
APPLICATIONS OF LEVIN’S UNIVERSAL
OPTIMAL SEARCH ALGORITHM

Norbert Jankowski1

Department of Computer Methods
Nicholas Copernicus University

in Torun, Poland

Abstract

New applications of Levin’s Universal Optimal Search
are presented in this paper2. Using this method one
finds solutions to a few chosen problems. Such solu-
tions are characterized by possibility of the maximal
generalization. In the deterministic version of the Uni-
versal Optimal Search algorithm one can always gen-
erate the best solution.

It is shown that it is possible to find a solution by
this method for problems in neural networks for which
back-propagation type of methods face difficulties.

Another application considered here is a problem
of finding an exit-way from a maze.

There exists a probabilistic version of Levin’s uni-
versal search [4]. This work offers an alternative im-
plementation of the Levin’s Universal OptimalSearch.

Key words: Levin’s complexity,Kt complexity, Univer-
sal Optimal Search, Kolmogorovcomplexity, Neural Net-
works.

1 Introduction

The algorithm of Levin’s universal optimal search in-
troduced by Levin in 70’s [2], has been recently imple-
mented by J¨urgen H. Schmidhuber [4]. This implementa-
tion was based on random generation of programs. Here
the deterministic version of the universal search is pro-
posed.

1e-mail:norbert@phys.uni.torun.pl,
http://class1.phys.uni.torun.pl/people/norbert.html

2You can obtain this paper on anonymous ftp server
class1.phys.uni.torun.pl in directory
/pub/papers/kmk/LUS-zakopaneV95.ps.Z.

To define universal search algorithm and its determin-
istic version we need a few formal definitions.

Let us start from the definition of Kolmogorov com-
plexity [1].

DEFINITION 1 (KOLMOGOROV COMPLEXITY) Let the
universal monotonic machineU scan an initial input seg-
mentp before it printsx (without necessarily halting af-
ter it does so). Letl(p) be the length of programp. Then,
Kolmogorov complexity is defined by

KtU (x) = min
p
{l(p)}. (1)

The above definition does not take into account the
time (number of steps) involved. Therefore a general-
ized definition of complexity was proposed by Levin [2]
which consider not only length of a program but also log-
arithm of thetime of execution. For our research we used
its probabilistic version [3].

DEFINITION 2 (CONDITIONAL LEVIN COMPLEXITY)
Let us consider inversing problemφ andφ-witnessx. Let
the universal machine scan input segmentp before it print
w and lett(p, x) be equal to number of time steps needed
to printw. ThenKt′ (conditional Levin’s complexity) is
defined by

Kt′U (w|x, φ) = min
p
{l(p) + log t(p, x) : programp

printsw and testφ(w) = x in t(p, x)}. (2)

Universal search is a way to solve arbitrary inverting
problems in time which is optimal (see theorem 7.21 in
[3]).

With this background we can describeuniversal opti-
mal search algorithm: Levin’s universal search algorithm
will generate all strings-programsw in order of increasing

Kt′(w|x, φ) as long asφ(w) = x is true. More precisely
Levin’s universal search in phasei (i = 1, . . . , k wherek
is first such thatφ(w) = x) runs lexicographically all self-
delimiting programsp (of length less thank) for 2i2−l(p).

In next section we shall describe practical aspects of
implementation more precisely. Special kind of Turing
machine with one tape (which consists of work and pro-
gram parts) will be used.

In section 3 and 4 we present applications of LUS in
neural networks to find the simplest solution for given
problem. Likewise solutions to another kind of problems
are considered — finding an exit way from a maze. All
applications show generalization property.

2 Deterministic version of
Universal Optimal Search

The probabilistic version of universal optimal search has
been recently proposed and implemented by J¨urgen Sch-
midhuber [4]. It is based on the random generating of pro-
grams. Brief comparison between probabilisticand deter-
ministic algorithms for universal optimal search will be
given in the last part of this section.

