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Abstract

The choice of transfer functions may strongly influence complexity and performance of neural networks.
Although sigmoidal transfer functions are the most common there is noa priori reason why models based
on such functions should always provide optimal decision borders. A large number of alternative transfer
functions has been described in the literature. A taxonomy of activation and output functions is proposed,
and advantages of various non-local and local neural transfer functions are discussed. Several less-known
types of transfer functions and new combinations of activation/output functions are described. Universal
transfer functions, parametrized to change from localized to delocalized type, are of greatest interest.
Other types of neural transfer functions discussed here include functions with activations based on non-
Euclidean distance measures, bicentral functions, formed from products or linear combinations of pairs
of sigmoids, and extensions of such functions making rotations of localized decision borders in highly
dimensional spaces practical. Nonlinear input preprocessing techniques are briefly described, offering an
alternative way to change the shapes of decision borders.

Keywords: Neural networks, adaptive systems, local learning, transfer functions, activation functions, minimal dis-
tance methods.

1 INTRODUCTION

Adaptive systems of the Artificial Neural Network (ANN) [1, 2, 3] type were initially motivated by the parallel process-
ing capabilities of the real brains, but the processing elements and the architectures used in artificial neural networks
have little in common with biological structures. ANNs are networks of simple processing elements (usually called
neurons) with internal adjustable parametersW. Modification of these adjustable parameters allows the network to
learn an arbitrary vector mapping from the space of inputsX to the space of outputsY = FW(X). From the probabilis-
tic point of view [2, 3] adaptive systems should approximate the density of joint probabilityp(X,Y) or the posterior
probabilityp(Y|X) of input-output values. Flexibility of contours of transfer functions used for estimation of decision
borders is strongly correlated with the number of functions (and thus with the number of adaptive parameters available
for training) necessary to model complex shapes of decision borders. The current emphasis in neural network research
is on learning algorithms and architectures, neglecting the importance of transfer functions. In approximation theo-
ry many functions are used (cf. [4]), while neural network simulators use almost exclusively sigmoidal or Gaussian
functions. This paper presents a survey of transfer functions suitable for neural networks in an attempt to show the
potential hidden in their selection.

ANNs are adaptive systems with the power of a universal computer, i.e. they can realize an arbitrary mapping
(association) of one vector space (inputs) to the other vector space (outputs). They differ in many respects, one
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of the important characteristics being the transfer functions performed by each neuron. The first attempts to build
neural network models was based on logical networks [5], or threshold devices performing step functions. These step
functions were generalized in a natural way to functions of sigmoidal shape. Neural networks with single hidden
layer using sigmoidal functions are universal approximators [6, 7], i.e. they can approximate an arbitrary continuous
function on a compact domain with arbitrary precision given sufficient number of neurons. These mathematical results
do not mean that sigmoidal functions provide always an optimal choice or that a good neural approximation is easy
to find. For some datasets a large (and hard to train) network using sigmoidal functions may be needed for tasks that
could be solved with a small (and easy to train) network using other transfer functions. Networks with neurons that
give Gaussian outputs instead of sigmoidal outputs are also universal approximators [8, 9].

A new type of transfer functions, calledgaussian bars, has been proposed by Hartman and Keeler [10]. In the
functional linknetworks of Pao [11] a combination of various functions, such as polynomial, periodic, sigmoidal and
Gaussian functions are used.Rational transfer functionswere used by Haykin and Leung with very good results [12].
In the conic sectionfunction networks Dorffner [13] introduced functions that change smoothly from sigmoidal to
Gaussian-like.Lorentzian transfer functions, which may be treated as a simplified Gaussian functions, were used by
Giraudet al. [14]. These and many other papers surveyed here show that the choice of transfer functions is considered
by some experts to be as important as the network architecture and learning algorithm.

Neural networks are used either to approximatea posteriori probabilities for classification or to approximate
probability densities of the training data [2, 3]. None of the functions mentioned above is flexible enough to describe,
using a small number of adaptive parameters, an arbitrarily shaped decision borders in multidimensional input space.
Statisticians prefer to test their methods on artificial data [15, 16]. It is easy to notice that some data distributions are
handled easily using localized functions, for example Gaussians, while other data may be handled in an easier way
if non-local functions are used, for example sigmoidal functions with weighted activations. Following statisticians,
consider [15] a simple classification problem inN dimensions, with spherical distribution of vectors belonging to
the first class that should be distinguished from vectors belonging to the second-class, lying outside the unit sphere.
A single neuron performing multivariate Gaussian function with 2N adaptive parameters (specifying the center and
dispersions in each dimension) is sufficient for this job and the training process is quite simple. Many hyperplanes
provided by sigmoidal functions are needed to approximate spherical decision borders. The simplest approximation
using the standard multilayer perceptron (MLP) architecture that captures any bound region ofN-dimensional space
requires construction of a simplex usingN sigmoids and additional neuron to smooth the output of a combination of
these neurons, so at leastN2 + N parameters are needed in this case, making the training process much more difficult.
On the other hand if data vectors belonging to the first class are taken from the corner of the coordinate system bound
by the(1,1, ...,1) plane a single sigmoidal function withN + 1 parameters is sufficient for perfect classification while
Gaussian approximation will be quite difficult. A poor approximation may use one Gaussian in the center of the region
andN + 1 Gaussians in the corners, using 2N(N + 2) adaptive parameters and making the learning harder than with
the hyperplanar decision borders.

One may easily create more complicated examples with more classes between concentric spheres of growing
radii or with series of hyperplanes passing through(m,m, ...,m) points. Improved learning algorithms or network
architectures will not change the relative complexity of solutions as long as the decision borders provided by the
transfer functions remain spherical (as in the first example) or planar (as in the second example). Artificial examples
that are favorable for other types of functions are also easy to construct. For the real-world data one may compare the
best results obtained using the Radial Basis Function (RBF) networks with Gaussian functions and the MLP networks
with sigmoidal functions. According to the Statlog report [17] comparing many classification methods on 22 real-
world datasets results of RBF are not similar to the results of MLP. In some cases crossvalidation errors were twice as
large using MLP than RBF (for example for the DNA dataset RBF gave 4.1% of error and was the best of all methods
while MLP gave 8.8 % of errors and was on 12-th position, while for the Belgian Power data the situation is reversed,
with MLP giving 1.7% of errors and RBF 3.4%). Although one may always argue that better initialization, learning
and architectures will reduce the difference one should admit that the differences exist, if not in the absolute accuracy
or generalization capability, than in the ease of finding good solutions. At least part of the difference in performance
of the two neural models used above should be attributed to different shapes of decision borders (hyperplane and
ellipsoidal) provided by their transfer functions. Amari and Wu (Neural Networks, in press 1999) give examples of
significant improvements for Support Vector Machine classifiers due to modifications of the kernel functions.



NEURAL COMPUTING SURVEYS 2, 163-212, 1999, http://www.icsi.berkeley.edu/∼jagota/NCS 165

Viewing the problem of learning from geometrical point of view functions performed by neural nodes should
enable tessellation of the input space in the most flexible way using a small number of adaptive parameters. Impli-
cations of this fact has not yet been fully appreciated by many researchers, but the very fact that we have already
found quite a few papers describing the use of different transfer functions shows that the issue is interesting for many
researchers and therefore worth surveying. In this paper we systematically investigate various functions suitable as
the transfer functions for neural networks. We do not attempt to cover all activities related to transfer functions. Good
transfer functions approximating the biologically faithful neural response functions have not been found yet and the
very concept is rather difficult to define. Anderson [18] justifies sigmoidal functions for motoneurons but a transition
from spiking neurons of associative cortex to model neurons using continuous transfer functions is certainly not so
simple (for a theoretical introduction to the capabilities of spiking neurons see [19]). Very interesting attempts to
build analogue neurons or hardware models of such neurons are also beyond the scope of this review [20, 21, 22].
To keep the paper rather short, various transfer functions used only in associative memory models, such as nonmono-
tonic functions [23, 24, 25, 26, 27], periodic functions [28, 28, 29, 30] or chaotic neurons [31, 32], have also been
omitted here, although they may actually be more faithful to neurobiology, may help to increase the capacity of asso-
ciative memories and avoid spurious local minima of the neural network error functions. Fuzzy neural networks [33]
use specific transfer functions and are also omitted here. Neural models using complex transfer functions (cf. [34])
are also omitted. There is a vast statistical literature on approximation, discrimination, kernel regression and locally
weighted regression [35], support vector machines [36, 37, 38] and other subjects interesting in the context of neural
networks, but this survey is restricted to systematic investigation of transfer functions suitable for feedforward and
some recurrent networks.

