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In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively
engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical
stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only
the original psychophysical questions but also to create models of mind. In this paper several approaches relevant
to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the
complexity of such models a number of approximations is introduced. The path from the brain, or computational
neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such
as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From
computational point of view realistic models require massively parallel architectures.

I. PSYCHOPHYSICS AND COMPUTATIONAL MODELS OF THE MIND

Basic concepts of physics, such as energy, mass, time, temperature or strangeness are highly abstract
metaphors useful in constructing models of reality. These models relate observations and measure-
ments to other observations and measurements. In the early history of physics results of measurements
were directly related to sensory experiences. In Galileo times confirmation of two independent senses
was required to acknowledge a new phenomenon and to avoid self-deception (telescope, giving only
optical measurements, was therefore highly suspect). Understanding the relation of objective measure-
ments to psychological sensations was very important. Newton tried to model spectral hues by points
on a circle, Helmholtz and later Schrödinger [1] by curved Riemannian manifolds. Psychological
spaces for representation of pure tones, odors and tastes were also proposed.

Creation of good models to relate various features of sensory perception proved to be much more
difficult than creation of models based on objective measurements of physical quantities. Methods
of measuring the strength of psychological sensations in relation to the intensity of physical stimuli
were developed by E.H. Weber (1834, 1846) and G.T. Fechner, whose classic bookElements of psy-
chophysics was published in 1860. This book had strong influence on Ernst Mach, who developed
measurement theory and wrote that “a psychophysical measurement formula assigns numbers to sen-
sations in the same way a thermometer assigns the temperature to a state of heat.” Unfortunately it is
not so simple.

Psychophysics has another important aspect, even more difficult than quantification and description
of psychological sensations. “Psychophysical problem”, also known as the mind-body problem, con-
cerns the very relations between the mental and the physical. Thus psychophysics should be placed
on the crossroads of psychology, physics and philosophy. Problems raised in XIX century are still not
resolved, as the recent review of the history of psychophysics has showed [2]. Psychophysics has been
of marginal interest to physicists (with notable exception of acoustics and optics communities con-
cerned with tone, speech and visual perception). This situation may change since it became recently
clear that the way to understand the mind leads through modeling of neural processes at many levels,
from biophysical to the systems level [3]. Computational physicists will undoubtedly play a major
role in these modeling attempts. The final goal - understanding the brain and building artificial minds
- encompasses much more than the original goals of psychophysics. In a sense it may prove to be the
final goal of science as we know it.

I will present here a sketch of the path that leads from computational models of brain functions
to models of the mind, a path fromphysis to psyche, something that Wofgang Pauli always wanted
to achieve. In 1952 he wrote [4]: “It would be most satisfactory ifphysics and psyche could be
seen as complementary aspects of the same reality”. We are slowly reaching this point but there
is no hope that one unified theory will be sufficient to explain cognitive phenomena at all levels.
Understanding human linguistic competence at the level of complex neural networks is as difficult as

1

Wlodek
Tekst maszynowy
Duch W (1996) Computational physics of the mind. Computer Physics Communication 97: 136-153 

Wlodek
Tekst maszynowy

Wlodek
Tekst maszynowy

Wlodek
Tekst maszynowy



understanding hydrodynamics at the level of quantum mechanics. To understand cognition one should
identify different levels of description, find the models appropriate to a given level and show how, at
least in principle, higher levels may be reduced to lower levels.

Quantum mechanics, together with biochemistry and biophysics, is very useful in description of
phenomena at molecular level (1Å−1µm), at the level of neurotransmitters and neuromodulators, ex-
pression of genes, membrane and synaptic processes, molecular mechanisms of the long-term memory,
such as the long-term potentiation (LTP) [5]. Models of a single neuron based on classical physics are
sufficiently accurate to explain neurophysiological data. Neurons are represented by electrical circuits
showing similar behavior, and described by “leaky integrator” equations. For groups of neurons quan-
tum processes are important only as a source of noise in the system. There are quantum processes that
can directly influence responses of single neurons, for example single photons may excite cells of the
retina, but such processes seem to be rather exceptional and restricted to a few sensory subsystems.
Computational biologically motivated models of neurons (for software references see [6]) describe
quite accurately various details of neuronal responses but are usually too complex to use them in sim-
ulation of larger groups of neurons. Existence of stable solutions in a network of spiking neurons
is determined by a single parameter (the mean firing rate) [7], explaining why associative networks
based on the simplest two-states neurons have the same power of storing and retrieving information
as the networks based on a very sophisticated models of neurons described by the Hodgkin-Huxley
equations.

The best simplified neuron transfer functions that should be used in models of biological neural
networks (spatial scales around 1 mm – 1cm) depend on the actual structure and functions that are
modeled. At the level of computational maps (spatial extent about 1 cm) one can still use rather
homogenous neural networks to model self-organized development of such structures as a result of
interaction with the environment (unsupervised training). Higher level of more complex brain func-
tions requires a number of neural modules cooperating together. It is only at this highest level that the
mind-like properties of the system begin to show up and somehow the brain dynamics gives rise to
the subjective mind. At this level the direction one should take in attempts to model these functions is
unclear. Some experts claim that this problem may never be solved and no new ideas to solve it are in
sight [8]. This is a necessary step in connecting (“reducing”) psychology to computational physics of
the brain processes. The main purpose of this paper is to show how to make this final step on a path
from brain to mind.

II. COMPUTATIONAL BRAIN

Psychophysics in a broad sense must be based on computational physics of brain processes. Mind is
an emergent property of the brain, a very complex, modular dynamical system. Some physicists argue
that incorporation of the mind or mental processes to natural sciences is possible only using quantum
mechanics [9]. The long time scales of higher cognitive processes associated with conscious percep-
tion, requiring from tenth to several seconds, are in agreement with the typical times of cooperation of
assemblies of noisy neurons via electrical excitations, slowed by the synaptic processes mediated by
biochemical neurotransmitters. It is hard to imagine quantum processes that would be so slow.

