minimal distance methods
Włodzisław Duch

Department of Computer Methods, Nicholas Copernicus University,
Grudzia̧dzka 5, 87-100 Toru´n, Poland.

E-mail: duch@phys.uni.torun.pl

Abstract
Minimal distance methods are simple and in some circumstances highly accurate. In this paper relations between

neural and minimal distance methods are investigated. Neural realization facilitates new versions of minimal distance
methods. Parametrization of distance functions, distance-based weighting of neighbors, active selection of reference
vectors from the training set and relations to the case-based reasoning are discussed.

I. Introduction

CLASSIFICATION is one of the most important applications of neural systems. Approx-
imation or control problems may be presented as classification with infinite number of

classes. Accuracy of 24 neural-based, pattern recognitionand statistical classification systems
has been recently compared on 11 large datasets by Rhower and Morciniec [1]. There is no
consistent trend in the results of this large-scale study. Differences between error rates of many
methods are within a few percent, which is statistically not significant [2]. For each classifier
one may find a real-world dataset for which results will be excellent and another one for which
results will be quite bad. Frequently simple methods, such as minimal distance methods or n-
tuple methods, are among the best. Therefore it is important to investigate neural realizations
of such simple methods.

One of the simplest classification algorithms used in pattern recognition is based on thek-
nearest neighbor (k-NN) rule [3]. Each training data vector is labeled by the class it belongs
to and is treated as a reference vector. During classificationk nearest reference vectors to the
new vectorX are found and the class ofX is determined by a majority rule. One can assign
confidence measures to the classification decision, assuming that the probability of assigning
the vectorX to classCi is p(CijX) = Ni=k. To avoid tiesk should be odd. In the simplest
casek = 1 and the nearest neighbor determines the class of an unknown vector.

The asymptotic error rate of thek-NN classifier for large training sets is small and in the
limit of large k becomes equal to the optimal Bayesian values [3]. Because the method is
so simple it is frequently used as a standard reference for other classificators. One problem
is the computational complexity of the actual classification, demanding forn reference vec-
tors calculation of� n2 distances and findingk smallest distances. Although Laaksonen and
Oja [4] claim that “For realistic pattern space dimensions, it is hard to find any variation of
the rule that would be significantly lighter than the brute force method” various hierarchical
schemes of partitioning the data space or hierarchical clusterization is quite effective. The
search for the nearest neighbors is easily paralelizable and training time (selection of optimal
k) is relatively short. Minimal distance methods are especially suitable for complex applica-
tions, where large training datasets are available. They are also used in the case-based expert
systems as an alternative to the rule-based systems (cf. [5]).

Only one neural model proposed so far is explicitly based on the nearest neighbor rule: the
Hamming network [6], [7] computes the Hamming distances for the binary patterns and finds



the maximum overlap (minimum distance) with the prototypevectors, realizing the 1-NN rule.
As a step towards integration of the neural and pattern recognition methods relations between
minimal distance methods and neural-based classifiers are systematically investigated in this
paper. Networks capable of realization of the classicalk-NN rule and several new variants of
the minimal distance methods are proposed. Various parametrizations of the minimal distance
methods are discussed.

II. Neural networks and minimal distance methods
The problem is stated as follows: given a set of class-labeled trainingvectorsfXk;Ckg and

a vectorX of unknown class use information provided in the distanced(X;Xk) to estimate
probability of classificationp(CijX;M ), whereM is the model description, including the
number of reference vectors in the neighborhood ofX, the size of the neighborhood consid-
ered, function used to compute distances, procedure to select reference vectors from the train-
ing set and the weighting scheme estimating contributionof reference vectorsG(d(X;Xk)) to
the classification probability. Various selections of parameters and procedures in the context
of network computations lead to different versions of neural minimal distance methods.