Information about various transfer functions is scattered in the literature and has not been reviewed so far. Many of
the functions described in this paper have never been used in practice yet and little is known about their relative merits.
We have tried to provide a taxonomy of activation and output functions (shown in Fig. 2 and Fig. 4) and show how
they are combined in transfer functions. As with most taxonomies it is not perfect and may be done in several other
ways. Most transfer functions admit natural separation into the output and activation functions, but for a few transfer
functions it is rather difficult and arbitrary. Still we have found the taxonomy presented here rather helpful, allowing
to discover new useful combinations of activation and output functions.

In the next section general issues related to transfer functions are described, including a discussion of the hard and
soft versions of transfer functions. The third section contains detailed presentation of activation functions, including
discussion of distance functions, and the fourth section presents various output functions. Comparison of transfer
functions is made in the fifth section. In the next section non-linear transformation of input data providing complex
decision borders is presented as an alternative to selection of transfer functions. Unfortunately comparison of results
that may be obtained using different transfer functions is very difficult. Several groups of transfer functions could
be used in networks with identical architecture, initialization and training. Although such comparison is certainly
worthwhile it has not yet been attempted and would require a large-scale effort going far beyond our survey. Many
functions are used in different models, therefore a direct comparison is not always possible. More remarks on this
issue are given in the discussion closing this paper.

2 GENERAL ISSUES

Two functions determine the way signals are processed by neurons.The activation functiondetermines the total signal
a neuron receives. In this section a fan-in function, i.e. a linear combination of the incoming signals, is used, but in the
next section other possibilities are presented. For neuroni connected to neuronsj (for j = 1, . . . ,N) sending signals
xj with the strength of the connectionsWi j the total activationIi(x) is

Ii(x) =
N

∑
j=0

Wi j xj (1)

whereWi,0 = θ (threshold) andx0 = 1.



NEURAL COMPUTING SURVEYS 2, 163-212, 1999, http://www.icsi.berkeley.edu/∼jagota/NCS 166

The value of the activation function is usually scalar and the arguments are vectors. The second function determin-
ing neuron’s signal processing isthe output function o(I), operating on scalar activations and returning scalar values.
Typically a squashing function is used to keep the output values within specified bounds.

These two functions together determine the values of the neuron outgoing signals. The composition of the ac-
tivation and the output function is called thetransfer function o(I(x)). The transfer function is defined in theN-
dimensionalinput space, called alsothe parameter space. For some transfer functions there is no natural division
between activation and output functions. The transfer function is local if its values are significantly different from zero
(i.e. |o(I(x))| > ε for some smallε) in a finite area of the input space; otherwise the function is non-local. Locality
depends both on the activation and transfer function.

In neural models the activation and the output functions of the input and the output layers may be of different type
than those of the hidden layers. In particular linear functions are frequently used for inputs and outputs and non-linear
transfer functions for hidden layers.

The first neural network models proposed in the forties by McCulloch and Pitts [5] were based on the logical
processing elements. The output function of the logical elements is ofthe step functiontype, and is also known as the
HeavisideΘ(I ;θ) function:

Θ(I ;θ) =

{
1 I > θ
0 I ≤ θ

(2)

i.e. it is 0 below the threshold valueθ and 1 above it. The use of such threshold functions was motivated by the
logical analysis of computing circuits and the metaphor (very popular in the early days of computers) of brains seen
as networks of logical switching elements.

In principle one can perform arbitrary computations using logical neurons. Real values should be quantized and
the logical neurons used to learn the bits. The greatest advantage of using logical elements is the high speed of
computations and the possibility to realize relatively easily some functions in the hardware. Decision borders provided
by logical neurons are hyperplanes rotated by theWi j coefficients. Networks of logical neurons divide the input space
into polyhedral areas.

Multi-step functions are an intermediate type of functions between the step functions and semi-linear functions.
Multi-step functions have a number of thresholds:

ς(I) = yi for θi ≤ I < θi+1 (3)

To avoid evaluation of the logical IF conditions for constant differenceθ = θi − θi+1 multi-step functions are
efficiently implemented using auxiliary step vectorsv and integer arithmetics to convert rescaled input values to
arbitrary output values:v [Θ(1+ Int[(I−θ1)/θ])], whereθ1 is the first threshold. Instead of the step functions semi-
linear functions are also used:

sl (I ;θ1,θ2) =


0 I ≤ θ1,

(I −θ1)/(θ2−θ1) θ1 < I ≤ θ2

1 I > θ2

(4)

These functions have discontinuous derivatives, preventing the use of gradient-based error minimization training
procedures. Therefore they were later generalized tothe logistic outputfunctions, leading to thegraded response
neurons, used most often in the literature (see Fig. 1):

σ(I/s) =
1

1+ e−I/s
(5)

The constants determines the slope of the logistic function around the linear part. There are many functions
similar in shape to the logistic function, forming a broad class ofsigmoidal functions. In the hard limit, when the slope
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Figure 1: Logistic functions with inner product activations.
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of these S-shaped functions becomes infinite (s→ 0), their derivatives become discontinuous and all these functions
become step functions.

Combining sigmoidal output functions with the fan-in activation given by (Eq. 1)sigmoidal transfer functionsare
obtained. These transfer functions are non-local, but combining sigmoidal output functions with some other activations
may result in localized transfer functions (cf. Eq. 62–65).

It is commonly believed that the activity of biological neurons follows such sigmoidal transfer function, but this
is not the reason why sigmoidal functions became so popular. Except for some neurobiological inspirations sigmoids
may also be justified from a statistical point of view [2, 39]. Consider a classification problem inN dimensions with
two classes described by Gaussian distributions with equal covariance matrices (more generalexponential familyof
distributions may be used [2, 39]):

p(x|Ck) =
1

(2π)N/2|Σ|1/2
exp

{
−1

2
(x− x̄k)TΣ−1(x− x̄k)

}
(6)

Using Bayes’ theorem the posterior probability for the first class is:

p(C1|x) =
p(x|C1)P(C1)

p(x|C1)P(C1) + p(x|C2)P(C2)
=

1
1+ exp(−y(x))

(7)

whereP(Ck) area priori class probabilities and the functiony(x) is:

y(x) = ln
p(x|C1)P(C1)
p(x|C2)P(C2)

(8)

Of coursep(C2|x) = 1− p(C1|x). Thus the Bayesian approach for the two-class problems leads to the logistic out-
put functions with rather complex activation functions. Such functions are used in statistics in logistic discrimination
[40]. For more than two classes normalized exponential functions (called also softmax functions) are obtained by the
same reasoning:

p(Ck|x) =
exp(yk(x))

∑i exp(yi(x))
(9)

These normalized exponential functions may be interpreted as probabilities.
An interesting alternative explanation [41] of the usefulness of sigmoidal functions with weighted activation (i.e.

sigmoidal transfer functions) is given below. Since input values result usually from observations which are not quite
accurate, instead of a numbery a Gaussian distributionGy = G(y; ȳ,sy) centered around ¯y with dispersionsy should
be given. This distribution may be treated as a membership function of a fuzzy numberGy [33]. The cumulative
distribution function is:

p(x− ȳ) =
∫ x

−∞
G(y; ȳ,sy)dy=

1
2

[
1+ erf

(
x− ȳ

sy
√

2

)]
≈ σ

(
x− ȳ

T

)
(10)

where erf is the error function andT =
√

2sy/2.4. The acccuracy of this approximation is better than 0.02 for allx.
The cummulative distributionp(x− ȳ) may be interpreted as the probability that a certain decision ruleRx(z) =True iff
z≤ x is true, i.e.p(Rx|Gy) = p(x− ȳ). The Gaussian assumption for the uncertainty of inputs is equivalent to thesoft
trapeziodalmembership functions of the logical rules used with the sharply defined inputs. On the other hand starting
with sigmoidal functions instead of the erf function is equivalent to the assumption that the measurement uncertainties
are given byσ((x− ȳ)/T)(1−σ((x− ȳ)/T)), approximating a Gaussian function within a few percent.
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In practical applications of neural networks biological inspirations may not be so important as inspirations from
approximation theory, probability theory, statistics or pattern recognition. This understanding led to neural models
based on the radial basis functions, popular in approximation theory [42, 43]. Slowly other types of transfer functions
were introduced, but systematic research of this aspect of neural models has been missing. In the next section we have
tried to systematize our knowledge of the activation functions.

3 ACTIVATION FUNCTIONS

Weighted activation, called also the fan-in activation (Eq. 1), is used in neural models not only due to its biologi-
cal inspirations, but because the contours of constant valueI(x) = constdefine hyperplanes. Statistical methods of
classification may be divided into two broad groups: methods based on discrimination, using hyperplanes or other hy-
persurfaces for tessellation of the input space, and methods based on clusterization, in which similarities are calculated
using some kind of a distance measure. Therefore it seems that we have three main choices for activation functions:

• Theinner product I(x;w) ∝ wT ·x (as in the MLP networks).

• Thedistance basedactivation, or more general similarity functions,D(x; t) ∝ ||x− t||, used to calculate simi-
larity of x to a prototype vectort.