Penrose [10] has argued that cognitive processes are non-computational in nature since formal sys-
tems are not able to answer some Gödel-type questions related to their own specification. These
arguments have been discussed already by Gödel himself and repeated many times by Turing, Lucas
and other philosophers (for a discussion see Penrose [10]). Human brain is too complex to contemplate
any questions of Gödel type requiring full formal specification of neural machinery, therefore claims
that humans are able to answer such questions about themselves are greatly exaggerated. These de-
liberations may only prove that it is not possible to create computational equivalent of God, a system
that will have a perfect knowledge of everything, including itself. Humans do not posses such knowl-
edge either. From the Gödel argument Penrose concludes that completely new physics is required to
understand human mind, physics that should be based on noncomputable processes, but he fails to find
any clues how such processes could look like. This is an example of extremely speculative approach
to the problem of mind, an approach that is certainly not directed at an understanding of the human
cognition.

Another issue is the computational power of the brain. With a total of about 40 billion neurons
(including about 10 billion neurons in the neocortex) and the number of synapses on the order of
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1014, operating with a maximum speed of 100 operations per second and resolution of about 7 bits
there is enough computing power and enough adaptive parameters to account for various aspects of
human memory and cognition. The problem is not in the complexity or speed of information process-
ing, as some authors looking for faster computational processes in cellular microtubules suggest [10],
but with the overall organization. The brain contains dozens of large structures with rather different
neuroanatomy and functions, even neocortex has highly modular structure.

Some proponents of the quantum mechanical approach to the mind [9] try to understand “thoughts”
at a very vague level. Empirical Theory of Mind should be much more precise and ambitious. It
should explain: basic facts about perception, e.g. stereoscopic vision and psychophysical data; dy-
namical optical illusions such as “color phi”, metacontrast, Stroop interference, tachistoscope results
[11]; thousands of facts from cognitive psychology, such as the typing skills or the power law of learn-
ing [12]; stages of development, from infancy to adulthood, such as learning to walk, learning basic
perceptual categories and knowledge structures [13]; various types of memory and amnesia; conscious
and subconscious perception, relation of perception to brain events; qualia, mental content, meaning of
symbols; states of consciousness (such as the dream states, daydreaming, hypnotic and other unusual
states of mind); formation of ego, personality, Multiple Personality Disorder (MPD); intuition and
immediate response behavior; linguistic competence, thinking and reasoning; psychiatric disorders
(from anxiety and dyslexia to schizophrenia), blindsight, hysterical blindness; exceptional abilities,
e.g.: “idiot savants” syndrome and many other cognitive phenomena. Great advances have been made
recently in most of these areas, increasing our confidence in the soundness of computational approach
to cognitive neuroscience.

Cognitive processes performed by the brain allow for construction of an internal model of reality
from the sensory data. A natural approach to mind should therefore start with models inspired by
the brain, models capable of learning, categorization and internal representation of the sensory data.
The task may be roughly divided into two parts: low-level cognition, or preliminary analysis and
preprocessing of the incoming sensory signals in the sensory reception, and the higher-level cognition,
where the internal representations are used during perception, thinking and problem solving. The
low-level processing of sensory data is modeled by self-organizing, unsupervised neural networks,
by computational maps and by the population coding mechanisms [5]. The central problem remains:
how to bridge the gap between the mind and the brain? How to link the mental and the physical? In
the following sections I will sketch the solution to this problem. Short introduction to the cognitive
modeling will be given first, followed by a section that introduces the main idea allowing to build a
connection between the brain and the mind. A section outlining the mind space approach to the higher
cognition is followed by some remarks on the problem of consciousness and final conclusions. There
is no standard view or general agreement on how to model the mind. The views presented below at
least offer a well defined direction and seem to solve fundamental problems of cognitive sciences,
bridging the gap between the brain and the mind, justifying some approaches to the higher cognition
as well as offering new fruitful practical models.

III. NEURAL AND COGNITIVE MODELING

An artificial neural network may be defined as “a processing device, either an algorithm, or actual
hardware, whose design was motivated by the design and functioning of human brains and components
thereof” [6]. Since neural networks are popular and almost every approximation or classification
algorithm may be presented in a network form there is a tendency to add the adjective “neural” in
cases where no biological motivation is justifiable. In such cases a name “adaptive system” should be
preferable to “neural network”. Adaptive systemAW is a system with internal adjustable parameters
W performing vector mappings from the space of inputsX to the space of outputsY = A W (X). Neural
networks may not be the best adaptive systems for all approximation problems [14].

One of the first attempts to model psychophysics of perception at a neural level was done by Ra-
shevsky in 1938. His book [15] was republished in 1960 and pioneered the field of continuous neural
models based on dynamical systems (differential equations), known as neurodynamics. The paper of
McCulloch and Pitts in 1943 (reprinted in Vol 2 of [16]) was very influential and Rashevsky came to
the conclusion that “the proper mathematical tool for representing the observed discontinuous inter-
action between neurons was not differential equation but the Boolean Algebra of Logical Calculus”
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[15]. Soon it became apparent that the relation of reaction times to stimulus intensities modeled by
differential equations are not easily reproducible by logical calculus. Rashevsky thought that his differ-
ential equations describe average activity of a very large number of neurons. He developed a number of
highly specific models for psychophysical and neurophysiological phenomena and this line of research
is still continued [17].

A. Neural cell assemblies

Although it is not quite clear how to divide the gray matter into functional units or how to average
neuronal activity over these units the idea of neural cell assemblies (NCAs), advocated in the classical
book of Hebb [18], is very attractive. Some neural modelers argue that the microcolumns of neocortex
are the required functional units [19]. These microcolumns, distinguishable using neuroanatomical
techniques, contain between 104− 105 neurons in a 1−2 mm high columns spanning six layers of
neocortex, within the cortical area of a fraction of mm2. Vertical connections inside a column are
excitatory and their density is of an order of magnitude higher than the density of connections with
neurons outside of the column. Axons of some NCA neurons spread horizontally on several millime-
ters enabling mutual excitation of different NCAs. Small (about 100 neurons) functional groups of
neurons with inhibitory connections were also considered [19]. Although NCAs should play an im-
portant role in models of brain functions their description requires rather complex dynamical models.
Neurons integrate the incoming signals and, if the total electric potential on their body integrated in
a short time exceeds a threshold value, they send series of spikes. To simplify mathematical models
average firing frequency of the neuron is taken as a measure of its activity. The output from a given
neuron is determined by computing its activation as a weighted sum of the incoming signals (average
firing frequencies):

