
Approximation and classification with
RBF-type Neural Networks

using flexible local and semi-local transfer
functions1

Norbert Jankowski 2

Department of Computer Methods
Nicholas Copernicus University

Abstract:
Structure of incremental neural network (IncNet) is controlled by growing and
pruning to match the complexity of training data. Extended Kalman Filter algorithm
and its fast version is used as learning algorithm. Bi-radial transfer functions, more
flexible than other functions commonly used in artificial neural networks, are used.
The latest improvement added is the ability to rotate the contours of constant values
of transfer functions in multidimensional spaces with only N− 1 adaptive parameters.
Results on approximation benchmarks and on the real world psychometric
classification problem clearly shows superior generalization performance of presented
network comparing with other classification models.

1 INTRODUCTION

Artificial Neural Networks (ANN) are used to many different kinds of problems such as
classification, approximation, pattern recognition, signal processing, prediction, feature ex-
traction, etc. Most of them are solved with ANN by learning of the mapping between the
input and output space for given data sets S = {〈x1, y1〉, . . . , 〈xn, yn〉}, where 〈xi, yi〉 is
input – output pair (xi ∈ RN, yi ∈ R). The underlying mapping F(·) can be written as

F(xi) = yi + η, i = 1, . . . , n (1)

where η is a zero mean white noise with variance σ2ns.
Building a network which preserves information with complexity matched to training

data, using an architecture which is able to grow, shrink, and using flexible transfer functions
to estimate complex probability density distributions, is the goal of this paper.

The best known local learning models are the radial basis function networks (RBF)
[12, 11, 2], adaptive kernel methods and local risk minimization [5]. The RBF networks
were designed as a solution to an approximation problem in multi–dimensional spaces. The
typical form of the RBF network can be written as

f(x;w,p) =

M∑
i=1

wiGi(||x||i,pi) (2)

1In 4th Conference on Neural Networks and Their Applications, pages 77-82, Zakopane, Poland, May 1999.
2E-mail: Norbert.Jankowski@phys.uni.torun.pl, WWW pages http://www.phys.uni.torun.pl/˜norbert

where M is the number of neurons in the hidden layer, Gi(||x||i,pi) is the i-th Radial
Basis Function, pi are adjustable parameters such as centers, biases, etc., depending on
Gi(||x||i,pi) function which is usually a Gaussian (e−||x−t||2/b2), multi-quadratics or thin-
plate spline function.

The RAN network [10] is an RBF-like network that grows when the following criteria
are satisfied:

yn − f(xn) = en > emin ||xn − tc|| > εmin (3)

en is equal the current error, tc is the nearest center of a basis function to the vector xn
and emin, εmin are some experimentally chosen constants.

2 LEARNING ALGORITHM

Extended Kalman Filter (EKF) was used as learning algorithm [3] because it exhibits
fast convergence, uses lower number of neurons in the hidden layer [8] and gives some
tools which are useful for control of the growth and pruning of the network. The algorithm
computes the following quantities:

en = yn − f(xn;pn−1) dn =
∂f(xn;pn−1)

∂pn−1

Ry = Rn + dTnPn−1dn kn = Pn−1dn/Ry

pn = pn−1 + enkn Pn = [I− knd
T
n]Pn−1 +Q0(n)I

(4)

Tthe suffixes n − 1 and n denote the priors and posteriors. pn consists of all adaptive
parameters: weights, centers, biases, etc.

Fast EKF: The fast version of the EKF learning algorithm was introduced in [7].
Because the covariance matrix Pn can be computationally expensive some simplifications
are applied. Assuming that correlations between parameters of different neurons are not
very important we can simplify the matrix Pn to block-diagonal structure P̃n which consists
of matrix P̃in, i = 1 . . .M. Those diagonal elements represent correlations of adaptive
parameters of the i-th neuron. For a given problem P the complexity of matrix Pn is
O(M2), and matrix P̃n just O(M) (M is the number of neurons). Using this approximation
the fast EKF is defined by:

en = yn − f(xn;pn−1) din =
∂f(xn;pn−1)

∂pi
n−1

Ry = Rn + d1n
T
P̃1n−1d

1
n + · · · + dMn

T
P̃Mn−1d

M
n

kin = P̃in−1d
i
n/Ry pin = pin−1 + enk

i
n

P̃in = [I− kind
i
n

T
]P̃in−1 +Q0(n)I i = 1, . . . ,M

(5)

Novelty Criterion: Using methods which estimate covariance of uncertainty of each
parameter during learning, the uncertainty of network output can be determined. The
following novelty criterion is used:

H0 :
e2n

Ry
=

e2

Var[f(x;p) + η]
< χ2n,θ (6)

where χ2n,θ is θ% confidence on χ2 distribution for n degree of freedom. e = y− f(x;p)

is the error. If this hypothesis is not satisfied the current model is not sufficient and the
network should grow.

Pruning Criterion: Checking the inequality P given below it is possible to decide
whether to prune the network or not. It allows also to select the neuron for which L value
has smallest saliency and the neuron should be pruned.