• A combination of the two activations,A(x;w, t) ∝ α wT ·x + β ||x− t||,

In each case we may use either the final scalar value of activation, or use the vector components of this activation,
for example using the distance form we usually take the scalarD(x, t), but for some output functions we may also use
the vector componentsDi(xi ,ti) ∝ (xi− ti)2, for example:

Di(xi ,ti ,bi) = (xi− ti)2/b2
i (11)

The square of the activation function is a quadratic form. Treating all coefficients of this form as independent and
transforming it into canonical form:

I2(x;w)∼ D2(x; t,a) =
N

∑
i

ai(x′i− ti)2 (12)

where the new variablesx′i are linear combinations of the original variablesxi , leads to the pseudo-Euclidean distance
function. If all parametersai are positive,ai = 1/b2

i , then a Euclidean distance function is obtained, providing hyper-
ellipsoidal contours of constant values. Squared fan-in activation function is used in theLorentziantransfer functions
(Eq. 71, Fig. 14). Lorentzian functions are not ellipsoidal, surfaces of constant density are in their case a window-type
non-localized function.

3.1 Distance Based Activation — Distance Functions.

Although activation is almost always associated with weighted combination of inputs it may also be based on eval-
uation of similarity of the incoming vectors to some reference or prototype vectors. There is nothing special about
the Euclidean distance function used to compute distances in many radial basis and other functions. The Euclidean
distance has a natural generalization in form of the Minkovsky’s distance function:

DM(x,y;α) =
( N

∑
i=1

|xi−yi|α
)1/α

(13)

Euclidean and Manhattan distances are of course special cases of Minkovsky’s metric function withα = 2 and
α = 1 respectively. Minkovsky’s distance with the scaling factors is a further generalization:
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Activation type

Inner product (IP)
I ∝ wTx

Scalar
I ∝ wTx

I = wTx

used in:
(multi-)step,
semi-linear,

sigmoids
Lorentz Eq. (71)

Vector
Ii ∝ wixi

Mix of IP & DB
A ∝ wTx+ ||x− t||

Scalar
A ∝ wTx+ ||x− t||

AR = w0 +wT x+wn+1wTw,
AC = wT(x− t)+ω(x− t)T (x− t),

AGL1 = wTx+α||x− t||,
AGL2 = α(wTx)2 +β||x− t||2

Eq. 40 – 41

used in:
Ridella Eq. (85),

Conic t.f. Eq. (87),
Eq. (88), Eq. (89)

Vector
Ai ∝ wixi + ||xi− ti ||

Bi-activ Ai = {A+
i ,A

−
i }:

Bi A1±i = si(xi − ti ±bi),
Bi2s A2±i = s±i (xi − ti ±bi),
BiR A3±i = si(xi + rixi+1− ti ±bi ),
BiR2s A4±i = s±i (xi + rixi+1− ti ±bi )

Eq. 42 – 45

used in:
Eq. 91 – 99

BiCRBF, IncNet, FSM

Distance-Based (DB)
D ∝ ||x− t||

Scalar
Radial activation

D ∝ ||x− t||

C(|| · ||) = O(1)

Euclidean,
Manhattan,

Minkovsky (13),
Mahalanobis (15)
(with Σ = const)

used in:
RBF, RAN,

IncNet, FSM, etc.

C(|| · ||) = O(n)

Eq. (12),
Eq. (14)

used in:
HRBF, FSM, etc.

C(|| · ||) = O(n2)

Mahalanobis (15)
Quadratic Eq. (16)

used in:
HRBF

Vector
Di ∝ ||xi − ti ||

Di = (xi− ti)2/b2
i

used in:
Bar functions

Eq. (76), Eq. (77)

Figure 2: Taxonomy of activation functions.C(|| · ||) is the number of adaptive parameters of|| · || norm.
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DMb(x,y;b)α =
N

∑
i

d(xi ,yi)α/bi (14)

Thed(·) function is used to estimate similarity at the feature level and in the simplest case is equal to|xi−yi |. For
α = 2 the vectors||x|| = 1 are on the unit sphere, for largeα the sphere is changed into a soft cuboid, forα = 1 it
becomes a pyramid and forα< 1 it has hypocycloidal shape 3.

Many other distance functions may be used, such as the Mahalanobis distance:

D2
M(x; t) = ∑

i j
(xi− ti)Σ−1(xi− ti) (15)

A more general quadratic distance function, with problem-specific, positive definite weight matrixQ, is:

DQ(x,y;Q) = (x−y)TQ(x−y) (16)

whereQ is a positive definite weight matrix. Various correlation factors are also suitable for metric functions, for
example Camberra:

DCa(x,y) =
N

∑
i=1

|xi−yi|
|xi + yi|

(17)

Chebychev:

DCh(x,y) = max
i=1,... ,N

|xi−yi| (18)

and Chi-square distance:

Dχ(x,y) =
N

∑
i=1

1
sumi

(
xi

sizex
− yi

sizey

)2

(19)

where sumi is the sum of all values for attributei occuring in the training set, and sizex and sizey are the sums of all
values in vectorsx andy.

The correlation distance measure is defined as:

DCd(x,y) = ∑N
i=1(xi− x̄i)(yi− ȳi)√

∑N
i=1(xi− x̄i)2 ∑N

i=1(yi− ȳi)2
(20)

wherex̄i andȳi are the average values for attributei occuring in the training set.
Kendall’s Rank Correlation function is:

DKRC(x,y) = 1− 2
n(n−1)

N

∑
i=1

i−1

∑
j=1

sign(xi−xj)sign(yi−yj) (21)

All these function are suitable to define radial components or to replace the Euclidean distance used in the definition
of many transfer functions.
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Figure 3: Gauss function with different Minkovski norms.
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Heterogeneous Distance Functions.The distance function may be heterogeneous, using Minkovsky’s metric for
numerical features and probabilistic metric functions for symbolic features. In memory-based reasoning the Modified
Value Difference Metric (MVDM) has gained popularity [44, 45, 46]. The distance between twoN-dimensional vec-
torsx,y with discrete (nominal, symbolic) elements, in aC class problem, is computed using conditional probabilities:

Dq
V(x,y) =

N

∑
j=1

C

∑
i=1

∣∣p(Ci |xj)− p(Ci|yj)
∣∣q (22)

wherep(Ci |xj) is estimated by calculating the numberNi(xj) of times the valuexj of the featurej occurred in vectors
belonging to classCi , and dividing it by the numberN(xj) of timesxj occurred for any class:

Dq
V(x,y) =

N

∑
j=1

C

∑
i=1

∣∣∣∣Ni(xj)
N(xj)

− Ni(yj)
N(yj )

∣∣∣∣q (23)

A value differencefor each featurej is defined as

dq
V(xj ,yj) =

C

∑
i

∣∣p(Ci |xj)− p(Ci|yj)
∣∣q (24)

Thus one may computeDV(x,y) as a sum of value differences over all features. Distance is defined here via a data-
dependent matrix with the number of rows equal to the number of classes and the number of columns equal to the
number of all attribute values. Generalization for continuous values requires a set of probability density functions
pi j (x), with i = 1, . . . ,C and j = 1, . . . ,N.

The Heterogeneous Euclidean-Overlap Metric (HEOM) is a simplified version of the VDM metric:

DHEOM(x,y) =

√√√√ N

∑
j=1

dj(xj ,yj)2 (25)

with attribute contributions equal to:

dj(xj ,yj) =


1 if xj or yj is unknown

overlap(xj ,yj) if attributexj is nominal
|xj−yj |

xmax
j −xmin

j
otherwise

(26)

xmax
j andxmin

j are maximal and minimal values ofj-th input attribute:

xmax
j = max

i
xi

j xmin
j = min

i
xi

j (27)

The difference ofxmax
j andxmin

j is the range of thej-th input variable (attribute). Theoverlapis defined by:

overlap(x,y) =

{
0 if x = y

1 otherwise
(28)

The Heterogeneous Value Difference Metric (HVDM) is defined as:
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DHVDM(x,y) =

√√√√ N

∑
j=1

(
dhj(xj ,yj)

)2
(29)

dhj(xj ,yj) =


1 if xj or yj is unknown

N_vdmj(xj ,yj) if xj is nominal

N_di f j(xj ,yj ) if xj is linear

(30)

and

N_di f j (xj ,yj) =
|xj −yj |

4σ j
(31)

whereσ j is the standard deviation of the numeric values of attributexj . Normalized VDM differences may be defined
in several ways:

N1_vdm(x,y) =
C

∑
i=1

∣∣∣∣Ni(x)
N(x)

− Ni(y)
N(y)

∣∣∣∣
N2_vdm(x,y) =

√
C

∑
i=1

(
Ni(x)
N(x)

− Ni(y)
N(y)

)2

(32)