I(t) = ∑
i

Wixi(t) (1)

where the coefficientsWi represent couplings with other neurons (due to synaptic conductivities)
and are positive for excitatory and negative for inhibitory connections. If this total activation is larger
than some threshold value the neuron outputs a signal with strengthf (I(t)) determined by a monotonic
function f of I(t). Assuming that in an assembly of stochastic neurons the distribution of the thresholds
for firing is normal (Gaussian) with some meanθ the probability of firing is described by a sigmoidal
function, i.e. a function growing sharply above the threshold and reaching saturation for large values
of the argument. The most common type of function with the sigmoidal shape is:

σ(I) = (1+ e−(I−θ)/T)−1 (2)

The constantT determines the slope of the sigmoidal function around the linear part andθ is the
inflection point. It should be stressed that the use of such neuron transfer function is based on rather
unrealistic assumptions and neural models useful in modeling neurophysiological phenomena on a
single neuron level are based on very complex models of spiking neurons provided by biophysicists.

For neural networks that use sigmoidal transfer functions (usually multilayered perceptrons, MLP)
powerful mathematical results exist showing that if there is enough data for training a universal ap-
proximator may be built with only one single layer of processing elements [20]. Sigmoidal functions
have non-local behavior, i.e. their value is different from zero in an infinite domain. If a neural network
composed from such elements is trained to recognize a specific class{Xk} ∈C using a set of training
data the decision regions in the input space of all possibleX vectors are formed by cutting the input
space with hyperplanes (combinations of sigmoidal functions). There are a few disadvantages of such
classification. A unique class is determined for all input valuesX , the system “pretends” that it knows
everything, which is obviously false. Especially in the regions of the input space that are far from the
training data hyperplanes, extending to infinity, enforce arbitrary classifications. If the network is com-
plex and the training data set is small positions of the hyperplanes are to a large extent undetermined,
depending on the initial state of the network. The accuracy of approximation grows with the number
of adaptive parameters (weightsWi j in neural networks), but if the training data set is not sufficiently
large the network may change into a look-up table and may not generalize smoothly on the test data
set. On the other hand if the number of adaptive parameters is too small the network will not learn
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much. This effect, known as the bias-variance dilemma, is analogous to the “overfitting” phenomenon
in function approximation.

Another class of powerful functions used in the approximation theory is called the radial basis func-
tions (RBFs). Some of these functions are non-local while some, such as the Gaussian functions, are
localized. Networks using RBF transfer functions, called RBF networks, are also universal approxi-
mators [21]. There is no particular reason why the functions processed by the nodes of artificial neural
network should be radial and in fact we have obtained better convergence with localized non-radial
functions [20]. One may argue that the transfer functions localized in the input space are biologically
plausible as models of single neurons as well as groups of neurons. Some neurons act in a very selec-
tive way as feature detectors. In the network of spiking neurons not only the value of the signals, but
also the synchronization of the phases of the incoming trains of impulses is important. Therefore the
activationI(t) of neurons is high only for very specific combinations of the incoming signals. In sim-
plified network models activations (averaged values of the incoming signals) and transfer functions are
used instead of the synchronized spikes (phases and amplitudes). To account for the synchronization
effects transfer functions of model neurons should be localized [20]. Neurons in the V4 visual cortex
area respond selectively to such features as color, form and texture; neurons in the infero-temporal (IT)
cortex react selectively to more complex combination of visual features characterizing basic natural
objects such as hands or faces (frontal and profile views); neurons in the superior temporal sulcus are
sensitive to facial gestures; neurons in Medio-Temporal (MT) react to the position of an object, etc [5].
It should be possible to obtain such specific reactions as a consequence of the structure of connections
based on spiking neurons using neurodynamical approach, but in more complex cases it would be very
difficult. Networks based on the sigmoidal transfer functions are also rather difficult to construct, train
and analyze in this case. It is much easier to model directly the input/output relationships of groups
of neurons reacting selectively to the features in the input data if localized transfer functions are used.
After all we want to model the function rather then the precise structure of the brain.

B. Neurodynamics

Neurodynamical models pioneered by Rashevsky had random and recursive connections (cf. review
article on the early models [22]). Models with excitatory connections (positive weights) only tend to
the maximal or minimal values of activity but models with excitatory and inhibitory connections show
a rich and interesting stable behavior. Another style of neural modeling based on stochastic approach to
neurons was inspired by statistical mechanics [23] and nonequilibrium thermodynamics [24] instead of
classical dynamical systems. This line explores the fruitful connections with the Ising and with the spin
glass models [25] and leads to a number of interesting applications in modeling brain functions [26]. In
the real brain random organization in the small scale is combined with highly specific organization of
groups of neurons. Many groups of randomly connected cells, called netlets, were used for simulations
showing interesting cooperative effects, including cyclic attractors [27]. Deterministic models try to
get rid of the randomness by some kind of averaging procedures. However, there is experimental
evidence that some groups of neurons behave in a chaotic way. For example in the olfactory bulb [36]
chaotic EEG behavior is observed in the absence of stimuli and synchronized behavior arises when an
odorant is present.

One of the most interesting early attempts to create computational theory of brain functions was
made by Caianiello [28]. His guiding principle was the conviction that dynamical laws obeyed by
the brain concern large neuronal assemblies and should not be very complicated. Caianiello proposed
to divide the dynamics of the brain’s neural network according to the time scale. Fast dynamics,
related to the retrieval of information, is described by the neuronic equations. Slow dynamics, related
to the synaptic plasticity and learning, is described by the mnemonic equations. This “adiabatic”
approximation is well justified for the long-term memory (although fast learning processes, such as
LTP [29], are probably involved in the long-term memory). The neuronic equations may be written as:

ai(t + τ) = Θ

[
∑
k, j

W (k)
i j a j(t − kτ)−θi

]
(3)

whereΘ is a step function (neurons are either activeai = 1 or nonactiveai = 0), τ is the time step,
Wi j is the strength of synaptic connection between neuronsi and j; θ i is the threshold of excitation
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of the neuroni andk numbers previous times steps that can influence new activitya i(t + τ). In the
absence of learning the dynamics of this system, identified with the “thought processes”, has stable
states of activity, described by the vectora = (ai) determined by theWi j matrix.