The goal of deterministic version of Universal Opti-
mal Search is generating (and checking) programs, start-
ing with very simple programs and going successively to
more complicated programs in the sense of Levin’s com-
plexity. This is possible because there are only finitely
many programs which have Levin’s complexity not big-
ger than some constant over a given set ofinstructions
used to build programs (number of instructions is finite
as well). Once all these programs are generated we know
their Levin’s complexity and we can sort them with re-
spect to it.

Of course usually we don not know at the beginning
the complexity of the actual problem (of the program gen-
erated by the LUS algorithm as the solution of this prob-
lem). One way to solve this is to generate in the first step
programs of Levin’s complexity not bigger thanc1, in the
second step programs Levin complexity not bigger than
c2 etc, wherec1, c2, . . . satisfy conditionc1 < c2 <
We usedci = i because satisfying this condition the num-
ber of programs we generate is never larger than2 times
the number of programs of Levin’s complexity smaller
than that of considered the problem considered.

Tapes. Similarly to [4] we shall use single continoues
Turing tape. The tape consists of finite sequence of
cells. Every such cell contains an integer number be-
tweenMIN VALUE andMAX VALUE and has an
address in the interval [−SW , SP]. Cells of the interval
[−SW , −1] are cells of awork tape and cells of the inter-
val [0, SP] are cells of aprogram tape. Cells of program
tape are read-only, and cells of work tape are read-write.

The current program is located between0 andMax
whereas the work tape betweenMin and−1, during exe-
cution of generated programs (ifMax is equal to−1 there

is no program on the program tape). Before any program
will use a work tape it must allocate needed quantity of
cells (later this work space may be freed by the program).

Instructions. As mentioned above the tape consists of
integer numbers. Each one of these numbers denotes ei-
ther instruction number (below we shall call it primitive)
or argument or value ofpure work cell.

A set of primitives (instructions) is used. Primitive is
bound with its number between0 andNR OF PRIM -
ITIV ES−1. It is possible that primitive has arguments,
they are placed directly behind a given primitive. Table 1
shows a set of primitives used throughout this work.

How does deterministic version of the universal search
work? Deterministic version executes successively
partsPi (P1, P2, . . .).

A given partPi generates and checks all programs of
complexity not larger thani. The description of how does
each partPi work is presented below.

➊ At the very beginning work tape is empty (Min =
−1), program tape is empty (Max = 0) andIn-
structionPointer is set to zero.

➋ One primitive– cell is added at the end of a program
tape (if added primitive uses any arguments the ar-
gument cell is also added). The primitive which
is added must satisfy the following condition: its
number is the smallest one such that the complex-
ity of changed program obtained this wayis still not
bigger thani. If there is no such primitive then go
to step➍ .

➌ A primitive that the variable Instruction
Pointer pointed is ran. Then theInstruction-
Pointer is actualized according to the kind of
primitive and its result. If result of execution of
primitive is eitherSTOP or ERROR . . . or if
complexity of the current program is exceeded then
go to step➍ . If InstructionPointer is equal to
Max+1 then go to➋ , otherwise step➌ is executed
again.

➍ Program from the work tape is checked (in practice
this step is reduced to checking the result of the pro-
gram). Suitable result is saved and/or displayed.

➎ Next program (or its prefix) is created on the ground
of the last checked program (for more information
see next paragraph). If it ends successfully then
InstructionPointer andMin are initialized with
zero and step➌ executed, otherwise it means that
all programs of complexityi were already gener-
ated and checked and thePi part is finished.

Creating next program. When the program from the
program tape is stoped (due to time limits or excessive
length) during the universal search next program or its

Table 1: Universal set of primitives.