N3_vdmj(x,y) =
√

C N2_vdm(x,y)

The Discrete Value Difference Metric (DVDM) is used for continous inputs:

dDVDM(x,y) =
N

∑
j=1

vdmj
(
discj(xi),discj (yj)

)2
(33)

wheredisc(xj) is a discretization function:

discj(xj) =


⌊

x−xmin
j

wj

⌋
+ 1 if xj is continuous

xj if xj is discrete
(34)

andwj are parameters. Discretization allows application of VDM metrices to nominal as well as continuous inputs.
Another way to compute VDM distances for continuous values is by using Interpolated Value Difference Metric:

dIVDM(x,y) =
N

∑
j=1

ivdmj
(
xj ,yj

)2
(35)

where

ivdmj(xj ,yj) =

{
vdmj(xj ,yj) if xj is discrete

∑C
i=1

(
p(Ci |xj)− p(Ci|yj)

)2
otherwise

(36)
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Probabilities appearing in the definition given above are calculated by interpolation:

p(Ci |xj) = P(Ci |xj ,u) +
xj −xmid

j ,u

xmid
j ,u+1−xmid

j ,u

(P(Ci |xj ,u+ 1)−P(Ci|xj ,u)) (37)

wherexmid
j ,u andxmid

j ,u+1 are midpoints of two consecutive discretized ranges such thatxmid
j ,u ≤ xj ≤ xmid

j ,u+1, Pj ,u,c is the
probability value of the discretized rangeu, defined at the midpoint of rangeu, and values ofu are found by first setting
u = discj(xj).

Using VDM-type metrics leads to problems with calculation of gradients. Purely numerical input vectors are
obtained using continuous feature values and replacing symbolic and discrete attributes withp(Ci |xj) probabilities.
Resulting numerical vectors have the number of components equal to the number of different symbolic values times the
number of classes. Distances calculated with such input vectors are identical to those obtained with the heterogenous
distance functions.

3.2 Combination of inner product and distance based activation

To represent complex decision borders correctly, transfer functions may need sophisticated activation functions. A
good example of such activation has been provided by Ridellaet al. [47]:

AR(x;w) = w0 +
N

∑
i=1

wixi + wN+1

N

∑
i=1

x2
i (38)

Another mixed activation is used inconicaltransfer function described by Dorffner [13]:

AC(x;w, t,ω) = I(x− t;w) + ωD(x− t) (39)

Transfer functionsCGL1 andCGL2 (Eq. 88 and 89) use another form of mixed activations:

AGL1 = wTx + α||x− t|| (40)

AGL2 = α(wTx)2 + β||x− t||2 (41)

These activations are of the scalar type. Bicentral transfer functions (described in detail in section 5.6) use vector
type activations. Furthermore, bicentral functions use two vectors of activations, left and rightAi = {A+

i ,A
−
i }, and

A = [A1, . . . ,An]. Below different bicentral activations are presented:

Bi A1±i = si(xi− ti±bi), (42)

Bi2s A2±i = s±i (xi− ti±bi), (43)

BiR A3±i = si(xi + rixi+1− ti±bi), (44)

BiR2s A4±i = s±i (xi + rixi+1− ti±bi) (45)

The usefulness of such activation functions will become clear in section 5.6.

4 OUTPUT FUNCTIONS

In the simplest case the identity function may be used for the output function. This is done in linear networks or if the
radial coordinate function||x− t|| is used as an output function – it may be treated as a distance-based activation. Since
activation functions are in most cases unbounded, output functions are used to limit the signals propagated through the
network. There are three major choices here:

• Sigmoidal non-local functions.
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Logistic σ(x)
Eq. (5)

tanh(x)
Eq. (46),

arctan(x)

Approximation
of Logistic

s1(x) Eq. (48),
s2(x) Eq. (49),
s3(x) Eq. (50),
s4(x) Eq. (51),

Semi-linear
Eq. (4)

Tensor-product
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Centralized

Radial Basis

Gaussian Eq. (61),
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Bic. rot. 2 sl. Eq. (99)

Figure 4: Taxonomy of output functions.
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• Functions localized around a single center.

• Semi-centralized functions that have either many centers or hard to define centers.

Please note that localization properties are true only for output functions, for example treatingσ(x) as a function of
a scalar variablex. Non-local functions may be combined with localized activation functions giving localized behavior
of the total transfer functions.

4.1 Sigmoidal output functions

Sigmoidal output functions (sigmoidmeans S-shaped) are not only natural from the statistical point of view but are
also good squashing functions for unbounded activation. Sigmoidal output functions have non-local behavior, i.e. for
large activations they are non-zero in an infinite domain. Output functions may also be localized around some value.

Sigmoidal functions are smooth and – what is very important for backpropagation algorithm – it is easy to calculate
their derivatives. For the logistic function Eq. (5) the derivative isσ(I)′ = σ(I)(1−σ(I)). Logistic functions may be
replaced by the error (erf) function, arcus tangent or the hyperbolic tangent functions:

tanh(I/s) =
1−e−I/s

1+ e−I/s
(46)

tanh′(I/s) = sech2(I/s)/s=
4

s(e−I/s+ e+I/s)2
= (1− tanh(I/s)2)/s (47)

Since calculation of exponents is much slower than simple arithmetic operations other functions of sigmoidal shape
may be useful to speed up computations:

s1(I ;s) = Θ(I)
I

I + s
−Θ(−I)

I
I−s

= I
sgn(I)I −s

I2−s2 (48)

s2(I ;s) =
sI

1+
√

1+ s2I2
=

sI
1+ q

(49)

s3(I ;s) =
sI

1+ |sI| (50)

s4(I ;s) =
sI√

1+ s2I2
(51)

whereΘ(I) is a step function andq =
√

1+ s2I2. The derivative of these functions are also easy to compute:

s′1(I ;s) =
s

(I + s)2 Θ(I) +
s

(I −s)2 Θ(−I) =
s

(I + sgn(I)s)2 (52)

s′2(I ;s) =
s

q(1+ q)
(53)

s′3(I ;s) = −sgn(I)
s2I

(1+ |sI|)2 +
s

1+ |sI| (54)

s′4(I ;s) = − s3I2

(1+ x2)3/2
+

s√
1+ x2

(55)

Shapes of these functions1 are compared in Fig. 5. The sigmoidal function and the hyperbolic tangent functions
are hard to distinguish in this figure while the arcus tangent and thes1, s2 functions change asymptotically reaching

1All functions were linearly transformed to obtain output between 0 and 1; their slope parameterss are chosen to make them as similar to each
other as possible.
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Figure 5: Comparison of sigmoidal transfer functions.
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saturation for larger activation values more slowly. All these functions are very similar and therefore one may recom-
mend the use ofs1 or s2 functions since their computational costs are the lowest – in practical computations avoiding
calculation of exponential factors one can gain a factor of 2-3. Another approximation speeding up calculations of
exponents is presented in [48].

For sigmoidal functions powerful mathematical results exist, showing that a universal approximator may be built
from neural networks with single hidden layer of processing elements [6, 7]. This is not surprising, since almost any
set of functions may be used as a basis for universal approximator. What is more interesting are the estimates of the
rates of convergence using sigmoidal functions. For a single layer network ofn units under some weak assumptions
about the approximated function the rate of convergence improves asO(n−

1
2 ), i.e. it does not depend on the dimension

of the problem [49, 50, 51]. For polynomial functions the rate depends on the dimensiond and isO(n−
1
2d ) which for

multidimensional problems is unacceptably slow. For that reason we are quite sceptical about the use of orthogonal
polynomials as transfer functions [52, 53] for high dimensional problems. Other non-polynomial functions, such as
periodic functions, wavelets and some localized functions share with sigmoidal functions independence of convergence
rates from the dimensionality of the problem [54].

4.2 Functions localized around a single center

Another class of powerful functions used in approximation theory [4, 55, 56] is called the radial basis functions
(RBFs). Except for approximation theory these types of functions have also been in use for many years in pattern
recognition under different names (cf. potential function approach, [57]). A very good introduction to RBF and more
general regularization networks was given by Poggio and Girosi [58] (see also [1, 9, 13, 59, 60, 61, 62, 63]).

Radial basis functions take the radial coordinater = ||x− t|| for an activation. In this section we are only interested
in the output functionso(r) = o(I) used in this context. Some of these output functions are non-local, while others are
local. The nonlocal radial coordinate function (see Fig. 6) is the simplest:

h(r) = r = ||x− t|| (56)

For approximation problems Allison [64] recommends simple multiquadratic functions:

sm(r;b) =
√

b2 + r2; s′m(r;b) =
r

sm(r;b)
(57)

whereb is the smoothness parameter. Other examples of RBFs include the nonlocal general multiquadratics, and
thin-plate spline functions (see Fig. 7, 8):

h1(r,b) = (b2 + r2)−α, α> 0 (58)

h2(r,b) = (b2 + r2)β, 0< β< 1 (59)

h3(r,b) = (br)2 ln(br) (60)

Several types of localized radial basis functions exist. Among themGaussian functions(see Fig. 9) are unique
since for Euclidean distance functions (and other distance functions that may be presented as a sum of independent
components) they are separable (see [65] on the importance of separability). Separable functions are expressed as
products of independent factors for each of the input components, i.e.f (x) = ∏ fi(xi).