The mnemonic equations used by Caianiello are more complicated:

dW (k)
i j (t)
dt

= (4)[
α(k)ai(t)a j(t − τ)−β(k)Θ

(
W (k)

i j (t)−W (k)
i j (0)

)]
×W (k)

i j (t)Θ
(

A(k)
i j −W (k)

i j (t)
)

+ inhibition

The inhibitory terms are analogous to the excitatory ones. The first term in these equations is of
the Hebbian type [18], i.e. it is proportional to the product of the pre- and post-synaptic activities.
Second term, withβ � α describes forgetting, while the last term restricts the connection strength
to maximum values preventing their unbounded growth. Networks of processing elements operating
in accordance with the neuronic and mnemonic equations were used by Caianiello to study learning,
forgetting, conditioning, analysis and spontaneous formation of patterns of reverberations. Logic plays
a role of constraints on the type of behavior of the dynamical system. One may expect all kinds of
effects in such complex system, including chaotic and quasi-periodic attractors and nonlinear reso-
nances. Characterization of this system requires determination of spontaneous modes of reverberation
from neuronic equations. Short reverberations appear with the frequency of 10 Hz (assuming realistic
time quantization connected with the average firing rate of biological neurons), in agreement with the
observed EEG recordings. In the brain stable reverberations of a few neurons were observed lasting
for minutes [28]. Epileptic seizures are one possible form of catastrophic instabilities in the network.
Analyzing the mnemonic equations Caianiello points out that more realistic description of the brain
should contain at least two additional structures: reticular activation system necessary for attention and
thalamic structures controlling emotions.

Many other models of neural networks have been developed, for example perceptrons and the mul-
tilayered versions of perceptrons that are so popular in applications [16], but these models are not
interesting from the cognitive modeling point of view. In fact the model of Caianiello, although quite
successful for qualitative explanations, is not specific enough to explain quantitatively experimental
data (Caianiello admitted in his later years that his model explains everything, therefore it does not
explain anything). The book by D.S. Levine [30] reviewing various cognitive models does not even
mention his model – more specific models of associative learning, sensory representation, lateral inhi-
bition, competitive learning, conditioning, attention, reinforcement, coding and categorization, control,
optimization and knowledge representation are discussed instead.

C. Computational maps

As the first step towards model of the mind one should consider the formation of features that the
subjective experience is composed from. There are two basic mechanisms that the brain is using
to analyze the sensory signals and to extract useful features from them: self-organizing maps and
population coding.

Experimental data on neural mechanisms leading to a formation of orientation and ocular dominance
maps in the primary visual cortex are quite detailed. More than ten computational models have been
proposed to account for these data [31]. Competitive Hebbian models describe the development of
visual system on the mesoscopic level close to the resolution of neurobiological experimental data. In
orientation and ocular dominance maps these models predict global disorder and anisotropies of the
localized responses of the neural cell assemblies, singularities and fractures, and are able to simulate
development of feature detectors under the exposure to a restricted set of oriented visual features (for
example, when only stripes are shown, or when monocular deprivation is enforced). Correlations
between these two types of maps are also well reproduced. Very successful models are based on the
self-organizing feature maps [32]. Response properties of cortical cell groups located at positionr in
the visual neocortex involve the retinal location(x(r),y(r)), the degree of preference for orientation
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(q(r)sin(2φ(r)),q(r)cos(2φ(r)) (orientation maps code for 180 degree periodic orientation), and the
ocular dominancez(r). Feature vectorΦt (r) composed from these five features evolves according to:

Φt+1(r) = Φt(r)+αhS(r,r′)[Vt+1−Φt(r)] (5)

with 0 < α < 1 and the stimulusVt+1 chosen at random using some probability distribution. The
local neighborhood functionhS is defined as:

hS(r,r′) = exp(−||r− r′||/2σ2) (6)

r′(V,Φ(r)) = min
r

||V−Φ(r)|| (7)

Each presentation of a stimulusV leads to a change of the feature vectorΦ(r ′) of neurons in the
neighborhood ofr ′, i.e. to a change of features coded by the group of neurons that are already most
sensitive to this particular stimulus.

Another feature detection mechanism that seems to be ubiquitous in the brain is known as population
coding [33]. Initially it has been discovered in the motoric areas of the brain, but now it has also been
found in premotor, parietal, temporal, occipital and cerebellar cortex. Here a whole population of
neurons reacts simultaneously to the incoming stimuli. A model of this neural response assigns a
unitary vectorui to each cell in the population, oriented in the direction of movement corresponding to
the maximum cell activity. A population vector is formed summing the unitary vectorsu i with weights
equal to the discharge frequencyA(ui,Ve) (activity) of each cell. This frequency depends on the feature
vectorVe related to the evente, such as a presentation of some stimulus or motoric action. For example,
the population vector may code an implicit representation of the direction of movement. Experimental
verification of this model involved recordings from the motor cortex of monkeys performing mental
rotation tasks. In this case the cell activity for a rotation vectorV was computed from:

A(ui,V ) = ui ·V = α cos(ui,V )+β (8)

Experiments show that not only the distribution of activities of neurons in the population represents
the direction of movement in space but also the population vector rotates during the mental rotation
tasks and the norm of the population vector determines when the actual movement will take place.
Both information and the significance of this information is represented in the brain via the population
coding mechanism (dual coding principle).