Number Name Description

0 jumpleq(arg1, arg2, arg3) jump to arg3 if only the content of address arg1 is not bigger than the content of arg2

1 output-weight(arg1) it puts the content of address arg1 to weight wWeightPointer and variable WeightPointer
is incremented

2 jump(arg1) InstructionPointer is set to the content of address arg1

3 stop stops program

4 add(arg1, arg2, agr3) add the content of address arg1 and the content of address arg2, result is putting in address
arg3

5 get input it is not used

6 copy(arg1, arg2) the content of address arg1 is copied to address arg2

7 allocate(arg1) it allocates arg1 cells on work tape

8 increment(arg1) the content of address arg1 is incremented

9 decrement(arg1) the content of address arg1 is decremented

10 subtract(arg1, arg2, arg3) the content of address arg1 is subtracted from content of address arg2, result is put into ad-
dress arg3

11 multiply(arg1, arg2, arg3) the content of address arg1 is multiplied by content of address arg2, result is put into address
arg3

12 free(arg1) it frees arg1 cells from work tape

Table 2: Changes of previous set of primitives.

Number Name Description

1 write weight (arg1, arg2) weight wi is set up to the content of address arg1, where i is equal to the content of address
arg2

5 read weight(arg1, arg2) to cell at which the address arg1 points put the value of weight wi , i is equal to the content of
address arg2

Table 3: Primitives for finding the exit way from maze.

Number Name Description

0 TurnRight turn right

1 TurnLeft turn left

2 GoAndBreak(addr) if it is possible go in current direction, then go, otherwise jump to address addr

3 GoAndJump(addr) if it is possible go in current direction, then go and jump to address addr , otherwise do nothing

prefix should be generated. As we have described above
the last program cell and its argument cells (sometimes
none) are placed on the left of the cell pointed by a vari-
ableMax.

At the beginning of a building of the next program
universal search tries to increment the last argument. If
it is possible the program or its prefix is generated. If not
universal search tries to increment previous argument (if
any exists) and so on. If no arguments left the content of
the primitive-cell is incremented and on success next pro-
gram is generated. If complexity of a program obtained
in such way is larger than currnet considered complexity
then will be repeated incrementation of the content of the
primitive-cell.

If all the above incremental-trials fail then valueMax
is set to address of the last primitive-cell (it is equivalent
to removal of the last primitive with its arguments from
the program tape). Then the whole procedure is repeated
(if Max is larger or equal to zero, otherwise we can not
generate another program of a given complexity).

Universality. As it is described in [4] set of primitives
shown in table 1 is universal — it enables generating of
“any computable integer sequence onto the work tape
(within given size and range limitation)”. Primitives used
in section 4 (see figure 3) for finding exit-way from a maze
form a universal set of primitives as well: it is possible to
generate (find) anyexit way program for a given maze.

Brief summary of differences between deterministic
and probabilistic versions of universal optimal search

Deterministic version:

☛ this method generates sequentially programs ac-
cording to their complexity

☛ programs found by deterministic version are better
than programs found by probabilisticversion (more
precisely they are never worse). One could say that
these programs may be regarded as having more
regularities or generalizing better

Probabilistic version:

☞ next program is generated in a random way

☞ programs found by probabilistic version often are
‘wild’

☞ solution is usually found a bit quicker (because
deterministic versionmust consider all programs
which complexity is lower than complexity of cur-
rnet problem before it found first solution)

3 Towards Neural Networks

In this section we shall consider examples considered by
Jürgen Schmidhuber in [4] in his probabilistic version of
universal search. We shall present below solutions found
by deterministic version of universal search.

Similarly to Jürgen Schmidhuber’s papers it will be
shown that one can find weights for neural network for
which standard methods e.g. backpropagation fails.

3.1 Counting perceptron

Definition of the task: Our goal is to find a neural net-
work that counts number of 1’s on input units. Each of
100 input unitsxi can be equal to either1 or 0. To solve
this problem a network with100 input unitsx0, . . . , x99,
without any hidden unit and with one output unit will be
used. Global output is equal to

yp =
99∑

i=0

xpiwi (3)

wherewi is i-th weight of neural network.
We should find satisfactory set of weights for this neu-

ral network. There exist only one solution given bywi =
1 for eachi. In such a case the outputyp is equal to num-
ber of 1’s on the input. Every input pattern has precisely
three 1’s and ninety seven 0’s.