G(r,b) = e−r2/b2
(61)

Although the processing power of neural networks based on non-local processing units does not depend strongly
on the type of non-polynomial neuron processing functions such is not the case for localized units. Gaussian functions
e−r2

are quite simple but not the least expensive to compute. Logistic function, tanh or simple quadratic and quartic
functions with localized activation approximate roughly the shape of a Gaussian function:
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Figure 6: Radial Coordinates function (Eq. 56).

G1(r) = 2−2σ(r2) (62)

G2(r) = 1− tanh(r2) (63)

G3(r) =
1

1+ r2 ; G′3(r) =−2rG2
3(r); (64)

G4(r) =
1

1+ r4 ; G′4(r) =−4r3G2
4(r) (65)

Radial cubic B-spline function were used in [66]. They are defined by:

RCBSpline(r) =
1

10h3


h3 + 3h2(h− r) + 3h(h− r)2+ 3(h− r)3 r ≤ h

(2h− r)3 h< r ≤ 2h

0 2h< r

(66)

wherer = ||x− t||2 andt is a center. Fig. 10) shows an example of such function.
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Radially quadratic B-spline function were also used in [66] and are defined by:

RQBSpline(r) =
1

3h2


−2r2 + 3h2 r ≤ h

(2h− r)2 h< r ≤ 2h

0 2h< r

(67)

wherer = ||x− t i || and t i is a center (see Fig. 11; please note that there are errors in definition of these functions
in [66]). In this case output functions are a bit more complicated than in most other cases, but the shapes of these
functions are similar to Gaussians. Changing the activation to a non-Euclidean distance function has strong influence
on the contours of these functions.

Comparison of all Gaussian-like functions is presented in Fig. 12.
Networks based on radial functions are also universal approximators [8, 9]. Admitting processing units of the

sigma-pi type higher-order products of inputs are taken into account and the approximating function becomes a product
of various powers of input signals [67].

The rate of convergence of the Radial Basis Function networks for fixed dispersions has been determined by
Niyogi and Girosi [68]. Since the true function is unknown an error may only be measured in respect to the best
possible (Bayes) estimate of this function, called the regression functionf0(X). The distance between the regression
function and the function realized by the radial basis functions network withn nodes, each ofd dimensions, givenk
examples, estimated with the confidence (probability) 1− δ, is:

E
[
( f0(X)−Fn,k(X))2

]
=
∫

X
dXP(X)( f0(X)−Fn,k(X))2≤O

(
1
n

)
+ O

(√
ndln(nk)− lnδ

k

)
(68)
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Approximation theory determines the first factor,O(1/n), while statistics the second factor. The error vanishes
only if the network complexity, expressed by the number of its nodesn, tends to infinity slower than the number of
data samplesk. For any fixed number of data points there is an optimal number of network nodes that minimizes the
generalization error.

4.3 Semi-centralized functions

Semi-centralized output functions operate on vector components of activation. For example, the Gaussian bar func-
tions:

Ḡ(r ,b,v) =
N

∑
i=1

vie
−r2

i /b
2
i ; ri = (xi− ti) (69)

or the bicentral functions:

Bi(r ;b,s) =
N

∏
i=1

σ(I+)(1−σ(I−)) (70)

whereI+ andI− are defined by Eq. (42–45) These functions will be discussed in details below.
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5 TRANSFER FUNCTIONS

In this section activation and output functions are combined together to give the final transfer function. We have
divided transfer functions into those that are nonlocal, those that are local or semilocal, with separate subsection on
functions with hiperellipsoidal contours, and those that may become local or nonlocal depending on their adaptive
parameters, called for simplicityuniversal functions. The last subsection deals with universal bicentral functions,
since several variants of these functions are described.

5.1 Nonlocal Transfer Functions

Non-local transfer functions used in neural networks divide the total input space into regions corresponding to different
classes or values of the output vector. A single adaptive parameter may change the output of the network at all points
of the input space. Therefore the learning process must always change all adaptive parameters in a correlated way.
Typical transfer functions used in multilayer perceptrons (MLPs) for discrimination and approximation are sigmoidal
(Eq. 5,46 – 48) with the fan-in activation (1).

Figure 13: Decision regions formed using sigmoidal transfer functions.

The classification decision regions of neural networks based on such transfer functions are formed by cutting the
input space with hyperplanes (Fig. 13) and thus are suitable for calculation of posterior probabilities. The system
pretendsthat it knows everything – this may be quite improper, especially far from the training data regions where
hyperplanes, extending to infinity, enforce arbitrary classifications. Sigmoidal output functions smooth out many
shallow local minima in the total output functions of the network. For classification problems this may be desirable,
but for general mappings it limits the precision of the adaptive system.

Radial Basis Functions are used as transfer functions in many neural network simulators, but in most simulators
only Gaussian functions are provided. Nonlocal radial transfer functions include general multiquadratics (Eq. 58),
and thin-plate spline functions (Eq. 60, Fig. 7, 8), which may be combined with Minkovsky or many other distance
functions.

TheLorentzianresponse functions (see Fig. 14) introduced by Giraudet al.[14] used the squared fan-in activation
function to create surfaces of constant density of non-localized window-type:
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L(x;w) =
1

1+ I2(x;w
=

1

1+
(
∑N

i=1wixi−θ
)2 (71)

with the half-width equal to 1/
√

∑i w
2
i . Non-local functions of window type may also be obtained from many separa-

ble local and semi-local transfer functions, described below, if the product of individual components of these functions
does not cover all dimensions.

The tensor-product truncated power basis was used in MARS algorithm by Friedman [69] (see Fig. 15)

T(x; t,s,I ) = ∏
i∈I

[si(xi− ti)]
q
+ (72)

whereI is a subset of input features,q is a user-defined variable,t is the center,si defines direction and is equal to 1
or−1, and[ · ]+ indicates positive support. Such tensor product functions are used in the MARS algorithm to build an
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Figure 15: Tensor-product power basis function.

approximating function as a linear combination:

MARS(x;w,T,S,I ) =
N

∑
i=1

wi T(x; t i ,si ,Ii) + w0 (73)

5.2 Local and Semi-local Transfer Functions

Localized transfer functions use adaptive parameters that have only local influence on the network output, i.e. the
output is changed only in the localized regions of the input space. Early systems based on such functions may be traced
back to the older work on pattern recognition [57]. Moody and Darken [70] used locally-tuned processing units to learn
real-valued mappings and classifications in a learning method combining self-organization and supervised learning.
They have selected locally-tuned units to speed up the learning process of backpropagation networks. Bottou and
Vapnik [71] have shown the power of local training algorithms in a more general way. According to Kadirkamanathan
and Niranjan [72] smoothness conditions for adding new units in constructive neural networks are satisfied only by
strongly local units.

Radial Basis Functions are used as transfer functions in many neural network simulators, with Gaussian functions
being the most popular. The activation function is usually taken as the Euclidean distance, but it is easily generalized
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to an arbitrary distance functionD(x; t), wheret is the center of the unit, an adaptive parameter, such that the activation
has minimum forx = t and grows in an unbounded way ifx is far from t. Hamming distance is frequently used for
binary inputs. Additional adaptive parameters may be introduced as scaling factors (cf. Eq. 14) in each dimension (N
parameters), or as one common scaling factor for each center.

The simplest approach, used in the RBF networks, is to set a number of radial functionsGi(x) with predetermined
parametersbi and positionst i (for example, positions are set byk-means clustering and dispersions to twice the nearest
neighbor distance [73]) and determine the linear coefficientswi in the approximation function:

f (x,w,b, t) =
M

∑
i=1

wiGi(x,bi , t i) =
M

∑
i=1

wie
−||x−ti ||2/b2

i (74)

In regularization networks the centerst i of each of the radial units are also optimized [58], allowing for reduction
of the number of basis functions in the presence of noisy data (such reduction corresponds to the regularization of
approximating function). Thus in theN-dimensional case a center is described byN coordinatest i and one parameter
bi (dispersion for Gaussians). A straightforward generalization of the radial units of the Gaussian type with Euclidean
distance function is to allow different dispersions for different dimensions, giving 2N adaptive parameters, or centers
and dispersions, for each neural unit.