Mussa-Ivaldi [34] has suggested that an arbitrary vector field corresponding to a complex informa-
tion encoded by a population of neurons may be reproduced by a linear combination of elementary
basis fields. In particular force fields generated by the premotor circuits in a frog’s spinal cord are a
combination of only four basis fields. Motor behavior is obtained as a superposition of time-dependent
basis fields, or pattern generators:

F(x,t) ∝ ∑
i

Wiφi(x,t) (9)

This may be the nature’s solution to the function approximation problem. Dual population coding of
more abstract multidimensional features provides a model for representation of complex information
facilitating also the use of this information by other mental processes [35]. Consider a feature space
(for example, a color, a phoneme or a physical space) and an object represented by a feature vector
Ve (vector of attributes) in this space. A population of neurons may code such objects if each cell
in the population responds to a particular combination of features in a localized way, for example by
changing its activity according to

A(ui,V ) = Pee
− ||ui−V ||2

σ2 (10)

wherePe is a scale factor depending on the relevance of the evente and theσ parameter depends
on the selectivity of neural cells. The metric in the feature space is defined by the norm|| · ||. This
model has been applied to the local motion detection by the mediotemporal cortex area as well as to the
formation of categories of basic objects of perception by NCAs in the infero-temporal cortex [35]. The
distribution of activities in the whole population encodes reaction to the event-related feature vector
and the total (summed) activation may be regarded as the pertinence of this vector. Both feature vector
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and its pertinence are coded by the same activity of neural cell assemblies and context dependent
sensitivity of the pertinence may explain the interaction between mental representations and operation
of selective attention.

Population coding and self-organized maps provide mechanisms for analysis of the sensory input
data into a combination of features. Assemblies of neurons react selectively to some of these combi-
nations. At the brain level more and more details are unraveled. The basic question is: how to proceed
from the brain to the mind events?

IV. FROM BRAIN TO MIND

It is impossible to talk about mind events in terms of computational processes of neural hardware,
as it is impossible to talk about properties of the liquid water in terms of properties of the hydrogen
and oxygen gases or even properties of the individual molecules of water. Cooperative properties in
interacting systems are always qualitatively different from properties of the constituents. It is not sur-
prising that specific interactions of a large number of neurons give rise to qualitatively new properties.
The emergence of higher cognitive functions from the complexity of the brain is not more strange than
the emergence of wetness from a mixture of two gases. At each level of description an appropriate
language and theory should be used. The flow of water in a river is described by hydrodynamics, the
theory that uses specific concepts that cannot be directly derived from quantum mechanics. It is im-
possible to speak about mental events using directly the language of neural events as it is impossible
to speak about turbulence in quantum mechanical terms. An appropriate language should be created
for cognitive sciences.

The question “what is the mind” begs for a model, a language to speak of the mind. Is it possible to
answer such question? Ultimately we may only explain what is the structure of the mind, as we can
explain what is the structure of the matter, even though we cannot define what the matter is. In physics
we use with great success concepts such as energy, space or time, concepts that are not reducible to
simpler concepts. What kind of an answer can we expect to the question: “what is the mind” ? Will
an answer based on physical concepts, such as ”the mind is a result of zero point vibration vacuum
fluctuation interactions with the coherent states of microtubles” satisfy us? Or an answer claiming that
the mind is a result of logical properties of some mathematical structures? Such answers are irrelevant
to the understanding of cognitive processes and to the cognitive sciences in general. A meaningful
language to describe mind events is needed. It should allow for more precise description of mind
events and should lead to models of mind that can be tested in computer simulations. The language
should be extendable but at the initial stage it should cover only the basic features of the mind, in a
similar way as the mathematical language of classical physics allowed to describe planetary motions
and other simple physical systems.

In the Platonic world of mind there are only abstract concepts, represented by symbols. Two-year old
children may not yet use symbols and yet their minds are already quite complex. What are the real mind
events made from? They are composed primarily from the preprocessed sensory data and are mostly
recognitions, recollections and memorizations. Direct sensory perceptions and iconic memories of past
experiences form primary mind objects, while secondary, more abstract objects acquire their meaning
through their relations with the primary objects. Once a primary object, an experience involving bodily
sensations as well as some internal mind states, is committed to the long-term memory it can be
recalled back, reinstating the brain/body states, thus repeating the experience (mental training, for
example in music, really works).

The ambitious model of Caianiello has not influenced the mainstream of neural models of cognition
because it lacked the modularity and specificity of different structures of the brain. Some of the insights
offered by this model may ultimately prove to be true. It is clear that stable reverberations in the
brain are connected with thoughts and perceptions. Direct observation of neural activity during such
cognitive tasks as smelling [36], hearing words and meaningless sounds [37] or watching a series
of pictures by monkeys [38] shows that global reverberations, interpreted as synchronized activity
of a number of neural cell assemblies, correspond to perceptions and thoughts. Synchronization of
oscillations of groups of neurons in the gamma band of EEG has been observed in many areas of
neocortex as a result of visual stimulation [39]. Attractor character of the neural dynamics [26] has
been demonstrated already in the experiments performed on cats by Johnet.al. [40]. Cats were trained
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to react to two different frequencies of pulsating light. Intermediate frequencies were leading to one
of the two dynamics of the visual neurons and to the corresponding behavior of animals.

Unfortunately neural systems showing interesting behavior are complex and difficult to analyze.
Dynamical systems in physics are usually analyzed in a low dimensional space, rarely higher than five
dimensional. Networks showing interesting properties may have hundreds or thousands of neurons
and such large number of parameters makes them difficult to understand and control. Yet large groups
of neurons cooperate and behave as if govern by a low-dimensional parameter space dynamics [41].
Biological systems are remarkably stable and resistant to noise in the input data as well as to the noise
in the nervous system itself (stochastic nature of neural activations due to the fluctuations in ionic
concentrations, neurotransmitter release, synchronization problems). Large artificial neural networks
with many adaptive parameters tend to work as look-up tables if the number of training examples is
not sufficiently large. Adding noise to the training data is equivalent to regularization of the error
function, smoothing the approximation performed by the network [42]. Adding small amplitude noise
to dynamical system reduces sensitivity to the initial conditions leading to more regular basins of
attractors.

Since neurodynamical models are too difficult to use them for modeling complex functions of the
brain approximations are necessary. Very interesting results have been obtained in recent years using
symbolic dynamics [43]. The whole phase space is divided into hypercubes, each with a symbolic
name, and a trajectory passing through these hypercubes is replaced by a string of symbolic names. In
effect one obtains a low-resolution picture of the phase space. Another way to simplify the description
of dynamical systems is to observe that the most important information about dynamical (brain) states
is in the structure of attractors and repellers, and in the probabilities of transitions between different
attractor states resulting from external perturbations or internal noise.