What neural networks have to do with the minimal distance methods? Threshold neurons
compute distances in a natural way. If the input signalsfXi = �1g and the weightsfWi =
�1g are binary, neuron withN inputs and the threshold� realizes the following function:

�(
N∑
i

WiXi � �) =

{
0 if jjW�Xjj > �

1 if jjW�Xjj � �
(1)

wherejj � jj norm is defined by the Hamming distance. One can interpret the weights of
neurons in the first hidden layer as addresses of the reference vectors in the input space and
the activity of threshold neuron as activation by inputs falling into a hard sphere of radius�

centered atW. Changing binary into real values and threshold into sigmoidal neurons for
inputs normalized tojjXjj = jjWjj = 1 leads to a soft activation of neuron by input vector
close toW on a unit sphere. In general the output function of a neuron:

�(W �X) = �(
1

2
(jjWjj2+ jjXjj2� jjW�Xjj2) = �(Imax � d(W;X)) (2)

For normalized inputvectors sigmoidal functions(or any other monotonicallygrowing trans-
fer functions) simply evaluate the influence of reference vectorsW, depending on their dis-
tanced(W;X), on classification probabilityp(CijX; fW; �g). Interpretation of neural clas-
sifiers as special minimal distance classifiers is thus feasible and worth of investigation. Sev-
eral variants of the neural minimal distance methods are presented below.

k-NN networks.
In the simplest version of thek-NN method for fixed training dataset the number of neigh-

borsk is the only parameter that should be optimized. Fork = 1 there is no error on the
training set, but already fork = 3 the training vector near the class border may have two
nearest vectors from another class. Therefore the error on the training set, equal to zero for
k = 1, grows fork = 3 and should decrease for larger values ofk. To optimizek a validation



or a test dataset should be used, for example the leave-one-out test using the training set. De-
tails of this procedure are rarely given and it is not always clear whether thek-NN classifier
has actually not been optimized on the test data.

Neural realization of 1-NN rule is achieved by the Hamming network [6]. Except for the in-
put and the output layers, there are two hidden layers, the first computing Hamming distances
for binary patterns, the second (called Maxnet) working as the winner-takes-all recurrent layer,
selecting the node with the strongest activation. The convergence of the Maxnet layer, despite
the improvements in original algorithm [7], is unnecessarily slow. The Hamming network is
significantly simplified if more complex output nodes are allowed. For normalized vectors
the output unit should determine from which hidden node the maximum input is received and
transfer the class label of this node to the output. In software simulations finding the node with
maximum response is quite trivial. An alternative approach that may be implemented also in
hardware is to build a network with hidden nodes realizing thehard sphere transfer functions,
i.e. �(r�d(X;D)), where� is the Heaviside threshold function,r is the radius of the sphere
andd(X;D) is the distance between the vectorX and the reference (training) vectorD. The
output units for each class sum the incoming signals from all active hidden nodes belonging
to that class. The numberNi of such units in the radiusr from the new vectorX allows to
compute the probability of classificationp(CijX) = Ni=

∑
j Nj . From the geometrical point

of view in the input space a hard sphere is assigned to each reference vector, labeled by the
name of its class, and the output unit counts how many spheres of a given class reach the point
X.

Neural realization ofk-NN method findsr for which the sum of all network outputs
∑

j Nj =
k. Formally this can be done by introducing recurrent connections and stabilizing dynamics
when the “superoutput” node achieves fixed value. Since most neural simulators are realized
in software it is quite easy to implement this step by repeating classification a few times with
differentr values until the vectorX finds itself in the range of exactlyk neighbors.

NN-r algorithm.
Instead of enforcing exactlyk neighbors the� radius may be used as an adaptive param-

eter. The number of classification errors or the probability of classificationp(CijX; r) =
Ni=

∑
j Nj is optimized on the validation set. Again the hard sphere transfer functions are

used in the network realization of this algorithm.k-NN for oddk always classifies the data,
while NN-r may reject some vectorsX if no reference vectors fall into ther radius ofX or if
equal probability of classification for several classes is obtained.

Introductionof variable radiusesr in different parts of the input space improves the method
further. Development along this line leads to the Restricted Coulomb Energy (RCE) classifier
introduced by Reilly, Cooper and Elbaum [8]. Network realization of this classifier uses hard
sphere distance function. If no neighbors are found around training vectorX new spheres
(reference vectors) are added with largest radius such that the sphere does not overlap with
spheres of other classes. If the new training vector falls into the range of a sphere of wrong
class the radius of this sphere is shrinked to leave the vector outside of the sphere. Positions of
the spheres are not optimized in the RCE algorithm (this would lead in the direction of LVQ
algorithms), but voting methods for the committees of classifiers were used with success [9].

