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Abstract— Psychological spaces give natural framework for con-
struction of mental representations. Neural model of psychological
spaces provides a link between neuroscience and psychology. Cate-
gorization performed in high-dimensional spaces by dynamical asso-
ciative memorymodels is approximated with low-dimensional feedfor-
ward neural models calculating probability density functions in psy-
chological spaces. Applications to the human categorization experi-
ments are discussed.

I. I NTRODUCTION.

Although great progress has been made in recent years in
understanding how the brain generates behavior reconcilia-
tion of language used in psychology and language used in
neuroscience still remains one of the most important prob-
lems. Roger Shepard in a paper “Toward a universal law of
generalization for psychological science” [1] wrote: “What
is required is not more data or more refined data but a dif-
ferent conception of the problem”, pointingout that psycho-
logical laws should be formulated in appropriate psycholog-
ical spaces (P-spaces) [2]. Unified theory of mind in cog-
nitive science that Allen Newell hoped for is still missing
[3]. Clearly a set of new concepts, a mapping between neu-
rophysiological and psychological events, is needed. How
should the higher order cognitive processes, such as catego-
rization, be reduced, at least in principle, to neurodynamics?
How are the mental representations in the long-term mem-
ory formed? In this paper a model offering plausible solu-
tions to these questions is described.

Categorization, or creation of concepts, is one of the most
important cognitive processes. It is also one of the most dif-
ficult processes to understand if one tries to see it from the
point of view of both psychology and neuroscience. Cur-
rent research on category learning and concept formation
frequently ignores constraints coming from neural plausi-
bility of postulated mechanisms. Connectionist models are
at best loosely inspired by the idea that neural processes are
at the basis of cognition. An explanation given by a formal
theory, even if it fits psychological data, may allow for pre-
dictions, but it may not give us more understanding of hu-
man cognition than a few-parameter fits allowing for pre-
diction of sun eclipses gave the ancient astronomers.

Psychologists frequently use a language of psychologi-
cal or feature spaces to describe results of categorization ex-
periments. Shepard showed [1] the existence of universal
scaling laws in psychological spaces. Therefore it should be
very interesting to construct models of mental events taking
place in P-spaces and to show how such models could be re-
alized by neural dynamics. One of the mysteries in brain
research is how are the mental representations acquired?
Learning at the beginning involves many groups of neurons

but after proficiency is gained brain’s activity becomes lo-
calized. One solution to these problems is offered below.

II. M IND AND NEURODYNAMICS.

There is growing theoretical and experimental evidence
that the original idea of local reverberations in groups of
cortical neurons coding the internal representations of cat-
egories, put forth by the psychologist Donald Hebb already
in 1949, is correct [4]. Local circuits seem to be involved in
perception and in memory processes. Analysis of integra-
tion of information from the visual receptive fields in terms
of modules composed of dense local cortical circuitry [5] al-
lows for explanation of a broad range of experimental data
on orientation, direction selectivity and supersaturation. It
would be most surprising if the brain mechanisms operating
at the perceptual level were not used at higher levels of in-
formation processing. Neocortex has highly modular orga-
nization, with neurons arranged in six layers and grouped in
macrocolumns that in turn contain microcolumns of about
110 neuron each. Successful models of memory, such as the
tracelink model of Murre [6], make good use of this modular
structure, postulating that each episodic memory is coded
in a number of memory traces that are simultaneously ac-
tivated and their activity dominates the global dynamics of
the brain, reinstating similar neural state as was created dur-
ing the actual episode.

How is then mind related to neurodynamics? In physics
macroscopic properties results from microinteractions, in
psychology behavior should also result from neurodynam-
ics. In practice direct attempts at connecting neural dynam-
ics with higher cognition seem to be hopelessly difficult.
Macroscopic physics is possible because space-time, either
Euclidean in classical physics, or described by differential
geometry in relativistic physics, is a good arena for physi-
cal events. It seems fruitful to use P-spaces as an arena for
mental events. A sketch of such theory was given recently
[7].

A reasonable hypothesis relating psychological concepts
to brain activity seems to be the following: the activity
of microcolumns shows quasidiscrete attractor dynamics.
Several stable patterns of excitations may form, each cod-
ing a specific concept. Via axon collaterals of pyramidal
cells, extending at distances of several millimeters, each mi-
crocolumn excites other microcolumns coding related con-
cepts. These excitations should depend on the particular
form of local dynamics. From the mathematical point of
view the structure of local excitations is determined by at-
tractors in the dynamics of neural cell assemblies. A col-
lection of mode-locking spiking neurons provides a good



model of such networks. Simple models of competitive
networks with spiking neurons have been created to ex-
plain such psychological processes as access to conscious-
ness (cf. [8]). Realistic simulations of the attractor dynam-
ics of microcolumns, giving results comparable with exper-
iment, should be possible, although they have not been done
yet. In any case, possible attractor states of neurodynamics
should be identified, basins of attractor outlined and transi-
tion probabilities between different attractors found. In the
olfactory system it was experimentally found[9] that the dy-
namics is chaotic and reaches a cyclic attractor only when a
proper external input is given as a cue. The same may be
expected for the dynamics of a microcolumn. Specific ex-
ternal input provides a proper combination of features acti-
vating a microcolumn that partially codes a category. From
the neurodynamical point of view external inputs push the
system into a basin of one of the attractors.