How are these attractors formed in the brain? Stable reverberations of neural cell assemblies, identi-
fied with determination of categories, thoughts and perceptions, arise because slow learning processes
(“mnemonic equations” of Caianiello) make synaptic changes creating appropriate conditions for these
reverberations. Due to the evolutionary selection processes the brain has learned basic categorization
of lines, colors, shapes, visual objects, sounds, smells and other sensations. The low-level process-
ing described in the previous section provides the stimuli for the higher-level cell assemblies (frontal
and parietal cortex areas) and some of these NCAs respond by reaching attractor states while other
groups of neurons stay in a chaotic state. In psychological terms this means that in the space of inter-
nal features of representation a particular combination of these features, corresponding to a particular
category of perception, has been recognized and is kept active for some time. Such feature spaces
(also known as mental spaces, conceptual spaces or mind spaces) were popular in psychology since a
long time [44]. It is possible to analyze mental events in feature spaces. The correspondence of ob-
jects (concepts, categories) in feature spaces and attractors in the dynamics of the brain spans a bridge
between the mental and the physical [45] (cf. Fig. 1).
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FIG. 1. Correspondence between the brain events described in the phase space of the brain function model
based on a dynamical system and the mind events taking place in the feature space. Chaotic regions of the phase
space correspond to random walks in the feature space.

In physics simple models and methods are of greatest value. Consider a non-linear oscillator with
many attractor states, such as the Chua oscillator [46]. Such systems consist of a linear inductor
L, two capacitorsC1 andC2, a resistorR and a nonlinear element called Chua diode, which acts as
a voltage-controlled resistor. Attractor states code some information and may serve as a model for
memory traces, as in the case of the model of olfactory cortex [36]. We are really interested only in
the classification of stable states of such systems. One way to perform this classification is by dividing
the phase space into the basins of attractors. For simple dynamical systems like the Chua oscillator the
phase space is equivalent to the feature space. However, one should remember that the phase space
for neuronal cell assemblies is very large while the feature space may be quite small (large groups of
neurons code such low-dimensional features as colors or phoneme recognition).

Multi-Layer Perceptron (MLP) and RBF neural networks may learn the borders of basins of attrac-
tors thus giving a proper categorization of stable states of the dynamical system. I will introduce here
an approximation to the behavior of a dynamical system by a simple gradient dynamics in the feature
space. The phase space may contain many internal variables while the feature space only the input, or
control variables. In the two-dimensional cases points in the phase space are sometimes color-coded
(for example, in the representation of iterative maps) to show how quickly starting from these initial
conditions the system will reach an attractor. One may analyze the transients and the attractors in a
number of ways, for example by looking at Lyapunov exponents or using symbolic dynamics [43].
Since we do aim at rough characterization of a dynamical system rather than at a precise description a
coarse resolution in the symbolic dynamics is usually sufficient. The distance from an attractor may be
visualized by the “equitime lines” (or hypersurfaces). Each basin of an attractor has a central part and
a peripheral part, where the dynamical system needs a long time to reach the attractor. The system is
more resistant to external perturbations or internal noise when it is in the inner basin region and more
sensitive when it is in the peripheral region.

This behavior may be modeled in several ways. The simplest is to introduce in the feature space
a densityρ(X) proportional to the time it takes to reach the attractor starting fromX . This density
should be negative for basins of attractors, corresponding to the minima in the(X ,ρ(X)) space and
positive for the repelling areas of the feature space, corresponding to the maxima. External influences
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or the internal noise induce transitions between various attractors of the dynamical system. Introducing
stochastic gradient dynamics on the(X ,ρ(X)) surface one may try to reproduce the behavior of the
dynamical system under perturbation.

At the first glance this approach may seem similar to the Haken’s synergetic computers approach
[47], but this is not the case. Synergetic approach to pattern recognition is based on the point attractors
and simplified analysis of stability. Such analysis is hard to perform in general case. Consider the
simplest case of a dynamical system that should learn to perform the XOR operation, i.e. the mapping
(for convenience−1 is used instead of 0)

(x,y) → z; (−1,−1)→−1;(−1,+1)→ +1;(+1,−1)→ +1;(+1,+1)→−1

One can find a dynamical systemW (t) = (x(t),y(t),z(t)) = (xi(t));Ẇ = F(W (t)) such that the XOR
values are point attractors of the system. For example, assuming that

Ẇ = −∂V
∂xi

(11)

V (x1,x2,x3) = ∑
i j

λi jxix j +∑
i jk

λi jkxix jxk + ∑
i jkl

λi jklxix jxkxl (12)

one can train this 117 parameter system using the XOR training data and come to the following
set of equations (additional requirements minimizing the number of non-zeroλ parameters were used
below):

V (x,y,z) = 3xyz+
1
2

(
x2 + y2+ z2)2

(13)

ẋ = −∂V
∂x

= −3yz−
(
x2 + y2+ z2)x

ẏ = −∂V
∂y

= −3xz−
(
x2 + y2 + z2)y (14)

ż = −∂V
∂z

= −3xy−
(
x2 + y2+ z2) z

We can approximate the behavior of this dynamical system quite well with a combination of four
localized functions (for example with Gaussian functions) centered in the(x,y,z) corners of a cube
(Fig. 2, where local gradient field is marked with arrows).

M(x,y,z) =
4

∑
k=1

G(xk,yk,zk,σ) (15)

= G(−1,−1,−1,σ)+ G(−1,+1,+1,σ)+G(+1,−1,+1,σ)+G(+1,+1,−1,σ)

The dispersion of these functions may either be related to the resolution of input data (what do
we still consider to be−1 and what+1) or to the basins of attractors of the dynamical system. The
number of parameters (12 Gaussian centers andσ) is in this case much lower and the system is quite
easy to analyze. An alternative approximation is based on the local coordinate systems, each defining
an independent metric||X ||k describing the distance between a given pointX and the attractork (in
the sense of the number of iterations or time steps to reach this attractor). This is a generalization of
the nearest neighbor classification method known from pattern recognition (cf. [32]), in which case all
metric functions are identical and one global metric may be introduced.
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FIG. 2. Direct representation of the attractors in the XOR problems. The density of localized function at a
given point depends on the time to reach an attractor from such initial conditions. Arrows show local gradients of
this density.