Soft weighting k-NN and NN-r algorithms.
Changing hard sphere transfer functions into softer function allows to include weights in-



fluencing classification decisions. Close reference vectors should influence probabilities of
classification more than farther laying neighbors. The simplest suitable transfer function is
the conical radial function: zero outside the radiusr and1� d(X;D)=r inside this radius.
Classification probability is calculated by the output node using the formula:

p(CijX; r) =

∑
n2Ci

G(X;Dn; r)∑
nG(X;Dn; r)

; G(X;D; r) = max

(
0; 1�

d(X;D)

r

)
(3)

HereG(d) = max(0; 1 � d); d � 0 is the weight estimating contribution of reference
vector at the distanced. Reference vectors outside of ther radius have no influence on the
classification probability while those that are inside this radius have influence that is directly
proportional to how close they are to the vector given for classification. In the soft NN-r al-
gorithm ther parameter is optimized. Radial Basis Function (RBF) networks using Gaussian
or inverse multiquadratic transfer functions are a particular example of soft weighting mini-
mal distance algorithm. Other possibilities include optimization of shape ofG(jjX�Dnjj; r)
transfer functions using additional parameters, for example by using a combination of two sig-
moidal functions:�(jjX�Dnjj � r)� �(jjX�Dnjj+ r).

The cost function is either a classification error (as for the hard-distance case) or – since
continuos output values are provided – minimization of risk for overall classification:

E(R;M ) =
∑
X

∑
i

R(Ci; C(X))
[
p(CijX;M )� �(Ci; C(X))

]2
(4)

whereC(X) is the true class of vectorX, the elements of the cost matrixR(Ci; Cj) are
proportional to the risk of assigning theC i class when the true class isCj, andM specifies
parameters of the classifier.

Parametrization of distance measures
Calculation of distance is most often based on Euclidean metric for continuos inputs and

Hamming metric for binary inputs. Additional parameters that may be optimized are either
global (for all data) or local (for each reference vector). Minkowski’s metric involves one
global parameter, exponent�. Scaling factors are useful global parameters – for Minkowski’s
distance:

d(A;B; g)2 =
N∑
i

gi(Ai � Bi)
� (5)

In particular if scaling factorsgi � 0 become small for some input featuresi these features
may be eliminated. To facilitate elimination of features that are not useful for classification
the cost function may include additional penalty term, such as the sum of allg2i .

In the simplest RBF version only one parameter – dispersion – is optimized. Independent
optimization of allN components of dispersion vector is equivalent to optimization of scales
gi. General linear transformation applied to input vectors is equivalent to introduction of a
metric tensorGij = Gji, providingN (N + 1)=2 adaptive parameters:

d(A;B;G)2 =
N∑
i;j

Gij(Ai � Bi)(Aj � Bj) (6)



Calculation of distances may also be parametrized in a different way around each reference
vector. Local coordinate systems with their origin placed at the reference vectors may provide
either local scaling factors or local metric tensors.

In memory-based reasoning the Modified Value Difference Metric (MVDM) has gained
popularity [5]. The distance between twoN -dimensional vectorsA;B with discrete (for ex-
ample symbolic) elements, in aK class problem, is computed using conditional probabilities:

d(A;B) =
N∑
j

K∑
i

(p(CijAj) � p(CijBj)) (7)

wherep(CijAj) is estimated by calculating the numberNi(Aj) of times featureAj oc-
curred in vectors belonging to classCi and dividing it by the number of times featureAj oc-
curred for any class. We can also define a “value difference” for each featurej asdv(Aj ; Bj) =∑K

i (p(CijAj)� p(CijBj)) and computed(A;B) as a sum of value differences over all fea-
tures. Metric is defined here via a data-dependent matrix with the number of rows equal to
the number of classes and the number of columns equal to the number of all attributes. Gen-
eralization for continuos values requires a set of probability density functionsp ij(x), with
i = 1::K; j = 1::N .

Active selection of reference vectors.
Suppose that a large number of training vectors is available, divided into the reference and

the remaining set of vectors. Clusterization techniques are used to select a relatively small
number of initial reference vectors close to the cluster centers. Classification accuracy is checked
on the remaining set (usingk-NN or NN-r rule) and each time an error is made the vector is
moved from the remaining to the reference set. In this way small number of reference vectors
is selected. Variants of this approach may use validation set to determine best candidates for
the reference set.