We shall use 3 training examples. This may be quite
challenging for neural networks, for example the back-
propagation algorithm usually fails in this situation. Our
training examples are: first vectorx1 with 1’s at positions
5, 17 and 86, second vectorx2 with 1’s at positions 13, 55
and 58 and third vectorx3 with 1’s at positions 40, 87 and
94. According to the above definition outputs for vectors
x1, x2, x3 are equal to 3.

Results: First solution was found after 13,328 runs. It
is presented in table 4. Program used 194 time steps, its
space probability (i.e. probability of selection of this pro-
gram) is 0.000739645and complexity is equal to 18.0008.
This vector fits 147,440 of all 161,700 examples.

Notice that in this case weights don’t fit all examples
because the time necessary to find all solutions was big-
ger than that allowed by current complexity. Such pro-
gram we shall callacceptable program. In this case to
find agood program (fitting all examples) it is sufficient

Table 4: Counting perceptron — first program found.

Address Content Command/Argument

0 1 output-weight

1 0 0

2 2 jump

3 0 0

Address Interpretation

0 Write the content of address 0 (it is 1) to
weight pointed by WeightPointer, increment
WeightPointer, if WeightPointer is equal to
100 then program is stopped.

2 jump to address 0

to increase complexity by small constant (e.g. 1). Ade-
quate program was found after 21,180 runs, it used 199
time steps, and its total complexity was 18.0375. So, the
first solution was very close to that one.

Table 5: Counting perceptron — a little faster solu-
tion.

Address Content Command/Argument

0 1 output-weight

1 0 0

2 1 output-weight

3 0 0

4 2 jump

5 0 0

Slightly faster program was found with complexity
23.9054 (faster solution is more expensive). It used 148
time units and its space probability was 9.48263e-06.
Code of this program is presented in table 5. This was the
77th program fitting all examples.

Generating 100,000 programs we have found 8 good
programs and 2 acceptable programs (but both are really
good programs — these programs had no possibilities to
use needed time). For more information see section 5.

3.2 Adding perceptron

Definition of the task: This problem is a bit similar to
the previous one. We have a network with100 input units
and one output unit. Output of the network as before is
counted out by the formula (3). But now our goal is to
find a network (weights for a network) which has on the
outputyp:

99∑

i=0
xi=1

i

Training vectors (and their number) are the same. The
target has been changed according to the following defini-
tion: vectorx1 = 108, x2 = 126 andx3 = 221. Solution
for the problem considered is such that each weightwi is
equal toi.

The results: First vector of weights was found after
34,672,685 runs. This program fits correctly all exam-
ples. It used 399 time units and allocated 100 cells on
the work tape, but using in practice only 1 cell (the first
one on the work tape — address−1). Space probability
was5.55758 ∗ 10−8 and complexity of this program was
32.7412.

As one can see Levin’s universal search has very nice
generalization property. Italwaysuses the main regulari-
ties that are intrinsic attributes of the searched object and
(what is very important!) it is independent (up to an addi-
tive constant in complexity) of the set of used primitives
(in other word, it is sufficient if set of primitives is univer-
sal).

Second program is more frugal of the work tape and
time. It allocates only one additional cell on the work tape
(see table 6).

Table 6: Adding perceptron — more economical so-
lution (content of work tape after execution).

Address Content Command/Argument

-1 100 100

0 7 allocate

1 1 1

2 8 increment

3 -1 -1

4 1 output-weight

5 -1 -1

6 2 jump

7 2 2

This program used 300 time units. The space prob-
ability was exactly the same, and complexity was only
32.3298. Notice that if the complexity of two programs
differs by less than 1 then it is possible that program with
the slightly larger complexity will be found before the sec-
ond one. Such solution was found after 34,672,688 runs.