A good approach connecting neurodynamics with men-
tal events in higher cognition tasks should start from ana-
lysis of neural dynamics, find invariants (attractors) of this
dynamics and represent the basins of attractors in P-space.
Behavioral data may also be used to set a topography of psy-
chological space. In the first step neural responses should be
mapped to stimulus spaces. This may be done by population
analysis or Bayesian analysis of multielectrode responses
[10]. Conditional probabilities of responsesP (rijs); i =
1::N are computed from multi-electrode measurements.
The posterior probabilityP (sjr) = P (stimulusjgiven re-
sponse) is computed from the Bayes law:
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based on the feature of stimuli a number of “objects” repre-
senting recognized categories are created. Psychological re-
search on categorization may provide additional behavioral
data and both types of data may be used in one model.

It would be ideal to construct models of neurodynam-
ics based on experimental data, describing how groups of
neurons learn to categorize, and then to reduce these mod-
els to simplified, canonical dynamics (i.e. the simplest dy-
namics equivalent to the original neurodynamics) in the
low-dimensional psychological space. So far there are no
good neurodynamical spiking neuron models of the cate-
gory learning process, but it is possible to create a simple
attractor network models based on the Hopfield networks
and use these models to understand some aspects of cate-
gory learning in monkeys (cf. [4]). The internal state of
these models is described by the activity of a large number
of neurons. Since the input informationO(X) is uniquely
determined by a pointX in the psychological space it is
possible to investigate the category that the attractor model
A(O(X)) will assign to each point in the psychological
space. Thus an image of the basins of attractor dynamics in
the psychological space may be formed. Attractors do not
have to be point-like, as long as a procedure to assign cat-
egories, or probability of different categories, to a specific

behavior of the attractor network is defined. To characterize
the attractor dynamics in greater details probabilitiespi(X)
may be defined on the P-space. In aK-category problem
there areK � 1 independent probabilities. Other functions
that one may define on P-space may measure the time the
dynamical system needs to reach the asymptotic categoriza-
tion probability value. Functions on P-spaces may be mod-
eled using conventional feedforward neural networks.

More detailed models of this kind, which I have called
previously [7] “Platonic models” (Plato thought that mind
events are a shadow of ideal reality, here probability max-
ima representing categories of input objects are shadows of
neurodynamics), should also preserve similarities between
categories learned by neural systems. Similarity of cate-
gories represented in feature spaces by peaks of high prob-
ability clusters should be proportional to some measure of
distance between them. In neural dynamics this is deter-
mined by transition probability between different attractor
states, determining how “easy” it is to go from one category
to the other. However, there is no reason why such transition
probabilities should be symmetric. As a consequence dis-
tanced(A;B) between two objectsA andB in the feature
space should be different than distanced(B;A). Euclidean
geometry cannot be used in such case. A natural generaliza-
tion of distance is given by the action integral in the Finsler
spaces [11]:

s(A;B) = min

∫
B

A

L(X(t); dX(t)=dt)dt

whereL(�) is a Lagrangian function. Attractor basins cor-
respond to regions of high values of probability densities in
P-spaces. The dynamics in P-spaces is represented by the
movement of a point called the stateS, going from one cat-
egory to another, following the underlying neurodynamics.
Dynamics should slow down or stabilize around probabil-
ity peaks, corresponding to the time that the mind spends
in each category coded by an attractor state of neurodynam-
ics. Only a small part of the overall neurodynamics of the
brain is modeled, the rest acting as a source of noise. Point,
cyclic and strange attractors may be interpreted as recog-
nition of categories. Point attractors correspond to infinite
times spend on one category. The distance between such
categories should in this case grow infinitely – if interac-
tions with other parts of the brain are neglected point attrac-
tors behave like “black holes”, trapping the mind state for-
ever.