P : L/Ry < χ
2
1,ϑ L = min

i
w2i /[Pw]ii (7)

where χ2n,ϑ is ϑ% confidence on χ2 distribution for one degree of freedom. Neurons are
pruned if the saliency L is too small and/or the uncertainty of the network output Ry is too
big.

Bi-radial Transfer Functions: Sigmoidal functions may be combined into a window
type localized functions in several ways, for example by taking the difference of two sig-
moids, σ(x) −σ(x− θ) or product of pairs of sigmoidal functions σ(x)(1−σ(x)) for each
dimension. These transfer functions are very flexible, producing decision regions with con-
vex shapes, suitable for classification. Product of N pairs of sigmoids σ(x) = 1/(1+ e−x)

has the following general form:

Bi(x; t,b, s) =

N∏
i=1

σ(esi · (xi − ti + ebi))(1− σ(esi · (xi − ti − ebi))) (8)

Biradial functions with rotation: The
biradial functions proposed above contain
3N parameters per one node and are quite
flexible in representing various probability
densities. Next step towards even greater
flexibility requires individual rotation of
densities provided by each unit. Of course
one can introduce a rotation matrix operat-
ing on the inputs Rx, but in practice it is
very hard to parameterize this N ×N ma-
trix with N− 1 independent angles (for ex-
ample, Euler’s angles) and to calculate the
derivatives necessary for back-propagation
training procedure (see Fig. 1).

−10

−5

0

5

10

−10

−5

0

5

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y
Bicentral function with rotation

Figure 1: Biradial functions with rotation (Eq. 9).

CP(x; t, t
′,R) =

N∏
i

(
σ(Rix + ti) − σ(Rix+ t ′i)

)
(9)

where Ri is the i-th row of the rotation matrix R with the following structure:

R =

s1 α1 0

. . .
. . .
sN−1 αN−1

0 sN

 (10)

For other biradial transfer function extensions see [6, 4].

Classification using IncNet. Independed Inc-
Net networks are constructed for each class for a
given problem. Each of them receives input vector
x and 1 if index of i-th sub-network is equal to de-
sired class number, otherwise 0. The output of i-th
network defines how much a given case belongs to
i-th class. Winner takes all strategy is used to de-

(x, y = 1) IncNet C1 p(C1)

(x, y)
...

...
...

(x, y = k) IncNet Ck p(Ck)

Figure 2: IncNet network for classification.

cide the final class for a case. Figure on the right presents the structure of IncNet network
for classification. Note that each of the sub-networks learns separately (which helps in
parallelisation of the algorithm) and its final structure tries to match the complexity for i-th
class, not for all classes (structure of each sub-network is usually different).

3 ILLUSTRATIVE RESULTS

Sugeno function. The first benchmark problem concerns an approximation of Sugeno
function defined as f(x, y, z) = (1 + x0.5 + y−1 + z−1.5)2

Results using the IncNet model with bira-
dial, and biradial with rotation, transfer func-
tions were compared to other results pre-
sented by Sugeno, Kosiński, and Horikawa
[9](Table 1). Although this function is fre-
quently used for testing the approximation ca-
pabilities of adaptive systems, there is no s-
tandard procedure to select the training points
and thus the results are rather hard to com-
pare. For training 216 points from [1, 6] inter-
val and 125 points for testing from [1.5, 5.5]

interval were randomly chosen. All test-
s were performed using the same (if possi-
ble) or similar initial parameters. The Av-

Model APE TRS APE TES

GMDS model Kongo 4.7 5.7
Fuzzy model 1 Sugeno 1.5 2.1
Fuzzy model 2 Sugeno 0.59 3.4
FNN Type 1 Horikawa 0.84 1.22
FNN Type 2 Horikawa 0.73 1.28
FNN Type 3 Horikawa 0.63 1.25
M – Delta model 0.72 0.74
Fuzzy INET 0.18 0.24
Fuzzy VINET 0.076 0.18
IncNet 0.119 0.122
IncNet Rot 0.053 0.061

Table 1: Approximation of Sugeno function.

erage Percentage Error (APE) was used as a measure of approximation error APE =

1/N
∑N

i=1 |(f(xi) − yi)/yi| ∗ 100%. Final networks had at most 11 neurons in the hidden
layer.

Psychometric data. In the real world problem psychometric data problem each case (per-
son) is assigned a personality type using the data from Minnesota Multiphasic Personality
Inventory (MMPI) test. The MMPI test is one of the most popular psychometric tests
designed to help in the psychological diagnoses. MMPI test consists of over 550 ques-
tions. Using the answers from each MMPI test 14 numerical factors are computed (by
some arithmetic operations) forming the intermediate basis (not the final hypothesis) for
the diagnosis.