29 programs (28 fitting all examples) were found after
4.65∗108 runs. The average time of running was 120.756.

3.3 Counting and Adding perceptron with an-
other set of primitives

To obtain another set of primitives used in the next two
experiments prmitives number1 and5 have been changed
(see table 2). The variableWeightPointer is now auto-
maticaly incremented. The program stops when it meets
primitivestop or when it tries to make an inadmissible ac-
tion (for instancejump to non existing address and etc.).

After all these changes complexity of previous exper-
iments should change only by a constant number inde-
pendly of the problem considered, asInvariance Theorem
[3] says.

The solution for counting perceptron. First solution
was found by the universal search after74, 526, 154 runs.

However this solution fits134, 044 of all 161, 700 ex-
amples and it will never fit all examples because first
weightw1 was set to 7. This program used477 time units,
its space complexity was2.77879 ∗ 108 and complexity
33.9988.

Second program found (with complexity33.997) was
good but was stoped too early and did not come in time to
set all weights. Third program found fitted all examples
and it had minimal complexity33.6072. It used only303
time units and its space probability was2.31566 ∗ 10−8.
The corresponding program is shown in table 7. This pro-
gram was found after 81,139,383 generated programs and
averaged time necessary to run one of these programs was
94.2461.

Table 7: Counting perceptron with second set of
primitives — third found program.

Address Content Command/Argument

-1 101 101

0 7 allocate

1 1 1

2 8 increment

3 -1 -1

4 1 write weight

5 -1 -1

6 1 1

7 2 jump

8 2 2

Table 8: Adding perceptron with second set of prim-
itives — the best found program.

Address Content Command/Argument

-1 101 101

0 7 allocate

1 1 1

2 8 increment

3 -1 -1

4 1 write weight

5 -1 -1

6 -1 -1

7 2 jump

8 2 2

The solution for adding perceptron. Two solutions
were found within108 runs. The two programs are cor-
rect and fit all examples. After3 ∗ 109 runs universal
search found 11 good programs and one acceptable pro-
gram. Second solution(see table 8) was better, it used303
time steps and1 cell on work tape. Its complexity was
35.4961.

4 Looking for an exit-way from the
maze

Definition of the task: Below we present solution for
the problem of finding an exit-way from mazes. In other
words we shall look for the program whichwill be able to
get out from the maze. We would like to stress that we are
interested in the best algorithm for going out from a maze
but not in the best scheme of finding such an exit-way. An
optimal exit-way algorithm should use all regularities that
occur in the maze though they might not arise from a set
of primitives.

Another set of primitives will be used here. It consists
of 4 primitives only (see table 3). Of course it is possible
to enlarge it by a few primitives from one of the previous
sets of primitives used for neural network problems or by
some other primitives to obtain more flexible set which
could make to building of the self-sizing programs possi-
ble.

Solutions. It may be seen from figures 1, 2, 3 that di-
mensions of mazes are not important, important is only
how much a given maze is regular, what “complexity of
this maze” is. Dimension of maze (d1 × d2) determines
only the minimal complexity which islog2(d1 +d2) (pro-
vided thatentrance andexit are placed on oposite ends of
a diagonal of the maze).

Figure 1 concerns first example3. Maze dimension
is 7 × 7. The table with the best solution is placed on
the left of maze–picture. The optimal exit-way algorithm
needs 137 steps to get out from the maze (program’s time
steps, not step as a move in the maze) and its space prob-
ability was2.79 ∗ 10−5 whereas complexity was equal to
22.2273.

Comparing to the next examples one notices that com-
plexity of this example is quite big taking into account its
dimension (7× 7).