The model of forming mental representations proposed
here assumes that categorization is initially done by the
brain using many collaborating microcolumns in the asso-
ciative areas of the cortex or in the hipocampus. This pro-
cess should be described by an attractor network. Catego-
rization, or interpretation of the states of this network, is
done by distal projections to cortical motor areas. Longer
learning leads to development of a specialized feedforward
neural network that matches higher-level complex features
with categorization decisions of the attractor network. Men-



tal representations are defined and interpreted in the low-
dimensional P-spaces, not in the high-dimensional patterns
of activity of the attractor network dynamics. Higher-level
complex features are created by combination of lower-level
features (mechanisms of attention should play a role here).
Alternatively they may be formed by a neural realization of
multidimensional scaling procedure [12]. Preservation of
similarities is the only requirement for the dimensionality
reduction. Mental representations - objects in P-spaces - are
formed slowly transferring the knowledge about categoriza-
tion from the attractor networks to simpler feedforward net-
works.

Geometrical characterization of P-spaces and of the land-
scapes created by the probability density functions defined
on these spaces and obtained as an approximation to neu-
rodynamics lead to an alternative model of mind. Such P-
spaces offer an arena for mind events that is acceptable to
psychology and understandable from neurobiological point
of view.

III. E NCODING CATEGORIES IN FEATURE SPACES.

The model presented in the previous section may be ap-
plied to categorization in psychology. Although the exam-
plar theory of categorization is usually presented as an alter-
native to the prototype theory [13] neurodynamics lies at the
basis of both theories. Is it possible to distinguish between
categorization based on prototypes and exemplars? In the
first case basins of attractors should be large and the cor-
responding objects in P-spaces should be large and fuzzy.
A prototype is not simply a point with average features for
a given set of examples, but a complex fuzzy object in the
P-space. If categorization is based on exemplars there are
point-like attractors corresponding to these exemplars and
the P-space objects are also point-like. Intermediate cases
are also possible, going from set of points representing ex-
emplars, to a fuzzy object containing all the exemplars. Al-
though representation is different both theories may give
similar behavioral results if processes acting on these rep-
resentations are different. If the neural dynamics is noisy
exemplars become so fuzzy that a prototype is formed. Neu-
ral dynamic models physical processes at the level of brain
matter while dynamic in the P-spaces models a series of suc-
cessive categorizations, or mental events, providing precise
language useful from psychological perspective.

A classic category learning task experiment has been per-
formed by Shepardet.al. [14]. Subjects were tested on six
types of classification problems of increasing complexity. 8
distinct objects had two kinds of shape, two colors and two
sizes. In type I problems only a single feature was relevant,
for example category A included all squared-shaped objects
and category B all triangle shaped objects. In type II prob-
lems two features were relevant for categorization, for ex-
ample shape and color, but not size of the objects. The logic
behind category assignment could be AND, OR, XOR. Type
II-VI problems involve all three features with various logic
behind the assignment.

Since the details of neurodynamics are not important to
understand such categorization experiments, it should be
sufficient to investigate canonical form of simplified neu-
rodynamics. One may claim that any neural dynamics re-
sponsible for categorization in problems with two relevant
features is in principle reducible to one of the simplified dy-
namical systems defined in the 3-dimensional psychologi-
cal spaces (two features plus the third dimension labeling
categories). Parameters defining such simplified dynamics
should allow to reproduce observed behavior. Prototype dy-
namics for all logical functionsused in categorization exper-
iments has been found. For example, Type II problems are
solved by the following prototype dynamical system:
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This system has 5 attractors (0,0,0), (-1,-1,-1), (1,1,-1); (-
1,1,1), (1,-1,1); the first attractor is of the saddle point type
and defines a separatrix for the basins of the other four. Such
dynamical system may be realized by different neural net-
works. In this example, as well as in the remaining five
types of classification problems of Shepardet.al. [14], it is
easy to follow the path from neural dynamics to the behavior
of experimental subjects during classification task. Starting
from examples of patterns serving as point attractors it is al-
ways possible to construct a formal dynamics and realize it
in the form of a set of frequency locking nonlinear oscilla-
tors [15].

Although polynomial form of canonical dynamical sys-
tem is for the XOR case very simple and has only one saddle
point for other useful functions it is more complex. Mod-
eling point attractors using functionsG(Xi; si) localized
around theK attractors, leads to the following equations:

V (X) =
K∑
i=1

WiG(Xi; si)

_Xi = �
@V

@Xi

This form allows us to model the potential by changing
the positions and fuzziness (controlled bysi parameters)
of the attractors and their relative weightsWi. Functions
G(Xi; si)may either be Gaussian or, if neural plausibility is
required, a sum of combination of pairs of sigmoidal func-
tions

∑
i
(�(Xi+si)��(Xi�si)) filtered through another

sigmoid. Using this form of the potential one may create
basins of attractors with desired properties and set up the pa-
rameters of these functions to account for experimental data.