Moody and Darken used a normalized version of the Gaussian function:

GNi(x; t i ,bi) =
e−||x−ti ||2/b2

i

∑M
j=1e−||x−t j ||2/b2

j
(75)

An interesting property of this function is that for a givenx, the sum over allGNi functions is equal to 1. Therefore
the output may be treated as the probability computed by neuroni. In Fig. 16 output from 4 normalized Gaussian
functions is presented. Bridle [74] calls such normalized functionssoft-max.

5.3 Gaussian and sigmoidal bar functions

The problem of noisy dimensions in RBF networks, i.e. irrelevant inputs that do not contribute to the determination of
the output values, has been addressed by Hartman and Keeler [8] and by Park and Sandberg [9]. Instead of multidi-
mensional Gaussian functions these authors advocate a combination of one-dimensional Gaussians (see Fig. 17):

Ḡ(x; t,b,v) =
N

∑
i=1

vie
−(xi−ti)2/b2

i (76)

In this case separation of the activation and the output functions is not so natural. 3N adjustable parameters are
needed per processing unit. These functions are calledGaussian bar functionsbecause, except for a single maximum
around centert in N-dimensions, they involve Gaussians inN− 1 dimensional subspaces. For large number of di-
mensionsN these bars have valuesvi that may be much lower than the sum ofN weightsvi aroundt. To smooth the
network output and remove small maxima in the output layer sigmoidal functions are used.

Gaussian bars make elimination of irrelevant input variables, i.e. dimensionality reduction, easier than in the
multidimensional Gaussian case. Variable dispersions should also allow to reduce some of the dimensions to zero
(cf. the example of quadratic logistic mapping given by Moody and Darken [70]). Another advantage of using the bar
functions follows from the very existence of these bars. A single maximum or a few separated maxima are described
by a small number of Gaussian functions with onlyN + 1 parameters each and require the same number of Gaussian
bar functions with almost three times as many parameters. However, if there arek regularly spaced input clusters in
each dimension in theN-dimensional hypercube,kN clusters are formed, and each should be represented by a separate
multivariate Gaussian. On the other handkN Gaussian bar functions are sufficient to describe such a case.

Similar combination of sigmoidal functions will createsigmoidal bar function(see Fig. 18):
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Figure 16: Normalized Gaussian function called also softmax.

σ̄(x; t,b,v) =
N

∑
i=1

vi

1+ e−(xi−ti)2/b2
i

(77)

These functions, similarly to Gaussian bars, give contours of constant densities that cannot be rotated easily, which
is clearly a disadvantage. Sigmoidal bar functions should not be used to represent data clustered only around a few
points, because each cluster requires 2N sigmoidal functions while one Gaussian function may be sufficient to model
a cluster. However, if the data clusters are regularly spaced in a quadratic mesh each of thek2 clusters should be
represented by a separate Gaussian, while 2k sigmoidal or Gaussianbars in the input space are sufficient to represent
such data and 2k−2 hyperplanes or sigmoids are sufficient for discrimination of each cluster.

5.4 Functions with ellipsoidal contours

The multivariate Gaussian functions give localized hyperellipsoidal output densities (see Fig. 19):

Gg(x; t,b) = e−D2(x;t,b) =
N

∏
i=1

e−(xi−ti)2/b2
i (78)

Dispersionsbi may be interpreted as scaling factors in the Euclidean distance function. A similar result is obtained
by combining the sigmoidal output function (or any other logistic function) with the quadratic distance function (see
Fig. 20), for example:
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GS(x; t,b) = 1−σ(D(x; t,b)2) (79)

=
1

1+ ∏N
i=1e(xi−ti)2/b2

i
=

1

1+ eD2(x;t,b)
(80)

ForN-dimensional input space each ellipsoidal unit uses 2N adaptive parameters. Taking the Mahalanobis distance
functionDM(x; t), Eq. (15), with (symmetric) covariance matrixΣ, rotation of hyperellipsoids is introduced. Treating
the elements of covariance matrix as adaptive parameters is equivalent to the use of a general metric tensor in the
distance function:

D2
Q(x;Q; t) = ∑

i≥ j
Qi j (xi− ti)(xj − t j) (81)

The total number of parameters per each function becomesN(N +3)/2 and the constant density surfaces are given by
general quadratic forms, i.e. they are ellipsoidal, parabolic or hyperbolic.

A single unit may also provide more complex densities if more general distance functions are used, but one should
avoid using too many nonlinear parameters per neural node. Simpler units giving approximately ellipsoidal densities
are also useful, for example (see Fig. 21):

Ḡ2(x; t,b) =
N

∏
i=1

1

1+ (xi− ti)2/b2
i

(82)

This formula can not be easily expressed in terms of an overall distance function. Using linear approximation for
GS (instead of a product) the squared distance function appears in the denominator (see Fig. 22):

Ḡ3(x; t,b) =
1

1+ ∑N
i=1(xi− ti)2/b2

i

=
1

1+ D2(x; t,b)
(83)

These functions also give hyperellipsoidal densities. A number of local training algorithms has been devised for
local transfer functions, combining thek-means clustering for initial placements of ellipsoids in a self-organizing
fashion, followed by growing and pruning of the new ellipsoidal units in supervised algorithm. In particular if the
training algorithm localizes neuron processing function in the region far from the given data points the unit may be
removed without loss.

An interesting feature2 of Gaussian functionsGg (Eq. 78) is that after a simple renormalization:

GR(x; t,b) =
Gg(x; t,b)

Gg(x; t,b) + Gg(x;−t,b)
=

1

1+ e−4∑N
i=1 xiti/b2

i
= σ(w ·x) (84)

they become non-local and are equivalent to sigmoidal functionsσ(w ·x), wherewi = 4ti/b2
i . In this way RBF networks

may be used instead of MLP networks and vice versa, a simple input transformation allows MLP networks to be used
as RBF networks with localized transfer functions [75, 76].

5.5 Universal transfer functions

Linear terms used to calculateI(x;w,θ) activations and quadratic terms used in Euclidean distance measures com-
bined together create functions that for some parameters are localized, and for other parameters non-localized. Several
functions of this kind have been proposed recently. Ridellaet al. [47] use circular units in their Circular Backpropa-
gation Networks. The output function is a standard sigmoid while the activation function contains one extra term (see
Fig. 23):

2W.D. is indebted to Igor Grabiec of Liubljana University for pointing this out in a private discussion
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Figure 19: Multivariate Gaussian function (Eq. 78).
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−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

XY

Z

−10 0 10
−10

−5

0

5

10

X

Y

G
3
 ellipsoidal function
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AR(x;w) = w0 +
N

∑
i=1

wixi + wN+1

N

∑
i=1

x2
i (85)

and may also be presented in the form of a distance function with:

AR(x;w) = dc(x;c) = (||x−c||2−θ)wN+1; (86)

ci = −wi/2wN+1; θ =
1

wN+1

(
N

∑
i=1

w2
i

4w2
N+1

−w0

)

Ridellaet al.[47] obtained very good results using these units in the standard backpropagation network and proved
that in many ways circular units provide an optimal solution in classification problems. Different types of circular units
have been used by Kirby and Miranda [77]. In their implementation two sigmoidal units are coupled together and their
output is restricted to lie on a unit circle.

Dorffner [13] proposedconic sectiontransfer functions as a unified framework for the MLP and RBF networks.
Straight lines and ellipses are special cases of conic sections. From geometrical considerations Dorffner proposes a
combination of fan-in and distance activation functions (Fig. 24):

AC(x;w, t,ω) = I(x− t;w) + ωD(x− t) (87)

=
N+1

∑
i=1

wi(xi− ti) + ω

√
N+1

∑
i=1

(xi− ti)2

This activation is then composed with the standard sigmoidal function to produce the conical transfer function.
From our previous discussion it should be clear that many other combinations of fan-in and distance functions could
also serve as universal transfer functions. For example, exp(αI2−βD2) or the approximated Gaussian combined with
the Lorentizan function also provide an interesting universal transfer function (see Fig. 25):

CGL1(x;w, t,α,θ) =
1

1+ AGL1
=

1
1+ (I(x;w) + αD(x; t))2 (88)

or

CGL2(x;w, t,α,θ) =
1

1+ AGL2
=

1
1+ αI2(x;w) + βD2(x; t)

(89)

For simplicity we may assume thatβ = 1−α. The α parameter scales the relative importance of the linear,
non-localized terms. The number of adaptive parameters in this case is equal to 2N + 1 (no scaling factors in dis-
tance function) or 3N + 1 (separate distance scaling factors for each dimensions). Unfortunately these functions are
nonseparable .