Another very interesting situation may be observed in
figures 2 and 3. The two mazes are very similar. In the
first maze was chosen sequential a whole in each vertical
wall, in the second it was chosen randomly, but the differ-
ence of their complexity is quite important.

Notice that the relatively large maze from figure 2
has complexity which is almost equal to the minimal one
amongthe mazes presented here.

5 Conclusions

We have presented first implementation of deterministic
version of the Levin’s universal search algorithm.

Levin universal search is a good way of finding so-
lutions for different kind of inversing problems, espe-
cially for inversing for which solutions obtained by an-
other methods are not acceptable or are impossible to ob-
tain.

3You can find an exit way represented by a black line betweenentry
andexit, red color signifies walls of a maze (in print is grey)

Another magnificent feature of LUS is that if theinput
for a given problem is given but the method of solving the
problem is unknow one can still find solution. We need
only functionφ to try whether the result is acceptable or
not.

The main disadvantage of Levin’s universal search is
its combinatorial explosion (when we look for solutions
of problem with complexity bigger by one, we need two
times more time).

During search for the solution of the counting percep-
tron problem presented in section 3.1 intermediate results
were accumulated. The results are presented in figure 4.

The logarithms of number ofgood andaccepted pro-
grams with different complexities are shown there. For a
given complexityk only programs of complexity belong-
ings to the interval[k, k + 1) are counted.

The most important is that programs–solutions are
generated from the simplest in the direction to more com-
plicated, as it was described in section 2.

These results show clearly that while searching space
growths, the difference between probability of choosing
accepted and good remains unchanged. It means that
larger search spaces are not morechaotic as well as it is
not more difficult to drawgood or accepted program.

6 Acknowledgement

This researche was performed at Technical University of
Munich during cooperation with J¨urgen H. Schmidhuber,
who is originator of the idea. I would like to thank him
for his hospitality.

References

[1] A. N. Kolmogorov. Three approaches to the quan-
titative definition of information. Prob. Inf. Trans.,
1:1–7, 1965.

[2] L. A. Levin. Universal sequential search problems.
Problems of Information Transmission (translated
from Problemy Peredachi Informatsii (Russian)), 9,
1973.

[3] M. Li and P. Vitányi. An Introduction to Kolmogorov
Complexity and Its Applications. Text and Mono-
graphs in Computer Science. Springer-Verlag, 1993.

[4] J. H. Schmidhuber. Discovering problem solutions
with low Kolmogorov complexity and high gener-
alization capability. Technical Report FKI-194-
94, Fakultät für Informatik, Technische Universit¨at
München, 1994.

Figure 1: Maze I. Dimension: 7× 7. Complexity: 22.2273. Time used: 137. Space probability: 2.79 ∗ 10−5

Address Contents Commands/Arguments

0 0 TurnRight

1 0 TurnRight

2 1 TurnLeft

3 3 GoAndJump(addr)

4 0 0

5 2 GoAndBreak(addr)

6 2 2
ENTRY

EXIT

Figure 2: Maze II. Dimension: 100×100. Complexity: 21.1212. Time used: 495. Space probability: 0.000217014

Address Contents Commands/Arguments

0 0 TurnRight

1 3 GoAndJump(addr)

2 1 1

3 1 TurnLeft

4 3 GoAndJump(addr)

5 0 0
ENTRY

EXIT

Figure 3: Maze III. Dimension: 100× 100. Complexity: 29.5678. Time used: 29605. Space probability: 29.5678

Address Contents Commands/Arguments

0 1 TurnLeft

1 3 GoAndJump(addr)

2 0 0

3 3 GoAndJump(addr)

4 0 0

5 2 GoAndBreak(addr)

6 2 0
ENTRY

EXIT

Figure 4: Similar growth of good and accepted program in growth of the complexity

0

2

4

6

8

10

12

14

16

18

20 22 24 26 28 30 32 34 36 38 40
COMPLEXITY

Log of number of good programs
Log of number of accepted programs