People learn relative frequencies (base rates) of cate-
gories and use this knowledge for classification. The in-
verse base rate effect [16] shows that in some cases predic-
tions contrary to the base rates are made. This effect may be



explained using specific shapes of the basins of attractors of
neural dynamics, but it is much easier to understand it repre-
senting these attractors and the decision boundaries between
them in the P-space. Thus the same event may be seen from
psychological and from the neurodynamical point of view.
Learning of the base rates changes synaptic connections in
the neural models, creating larger and deeper basins of at-
tractors - in the P-space objects (high probability values)
corresponding to these attractors are large. Inverse base rate
effects result from deeper, localized attractors around rare
categories, or smaller, localized objects in P-spaces.

Processes acting on representations in feature spaces de-
fine certain physics of mental events, with forces reflecting
the underlying neural dynamics. The state of the system,
called “the mind state” [7], is a point moving in the P-space.
Base rate effects influence the size of the basins of attrac-
tors, represented by the size of objects in the P-space. They
also influence transition probabilities: specifying value of
a feature that frequently appears in combination with other
features gives momentum to the mind state in the direction
parallel to the axis of this feature, initiating a search for a
category completing the missing features (for application of
the searches in feature spaces see [17]).

IV. SUMMARY AND RELATED WORK .

The need for psychological space treated as an arena for
psychological events is evident in recent psychological lit-
erature. The static picture of P-spaces with probability den-
sity functions defined on them is useful not only for cate-
gorization but also object recognition [18]. In psycholin-
guistics problems such as the word sense disambiguation
and learning the semantic contents of new words by children
are solved placing categories (words) in P-spaces. Landauer
and Dumais [19] analyzed a dictionary of 60.000 words and
using the Latent Semantic Analysis model estimated effec-
tive dimension of the P-space that is needed to preserve
similarity relations to be about 300. Linguists use also the
idea of non-classical feature spaces, calling them “mental
spaces” (cf. [20]).

Static version of the Platonic model should be sufficient
for description of a short-term response properties of the
brain, “intuitive” behavior or memory-based responses, but
understanding behavior in the time frame longer than a few
seconds must include dynamical aspects. The dynamic Pla-
tonic model, introduced in [7], goes in the same direction
as Elman’s “language as a dynamical system” idea in psy-
cholinguistics and “mind as motion” ideas in cognitive psy-
chology (cf. [21]). Stream of thoughts forming a sentence
create a trajectory of visited (or “activated”) objects in psy-
chological space. General properties of such trajectories
reflect grammar of the language. Further simplification of
the Platonic model lead to the Bayesian networks and Hid-
den Markov Models in which the dynamics is completely
neglected and only the probability of transitions between
states/objects remains. Reasoning in symbolic models of
mind, such as SOAR, is based on problem spaces, which are

metric spaces rather than vector spaces. It is not yet clear
what are the precise restrictions of modeling psychological
spaces using vector space structure.

A unified paradigm for cognitive science requires elu-
cidation of the structure of psychological spaces, search
for low dimensional representations of behavioral data and
for connections with neural dynamics. Linking neural dy-
namics with psychological models based on feature spaces
leads to a complementary description of brain processes and
mental events. The laws governing these mental events re-
sult from approximations to neural dynamics, similarly as
the laws of classical physics result from approximations to
quantum mechanics. These modified feature space mod-
els are useful in analysis of psychological experiments, ex-
plaining data on judgments of similarity between objects
and abstract concepts, as well as results of experiments on
categorization. Perhaps at the end of this road a physics-like
theory of events in mental spaces is possible?

REFERENCES

[1] R. Shepard,Toward a universal law of generalization for psycholog-
ical science, Science 237 (1987) 1318-1323

[2] J. Eliot, Models of Psychological Space, Springer 1987
[3] A. Newell, Unified theories of cognition. Harvard University Press,

Cambridge, Massachusetts, 1990,
[4] D.J. Amit,The Hebbianparadigmreintegrated: local reverberations

as internal representations. Brain and Behavioral Science 18 (1995)
617-657

[5] D. C. Somers, Emanuel V. Todorov, AthanassiosG. Siapas, Mriganka
Sur,Vector-space integration of local and long-range information in
visual cortex. MIT AI memo 1556, November 1995.

[6] J. Murre, A model of amnesia and consolidation of memory. Hip-
pocampus 6 (1996) 675-684

[7] W. Duch,Platonic model of mind as an approximation to neurody-
namics, in: Brain-like computing and intelligent information sys-
tems, ed. S-i. Amari, N. Kasabov (Springer, Singapore 1997), chap.
20, pp. 491-512;Computational physics of the mind, Comp. Phys.
Comm. 97 (1996) 136-153

[8] J.G. Taylor, F.N. Alavi,Mathematical analysis of a competitive net-
work for attention. In: J.G. Taylor, ed. Mathematical Approaches to
Neural Networks (Elsevier 1993), p.341-382

[9] W.J. Freeman,Simulation of chaotic EEG patterns with a dynamic
model of the olfactory system. Biolog. Cybernetics 56 (1987) 139-
150
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