Models of the brain functions at the level of dynamical systems are difficult. Approximations based
on the direct modeling of the input/output relationships are easier and lead to the feature spaces, intro-
ducing an arena for mind events. Due to a high dimensionality of the phase space and relatively low
dimensionality of the feature space such approximations must have statistical nature. The dynamical
system should be perturbed and left in some internal state until it stabilizes; then the input features are
presented and the evolution of these features to a new state followed. Combinations of features leading
to the same type of dynamical behavior form clustersρ(x) in the feature space. Vector quantization
techniques based on noisy prototypes are used to represent these clusters. The state of the system is
represented in the feature space by the input vector of feature values, evolving in a stochastic way
(due to a noise in the system) from its initial value to maxima of theseρ(x) clusters. Instead of the
neural network dynamics in the phase space vector quantization with stochastic gradient dynamics in
the feature space is used. Approximation to the transition probabilities between different attractors
of a perturbed dynamical system may require additional dimensions (internal features) in the feature
space.

Consider an example of the olfactory cortex. It is composed from a three layers of neurons, with the
top layer of inhibitory interneurons connected to the olfactory bulb (input), the middle excitatory layer
of pyramidal neurons and the lower layer of inhibitory “feedback neurons” (Fig. 3). The inputsI i(t)
come from the chemoreceptor cells in the nose. Skarda and Freeman [36] have analyzed this system
using biologically plausible spiking neurons. A simplified model of the olfactory cortex is similar to
the Hopfield network and other recursive networks [16]. The time evolution of neural activitiesA i(t)
is given by the following equation [48]:

dAi

dt
= −Ai

τi
+ ∑

j �=i

Wi jg j (A j(t −∆i j)) Ii(t)+ ξ(t) (16)

g j(A j) = CQj

{
1−exp

[
−exp(A j)−1

Q j

]}
(17)

whereτi is a characteristic time constant,Wi j are connection weights,∆i j are time delays between
the twoi and j neurons, andξ(t) is the noise. The transfer functiong j has been determined from the
experimental work [36] and is of the sigmoidal type, with the gain parameterQ i (representing arousal
by neuromodulators) and a normalization factorC. In computer simulations with 100 units in each
layer this dynamical system shows interesting behavior: depending on the value ofQ it may have
a point attractor, a limit cycle, a strange attractor, long transients similar to chaos and truly chaotic
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behavior. The system has been analyzed from the point of view of its internal dynamics and the
trajectories presented in [48] compare the activity of two arbitrarily selected neurons (Fig. 3). Such
models are very interesting because they allow to some degree comparison with neurophysiological
data. However, from this point of view it is hard to understand what happens in the mind of a sniffing
animal. The odor feature space (early descriptions of this space tried to represent it as a prism [49]) is
based on the input dimensionsIi only, characterizing arousals of different chemoreceptors. Prototype
odors are stored in this space as fuzzy objects (Fig. 3). The input signalsI i(t) and the noiseξ(t) push
the mind state vectorX(t) randomly around the whole space, the state vector roughly following the
input signals. If the input signal stabilizes for a while (an odor is presented to the system) the gradient
dynamics brings the mind state vectorX(t) to theIi(t) region of the feature space. The size of the steps
in gradient dynamics corresponds to the degree of arousal (parameterQ in the dynamic model). If the
arousal is very high the mind state vector jumps all over the space in a chaotic way – panic states of
mind correspond to chaos in the dynamical system. If the arousal is very low the system state vector
X(t) needs a long time to reach theIi(t) region and the noise in the system makes its trajectory similar
to random walk. If after a short time no object is found in the input region a new memory trace starts
to form. Memory traces are formed and strengthen any time the system abides in some region of the
feature space.

input

pyramidal
cells

inhibitory

excitatory

inhibitory
feedback

FIG. 3. Model of the olfactory cortex. The top layer of inhibitory interneurons receives the inputs from the
olfactory bulb, the bottom layer contains feedback inhibitory interneurons and the middle layer excitatory neurons
with lateral connections. The model shows rich behavior including limit cycles and chaotic regions of the phase
space.

V. HIGHER COGNITION

The approach described here provides a mechanism to reduce mind events to the brain events. The
model of mind is composed from a number of linked feature spaces, each corresponding to a certain
brain structure. At the highest level feature detectors contribute to the global dynamics of the brain.
In the dynamical model a single complex oscillator or a small recurrent neural network represents a
localized brain function, such as those realized by the motoric, sensory or one of the emotional areas.
A few such subsystems representing different modalities and feature detectors are coupled together
and provide parameters for the global, distributed system, responsible for the multimodal information
processing. Subjective states of the total system are identified with the global dynamical states – in case
of humans they involve large parts of the neocortex (the frontal lobes, parietal areas) and subcortical
structures. The highest level dynamics corresponds to a feature space called further the mind space.
Combinations of all input features in the mind space define mind objects.

Some features of the internal mind spaces objects (representations) are of binary type: existing-
nonexisting. Other features have various degrees, for example numerical values or sizes. A “horse”
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has size, shape, head, tail, mane, makes sounds, likes to run, eats grass and is defined by all these and
many other properties. Each of these features is to some degree fuzzy since they are approximations
to a noisy dynamics of the brain NCAs. The symbolic name “horse”, as well as a few features of the
horse mentioned above easily “activates” the corresponding object in our mind, i.e. the mind state
vectorX(t) moves to the region of the mind space where this object is stored. This particular combi-
nation of features forms a unique category. The meaning of the object is grounded in the combination
of all relevant features of inner representation, some of them related to analog sensory data. More
abstract information is represented as objects in form of kinesthetic image schemes and time-related
information is converted to spatial relations [38].