An alternative approach that does not require initial clusterization starts from the whole
training set and removes those vectors that have allk nearest vectors from the same class.
These vectors are far from cluster borders and all new vectors in their neighborhood will be
anyway unambiguously classified. This approach leads to a “hollow” cluster representation.
Here one may start with a largek0 to remove vectors near the centers of clusters first and reduce
it to k in a few steps.

Parametrization of reference vectors
Active selection of reference vectors may eliminate many training vectors from the refer-

ence set. Further optimization of their positions should decrease the training error. The refer-
ence vectorsDn in the neighborhood of training vectorX are moved by:

D
new
n = Dold

n + �(2�(C(X); C(Dold
n )) � 1)(X�Dold

n ) (8)

Here� is the learning rate that may decrease during training and the sign is+ if X and
D
old
n belong to the same class or� otherwise. Various rules for moving centersDn are used:



moving only the nearest neighbor, moving allk neighbors by the same amount, using distance-
dependent� etc. One can also optimize a subset of vectors, for example only those that are
close to the center of clusters.

III. Summary and discussion
Models belonging to the neural minimal distance family estimate probability of classifica-

tion p(CijX; k;G(d(�; r)); fDng), wherek is the number of neighbors taken into account,
G(d(�; r)) is the distance-dependent weighting function,d(�; r) is the distance function para-
metrized by the radiusr andfDng is the reference set of vectors. These model differ by:
1. Treatment of the number of the nearest neighbors: integerk optimized on the validationset
in classicalk-NN, with hard sphere distance functiond(�; r) and the set of reference vectors
fDng equal to the training set; softk if the sum of all activations of network nodes is restricted
tok and conical or other soft weighting functions are used; variablek if the hard sphere radius
r or other distance and weighting parameters are optimized without enforcing the fixed value
of k.
2. Estimation of the influence of neighborsG(d(�; r)): each neighbor counted with the same
weight, as in the originalk-NN, or counted using a distance-dependent function.
3. Parametrization of distances: hard sphere functions, conical functions, Gaussian and other
localized functions, probabilistic distance measures.
4. Treatment of the reference setfDng: trainingdata taken as the reference set withoutchanges;
active selection of reference vectors (after initial clusterization) from the training set; opti-
mization of reference vectors using learning vector quantization techniques.
5. Technical issues: speeding up calculations of distances using hierarchical clusterization,
pre-processing of data (details of normalization and standardization procedures).

Both MLP and RBF networks are particular examples of neural minimal distance methods.
In addition many possibilities to create fuzzyk-NN models exist. Performance of various
methods described here depends unfortunatelyon the nature of the data given for classification
and remains a subject of further empirical study (Duch and Grudzi´nski, in preparation).

Acknowledgments: Support by the Polish Committee for Scientific Research, grant 8T11F
00308, is gratefully acknowledged.

References
[1] R. Rohwer and M. Morciniec, A Theoretical and Experimental Accountof n-tuple Classifier Performance,Neu-

ral Computation 8 (1996) 657–670
[2] B.D.Ripley, Pattern Recognition and Neural Networks (Cambridge University Press 1996)
[3] P.R. Krishnaiah, L.N. Kanal, eds, Handbook of statistics 2: classification, pattern recognition and reduction of

dimensionality (North Holland, Amsterdam 1982)
[4] J. Laaksonen, E. Oja, Classification with Learningk-Nearest Neighbors. In:Proc. of ICNN’96, Washington,

D.C., June 1996, pp. 1480-1483.
[5] D.L. Waltz, Memory-based reasoning, in: M. A. Arbib, ed,The Handbook of Brain Theory and Neural Net-

works (MIT Press 1995), pp. 568–570
[6] R.P. Lippmann, An introduction to computingwith neural nets,IEEE Magazineon Acoustics, Signaland Speech

Processing 4 (1987) 4–22
[7] P. Floreen, The convergence of Hamming memory networks,Trans. Neural Networks 2 (1991) 449–457
[8] D.L. Reilly, L.N. Cooper, C. Elbaum, A neural model for category learning,Biological Cybernetics 45 (1982)

35–41
[9] P.D. Wasserman, Advanced methods in neural networks (van Nostrand Reinhold 1993)