Is it possible to build a model, which
will perform automatic assignment of a giv-
en person to one of personality type basing
on a set of well diagnosed examples? To
solve this question several data sets were
collected and classified by psychologists. In
this article two of those sets have been con-
sidered, the first with 27 classes and the sec-
ond with 28 classes. Each case has 14 fea-
tures determined from over 550 questions of
MMPI test. Some classes concern men, and
other women only. Each case can be classi-
fied as normal or belong to a disease such as
neurosis, psychopathy, schizophrenia, delu-
sions, psychosis, etc. Data sets consists of

0 1000 2000 3000 4000 5000 6000
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

time

ac
cu

ra
cy

0 1000 2000 3000 4000 5000 6000

0

2

4

6

8

10

12

14

ne

ur
on

s

Figure 3: Curves shows the accuracy and the number of
neurons through the learning process of a single class. [1
unit of time is a single learning pair presentation.]

1027 and 1167 examples respectively for 27 and 28 classes sets. Figure 3 shows the learning
of one single class, displaying the changes of accuracy and the number of neurons.

In Tables 2 and 3 comparison of general-
ization for IncNet, FSM [1] and C4.5 is shown.
In Table 2 the overall performance is presented
and in Table 3 the generalization after dividing
the whole set into training and testing sets for
10% + 90% and 5% + 95% learning. Figure
4 shows the confusion matrix (on the left). It
clearly shows that there are just a few errors

Model
Overall test for

27 classes 28 classes

C 4.5 93.67 93.06
FSM Rule Opt. 97.57 96.91
IncNet 99.22 99.23

Table 2: Accuracy of different classification models
in an overall test.

after the classification. On the right side of the same figure the analysis of errors from the
same learning process are presented. Edges of each line shows the target (left) and desired
output values for given case (person). Note that most slopes of the error-lines are small,
meaning that a given case is not clear and can not be assigned to a single class. More
over, most of these errors are not really errors because they may indeed correspond to two
classes.

Model
27 classes set 28 classes set

10% test 5% test 10% test 5% test
TRS TES TRS TES TRS TES TRS TES

FSM 91.59

IncNet 99.03 93.14 98.77 96.08 98.95 93.10 98.29 94.83

Table 3: Accuracy of different classification models. 10% (or 5%) test means that 10% (or 5%) of examples

are used as testing set and 90% (or 95%) as training set.

4 CONCLUSIONS

Results presented above show that biradial transfer functions used with the incremental
network work very efficiently. The final network show high generalization, and the structure

5 10 15 20 25

5

10

15

20

25

1

1
2
1

1

1

1

37
67

25
60

96
16

35
18

27
26

24
160

32
13

35
47

24
22

52
79

35
12

25
13

13
13

13

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4: The confusion matrix for the 27 classes set (left). Comparison of network output and desired

output values.

of the networks is controlled online by statistical criteria. Biradial transfer functions may
estimate many different probability densities with good generalization in efficient framework.
Biradial functions with rotation definitely improve estimation of complex densities using
just 4N− 1 parameters per neuron (where N is dimension of input space). Such networks
may be used successfully for real world problems.

REFERENCES
[1] R. Adamczak, W. Duch, and N. Jankowski. New developments in the Feature Space Mapping model. In

Third Conference on Neural Networks and Their Applications, pages 65–70, Kule, Poland, Oct. 1997.
[2] C. M. Bishop. Improving the generalization properties of radial basis function neural networks. Neural

Computation, 3(4):579–588, 1991.
[3] J. V. Candy. Signal processing: The model based approach. McGraw-Hill, New York, 1986.
[4] W. Duch and N. Jankowski. Survey of neural transfer functions. Neural Computing Surveys, 7, 1999.

(submitted).
[5] F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation,

10(6), Aug. 1998.
[6] N. Jankowski. Ontogenic neural networks and their applications to classification of medical data. PhD thesis,

Department of Computer Methods, Nicholas Copernicus University, Toruń, Poland, 1999. (in preparation).
[7] N. Jankowski and V. Kadirkamanathan. Statistical Control of RBF-like Networks for Classification. In 7th

International Conference on Artificial Neural Networks, pages 385–390, Lausanne, Switzerland, Oct. 1997.
[8] V. Kadirkamanathan and M. Niranjan. A function estimation approach to sequential learning with neural

networks. Neural Computation, 5(6):954–975, 1993.
[9] W. Kosinski and M. Weigl. Mapping neural networks and fuzzy inference systems for approximation of

multivariate function. In E. Kącki, editor, System Modelling Control, Artifical Neural Networks and Their
Applications, volume 3, pages 60–65, Łódź, Poland, May 1995.

[10] J. Platt. A resource-allocating network for function interpolation. Neural Computation, 3:213–225, 1991.
[11] T. Poggio and F. Girosi. Network for approximation and learning. Proceedings of the IEEE, 78:1481–1497,

1990.
[12] M. J. D. Powell. Radial basis functions for multivariable interpolation: A review. In J. C. Mason and M. G.

Cox, editors, Algorithms for Approximation of Functions and Data, pages 143–167, Oxford, 1987. Oxford
University Press.