5.6 Bicentral functions

Sigmoidal functions may be combined into awindowtype localized functions in several ways. Two simple window-
type functions are constructed as the difference of two sigmoids,σ(x)−σ(x−θ) or the product of pairs of sigmoidal
functionsσ(x)(1−σ(x)) for each dimension. After normalization the two forms are identical:

σ(x+ b)(1−σ(x−b))
σ(b)(1−σ(−b))

=
σ(x+ b)−σ(x−b)

σ(b)−σ(−b)
(90)
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Figure 24: Conical function (Eq. 87).
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This type of transfer functions are very flexible, producing decision regions with convex shapes, suitable for
classification. Product ofN pairs of sigmoids has the following general form (Fig. 26):

Bi(x; t,b,s) =
N

∏
i=1

σ(A1+
i ) (1−σ(A1−i )) (91)

=
N

∏
i=1

σ(esi · (xi− ti + ebi )) (1−σ(esi · (xi− ti−ebi )))

whereσ(x) is a logistic function (Eq. 5). The first sigmoidal factor in the product is growing for increasing inputxi

while the second is decreasing, localizing the function aroundti . Shape adaptation of the densityBi(x; t,b,s) is possible
by shifting centerst, rescalingb ands. Radial basis functions are defined relatively to only one center||x− t||. Here
components of two centers are used,ti + ebi andti−ebi , therefore we have called these functions previouslybiradial
functions[78], but perhaps the namebicentral is more appropriate. Product form leads to well-localized convex
contours of bicentral functions. Exponentialsesi andebi are used instead ofsi andbi parameters to prevent oscillations
during the learning procedure (learning becomes more stable).

The number of adjustable parameters per processing unit is in this case 3N. Dimensionality reduction is possible
as in theGaussian bar case, but more flexible contours are obtained, thus reducing the number of adaptive units in the
network.

Localized bicentral functions may be extended to the semi-localized universal transfer functions by adding two
parameters:

SBi(x; t,b,s) =
N

∏
i=1

(α + σ(A1+
i )) (1−βσ(A1−i )) (92)

=
N

∏
i=1

(α + σ(esi · (xi− ti + ebi))) (1−βσ(esi · (xi− ti−ebi)))

This function does not vanish for large|x|, for α = 0, β = 1 it is identical to the bicentral localized functions while
for α = β = 0 each component under the product turns into the usual sigmoidal function. For each unit semi-local
functionsSBihave 3N+ 2 parameters or 5N parameters (if differentαi andβi are used in each dimension).

Bicentral functions with independent slopes. Another possibility to control contours of constant value of bicentral
functions is to use independent slopes (see Fig. 27):

Bi2s(x; t,b,s) =
N

∏
i=1

σ(A2+
i ) (1−σ(A2−i )) (93)

=
N

∏
i=1

σ(esi · (xi− ti + ebi )) (1−σ(es′i · (xi− ti−ebi )))

Using small slopesi and/ors′i the bicentral function may delocalize or stretch toleft and/orright in any dimension.
This allows creation of such contours of transfer functions as half-infinite chanel, half-hyper ellipsoidal, soft triangular,
etc. Although the costs of using this function is a bit higher than of the bicentral function (each function requires 4N
parameters) more flexible decision borders are produced.

Bicentral functions with rotation. The bicentral functions proposed above contain 3N parameters per unit and may
represent quite complex decision borders. Semi-bicentral functions and bicentral functions with independent slopes
provide local and non-local units in one network. The next step towards even greater flexibility requires individual
rotation of contours provided by each unit [78, 79]. Of course one could introduce a rotation matrix operating on the
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inputsRx, but in practice it is very hard to parametrize thisN×N matrix withN−1 independent angles (for example,
with Euler’s angles) and to calculate all derivatives necessary for backpropagation training procedure. We have found
two ways to obtain rotated contours in all dimensions using transfer functions with justN additional parameters per
neuron. In the first approach, a product form of the combination of sigmoids is used (see Fig. 28)

CP(x; t, t′,R) =
N

∏
i

(
σ(A3+

i )−σ(A3−i )
)

(94)

=
N

∏
i

(
σ(Rix + ti)−σ(Rix + t ′i )

)
SCP(x; t, t′,p, r ,R) =

N

∏
i

(
pi ·σ(A3+

i ) + ri ·σ(A3−i )
)

(95)

=
N

∏
i

(
pi ·σ(Rix + ti) + ri ·σ(Rix + t ′i )

)
whereRi is thei-th row of the rotation matrixR with the following structure:

R =



s1 α1 0 · · · 0
0 s2 α2 0

...
...

...
sN−1 αN−1

0 · · · 0 sN


(96)

If pi = 1 andri =−1 thenSCP function is localized and has similar contours as the bicentral functions (except for
rotation). Choosing other values for thepi andri parameters non-local transfer functions are created. In the second
approach the sum of awindow-typecombinations of sigmoidsL(x;t,t ′) = σ(x+ t)−σ(x+ t ′) in N−1 dimensions is
used and the last combination is rotated by a vectork:

CK(x; t, t′,w,k) =
N−1

∑
i=1

wiL(xi ,ti ,t
′
i ) + wNL(kx,t,t ′) (97)

The last termL(kx,t,t ′) has contours of constant value extending in perpendicular direction to thek vector. Treat-
ing CK(·) as the activation function and using a sigmoidal output function with a proper threshold leaves non-zero
values only in the direction perpendicular tok. An alternative is to use the product form:

CPK(x; t, t′,k) = L(kx,t,t ′)
N−1

∏
i=1

L(xi ,ti ,t
′
i ) (98)

as the transfer function – the output sigmoid is not needed in this case. Rotation adds onlyN−1 parameters forCP(·)
function andN parameters forCK(·) function.

Bicentral functions with rotations (as well as multivariate Gaussian functions with rotation) have been implemented
so far only in two neural network models, the Feature Space Mapping [65, 79] and the IncNet [80, 81, 82].

Bicentral functions with rotation and two slopes. The most complex bicentral function is obtained by combining
rotations with two independent slopes (see Fig. 29):
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Figure 28: Bicentral functions with rotation (Eq. 94).

BiR2s(x; t, t′,α) =
N

∏
i

σ(A4+
i )(1−σ(A4−i )) (99)

=
N

∏
i

σ(si(xi + αixi+1− ti + bi))(1−σ(s′i(xi + αixi+1− ti−bi)))

whereα1, . . . ,αN−1 define the rotation andxN+1 = 0 andαN = 0 is assumed. This transfer function can be local
or semi-local and may rotate in any direction, therefore it is computationally more expensive, using 5N adaptive
parameters per function.

An important advantage of the bicentral functions comes from their separability. Sigmoidal functions are not
separable and among radial basis functions only Gaussians are separable. Although bicentral functions are made from
sigmoids they are separable because products of pairs of sigmoids for each dimension are used. Separability enables
analysis of each dimension or a subspace of the input data independently: one can forget some of the input features
and work in the remaining subspace. This is very important in classification when some of the features are missing
and allows to implement associative memories using feedforward networks [65, 79].
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Bicentral function with rotation and double slope
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Figure 29: Bicentral functions with rotation and two slopes (Eq. 99).
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Bicentral transfer functions may also be used forlogical rule extractionusing the Feature Space Mapping network
(FSM network, a model similar to RBF but based on separable functions) [83, 84]. Logical interpretation of the
function realized by this neural network is possible if instead of hyperellipsoidal densities cuboidal densities are used.
In case of sigmoidal and bicentral transfer functions sufficiently large values of the slopes are needed, changing graded
sigmoidal functions into step functions and bicentral functions into cuboidal (rectangular) functions. There are several
ways to enforce large slopes of the transfer functions, for example by adding penalty terms to the error function.
Modification of the error function may also be done after the training process is completed, with subsequent retraining
to maximize the slopes with minimal change of the network parameters. Thewindowfor irrelevant inputs becomes
broad and when it covers all the data the links to relevant inputs are removed. Using these ideas we have obtained very
good results in applications to rule extraction from data [84].

A comparison of different transfer functions is presented in Table 1. in the first column the name of the transfer
function is given; the second column shows the equation number defining the function; the third column shows the type
of activation function. In the next column the number of adaptive parameters ford-dimensional inputs are given. For
the multistep functionk is the number of different steps (usually not treated as an adaptive parameter). Local or non-
local character of functions is noted in the fifth column – some functions may be either local or non-local, depending
on their parameters. Next column shows the type of adaptive parameters:w are weight-type linear parameters,θ are
thresholds,t are centers,b andb play the role of dispersions or feature scaling factors,s determine slopes,R are
parameters determining rotation, ando, O are additional parameters. The last two columns note whether the function
is separable (Y), symmetric (S), antisymmetric (A) or has no symmetry (N).

6 NONLINEAR TRANSFORMATION OF INPUTS.

So far various transfer functions were discussed providing flexible decision borders for complex problems. Another
approach has been taken in the functional link networks of Pao [11]. New input features, obtained by transformation
of original inputs, are added as new inputs to a standard MLP network. Such transformations are performed also in
the pattern recognition methods [85] and newer work on Support Vector Machines [86]. Transfer functions are not
changed directly but adding additional inputs has a strong influence on decision borders. The circular units used by
Ridella (Eq. 85) may either be presented as a new type of an activation function or as an additional input receiving the
sum of squared values of original inputs.

The distance-based activation functions have been combined with the sigmoidal output functions in the multilayer
perceptron models only very recently [75, 76]. Neural realization of minimal distance methods, including some novel
transfer functions, is discussed in [87, 88]. For inputs normalized to||x||= ||w||= 1 the fan-in activation of neurons is
strongest for input vectorsx that are close tow on a unit sphere. In general the activation of a neuron may be written
as:

w ·x =
1
2

(
||w||2 + ||x||2−||w−x||2

)
(100)

For normalized input vectors sigmoidal functions (or any other monotonically growing transfer functions) may
therefore be written in the form:

σ(w ·x + θ) = σ(d0−D2(w,x)) (101)

whereD2(w,x) = 1
2||w−x||2. This distance function evaluates the influence of the reference vectorsw on the classi-

fication probabilityp(Ci |x;w). Transfer functionf (D) = σ(d0−D2(w,x)) monotonically decreases as a function of
distance, with flat plateau for small distancesD, reaching the value of 0.5 forD2(w,x) = d0 and approaching zero for
larger distances. For normalizedx but arbitraryw the sigmoid arguments belong to the[θ− |w|,θ + |w|] interval. A
unipolar sigmoid has its maximum curvature around±2.4, therefore smaller thresholdsθ and absolute weight values
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Function Eq. Activation
Number of

parameters

Local or

nonlocal
Adaptation of

S
e

pa
ra

bi
lit

y

S
ym

et
ric

Heaviside (2) I d +1 NL w,θ A

multistep (3) I d +k NL w,Θ A

Semi-linear (4) I d +2 NL w,θ A

Logistic (5) I d +1 NL w,θ A

tanh, arctan (46) I d +1 NL w,θ A

s1 (48) I d +1 NL w,θ A

s2 (49) I d +1 NL w,θ A

s3 (50) I d +1 NL w,θ A

s4 (51) I d +1 NL w,θ A

Radial coordinate (56) D d NL t,b S

Multiquadratics (58) D d+2 L+NL t,b,o S

Thin-plate spline (60) D d+1 NL t,b S

Gaussian (61) D d+1 L t,b Y S

G1 = 2−2σ(r2) (62) D d+1 L t,b S

G2 = tanh(r2) (63) D d+1 L t,b S

G3 (64) D d+1 L t,b S

G4 (65) D d+1 L t,b S

RCBSpline (66) D d+1 L t,b S

RQBSpline (67) D d+1 L t,b S

Gaussian bar (76) Di 3d L t,b,O Y S

Sigmoidal bar (77) Di 3d L t,b,O Y S

Multivariate gaussian (78) D 2d L t,b Y S

Multivariate sigmoid (79) D 2d L t,b S

Ḡ2 (82) Di 2d L t,b Y S

Ḡ3 (83) D 2d L t,b S

Lorentzian (71) I d +1 NL t,s N

Tensor-prod. (72) Di 2d +1 NL w,θ N

GR (84) D 2d NL t,b N

Ridella (85) AR d+3 L+NL w,θ S+N

Conical (87) AC 2d +2 L+NL t,w,θ,o S+N

CGL1 (88) AGL1 2d +3 L+NL t,w,θ,o S+N

CGL2 (89) AGL2 2d +4 L+NL t,w,θ,o S+N

Bicentral (91) A1 3d L t,b,s Y S

Semi-bicentral (92) A2 5d L+NL t,b,s,O Y S+N

Bicentral 2 slopes (93) A2 4d L+NL t,b,s Y S+N

Bicentral rotation (94) A3 4d−1 L t,b,s,R Y/N S

Semi-bicentral rotation (95) A3 6d−1 L+NL t,b,s,R,O Y/N S+N

CK rotation (97) A1,A1(kx) 4d L t,b,s,R Y/N S

CPK rotation (98) A1,A1(kx) 4d L t,b,s,R Y/N S

Bicentral rotation 2 slopes (99) A4 5d−1 L+NL t,b,s,R Y/N S+N

Table 1: Comparison of different transfer functions. See text for explanation of symbols used.
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|w| mean that the network operates in an almost linear regime and thus smoothing the network approximation to the
training data. Small weights are enforced in regularization methods by adding penalty terms to the error function.

The interpretation here is that MLP networks use sigmoidal functions to estimate the influence of weight vectors
according to distance between the weight and the training vectors, combining many such estimations to compute the
final output. Changing the distance function in Eq. (101) from the square of the Euclidean distance to some other
distance measures distance-based neural networks (D-MLP networks, [75]), are defined.

Another possibility to replace the fan-in activation by distance functions is to write the weighted product in the
form:

σ(w ·x) = σ
(

1
4

(||w + x||2−||w−x||2)
)

(102)

and replace the Euclidean norm by Minkovsky’s or other type of norms.
Instead of deriving the backpropagation equations for the transfer functions with non-Euclidean distances pro-

viding non-planar decision borders one may achieve similar result using a standard MLP network in the extended
feature space, where the newxr component is determined by the normalization condition using the desired metric
[76]. Extended vectors||(x,xr)||D are renormalized using the metric functionD(·), placing them on a unit sphere
defined by this metric. The influence of input renormalization (using Minkovsky distance functions) on the shapes of
decision borders is illustrated in Fig. 30 for the classical Iris flowers dataset (only the last two input features,x3 and
x4 are shown, for description of the data cf. [89]). Dramatic changes in the shapes of decision borders for different
Minkovsky metrices are observed. Using squared Euclidean metric withσ(d0−D2(x, t)) transfer functions andw3 = 0
the standard MLP solution is obtained. Euclidean case corresponds to circular decision borders, the city block metric
α = 1 gives sharp, romboidal shapes, for largeα almost rectangular decision borders are obtained (an approximation
using logical rules is in this case straightforward) while for smallα hypocycloidal shapes are created.

Thus adding new input features (more than one may be added) obtained from nonlinear transformation is an
alternative method to increase flexibility of decision borders. If the neural model used allows for estimation of its
reliability (for example by inspecting the outputs of localized nodes) one may use several networks with different
preprocessing of inputs and either treat them as an ensemble or select the answer from the network which is estimated
to be most reliable.

7 DISCUSSION ANDPOSSIBLE EXTENSIONS

We have presented an overview of different transfer functions used in neural network models and proposed several
new combinations of activation and output functions suitable for this purpose. From the geometrical point of view
learning requires approximation of complicated posterior probability decision borders or probability density contours.
In the process of neural networks training flexible transfer functions are as important as good architectures and learning
procedures. Small number of network parameters should allow for maximum flexibility. Universal (semi-localized)
functions, such as the circular, conical, bicentral or simplified Lorentzian/Gaussian functions lead to more compact
networks that may learn faster and generalize better. These functions use mixed activations to unify the distance-based,
localized paradigm with activation functions that are quadratic in inputs, and the non-local approximations based on
discriminant functions that use only linear activations.

Unfortunately little is known about advantages and disadvantages of different transfer functions presented in this
paper. Many of them have never been used in neural networks so far and almost none are available in public domain
neural software. Bicentral and rotated transfer functions (CP(·), CS(·)) are flexible but still rather simple, therefore we
have used them in the FSM [65, 90, 79], IncNet

[80, 81, 82, 91] and other neural models, obtaining very good results. Fair comparison of transfer functions
would be very difficult, if not impossible, because results depend on the methods, learning algorithms, initialization,
architectures and datasets used. Empirical large scale comparisons of classification methods were attempted in the
Statlog project [17], but we still do not know how to characterize datasets to determine which method to use for a
given dataset. Similarly we do not know which transfer functions should be used for different datasets. This does not
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Figure 30: Shapes of decision borders in the Iris case for standard MLP (4 neurons, 2 inputs) solution and for MLP (3
neurons, 3 inputs) using the data vectors renormalized with Minkovsky metric,α = 0.5,1.0,1.5,2.0 and 7.0.
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mean that we should always be satisfied with sigmoidal functions any more than that we should be satisfied with a
single classification model. Many transfer functions may be tried with a single neural model, keeping all other factors
constant, therefore at least partial empirical comparison of the effectiveness of transfer functions should be possible.

Although the importance of flexible description of decision borders seems to be rather obvious, the important role
of the transfer functions is frequently overlooked. There is a tradeoff between flexibility of a single processing unit,
increasing with the number of adjustable parameters, and the number of units needed to solve the problem, decreasing
with flexibility of individual units. The complexity of the training process of the whole network should be minimized,
but what is the optimal balance between the number and the complexity of units is not known. Papers describing
novel transfer functions quoted in this survey contain many interesting results, although a systematic comparison of
transfer functions has not been done. Very few neural network simulators use transfer functions that are not sigmoidal
or Gaussian, therefore little experience has been gathered. We believe that neural transfer functions deserve more
attention.
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