Mind space is thus defined by the coordinate system based on all features of internal representa-
tion. Objects in the mind space are defined by the “mind function”M(X) for all relevant featuresX i.
Nonzero values of the mind function define these objects as a fuzzy regions in the mind space. Topo-
graphical relations of objects in this space are very difficult to imagine because of the large number
of dimensions involved. Problems with understanding how the mind works are to a large degree con-
nected with the difficulties in understanding relations in multidimensional spaces. The mind function,
defined in the mind space, represents all fuzzy objects (prototypes blurred by noisy dynamics) that
such system is able to recognize, i.e. correctly classify using partial description or distorted inputs.
Cognitive system is able to modify the contents of the mind space by adding more objects (learning
and remembering), modifying existing objects or learning new associations (changing topographical
relations between existing objects). However, the adiabatic learning hypothesis still holds: topography
of the mind space defined by the mind functionM(X) changes slowly in comparison to the changes of
the mind stateX(t).

At present we have considered several ways to approach the problem of simplified description of
feature spaces. First, the functional approach leads to a generalization of the Radial Basis Function
model [21], especially in its constructivist form, where the network grows with the incoming data
while the clusters in the feature space are constructed. This approach has been used in the Feature
Space Mapping (FSM) system [20], where learning is presented from the geometrical point of view
as finding the best possible description of the “mind objects” in the feature spaces. From this point of
view the best neural processing functions should have small number of parameters and should allow
for a great flexibility in defining regions of non-vanishing density in the feature space. Recognition
is identified with the local maximum of density in which information about the object is stored. The
input is composed from distorted or partially known vector of features pointing to a region in the
feature space where the search for the object (local maximum of density) is made. An application of
the functional approach to the “naive physics” or qualitative physics problem, i.e. mind models of the
basic concepts of electric circuits, has already been presented [20].

Another way of describing the feature space, based also on a functional approach, is to use the
Hilbert space formalism defining transition probabilities by overlaps of the densities representing dif-
ferent attractors, i.e. different dynamical states or categories. Field computation in the brain based on
a continua of microfeatures were developed into a model of asimulacrum, a continuous representa-
tion of information [50]. Other connections worth exploring are deterministic finite automata (DFA)
and their stochastic versions, which may be used to model transitions between different attractors in
dynamical systems and vice versa [51]. A theory of conceptual mental spaces has been developed in
cognitive linguistics [52].

This approach solves the neurons vs. symbols debate [53] defining the language useful in description
of cognitive states, mind events and relation of these events to the dynamics of the brain. The problem
of mind modeling is reduced from the problem of neural dynamics to a problem of finding the best
approximation for this dynamics, for example by a geometrical representation of objects in the feature
spaces. Models of cognitive systems based on the feature space concept are realized in a natural
way by the neurofuzzy systems, combining neural optimization of adaptive parameters (learning) with
symbolic representation based on fuzzy logics [20]. Learning and categorization is presented in such
systems as a problem of constructing an appropriate geometrical model of the data in feature spaces
of much lower dimension than the number of parameters necessary to describe the dynamics of the
underlying network.

Artificial intelligence aims predominantly at higher cognition: language, thinking, reasoning, prob-
lem solving, expert knowledge processing. Most of the research in this field is based on the assumption
that higher cognition is based on symbol processing (cf. the book “Unified theories of cognition” by
Allen Newell [12]). Computational models of mind should lead from Artificial Intelligence to models

14



of Artificial Minds. Concepts of the mind space, mind function and mind states, the role of fuzzy
logic and the dynamics of mind states, associations as coupling of attractors, adaptive resonances and
descriptions of the mind space based on analogies with quantum mechanical Hilbert space formalism
seem to be fruitful in establishing the bridge between neurosciences and cognitive psychology. What
is needed is a systematic investigation of different levels of approximations to the brain’s dynamics.

It is clear that the mind space approach applied to the higher cognition leads to a memory based
models of reasoning. Objects are associated with each other, or are judged to be similar, if they are
close in the mind space. MBR, or memory-based reasoning, seems to be superior to neural network
models in such complex tasks as learning pronunciations of English words using a small (700 words)
training sample, predicting secondary structure of proteins, classification of free-text examples of ar-
bitrary length in the real world applications and in many other tasks [54]. MBR uses various metric
functions to make associations based on the memorized objects but it does not make them fuzzy and
does not use local learning techniques to optimize their shapes, as does FSM [20]. Newell [12] based
his SOAR theory on the assumption that experts use 50-100 thousands of “chunks” of knowledge,
memorized in form of production rules. We have already shown how the feature space may replace
production rules in reasoning [20]. One may also justify probabilistic reasoning by introducing an
appropriate metric in feature spaces.

In developmental psychology in recent years the language of computational models and dynamical
systems [13,41] becomes a new foundation for the whole field. Ultimately large and complex mod-
els of brain structures will have to be simulated using neural hardware. Several large-scale projects,
some based on custom neural chips, are in the design phase (for a review see [55]). Brain-size neuro-
computer (about 1010 neurons), built using current technology chips, organized according to a “fractal
architecture”, would fill the room 32 by 10 by 10 meters (about the size of Mark I, one of the first
computers), and should have about 25 TBytes of RAM [55]. Such a large size is due to the essentially
two-dimensional structure of integrated circuits. Artificial mind models based on the mind space idea
approximating the dynamical models should be much simpler and smaller.

VI. MIND, CONSCIOUSNESS AND PHILOSOPHICAL ISSUES.

The model presented here seems to solve the fundamental problems of cognitive sciences. Mind
is a function of the brain and the environment. The role of large parts of the brain is to provide
various features necessary to set up the mind space for an individual mind. Environment provides
the training data to set up the objects and relations between them in the mind space. The mind is an
emergent property of the brain, unique and subjective, depending on the individual experiences and
history. It is embodied in neural hardware. Although we may talk about mind events taking place in an
abstract mind space activation of mind objects leads to physical actions. Linguistic symbols are parts
of multidimensional mind objects, although due to the complexity of linguistic subsystems and their
coupling with the global dynamics of the brain several quite complex mind spaces are necessary [52].

The mind-body problem does not arise since the mind and the brain are just two sides of the same
coin. Symbols are grounded in real world experiences. Qualitative character of experiences is related
to subjectivity arising from the uniqueness of each organism. At the dynamical level of description
different internal states of the brain (due to the sensory inputs or internal dynamics) are specific to a
given organism, depend on its history and conditioning. Consider a rat conditioned to associate color
green with tasty food and color red with electric shock. Representing the level of stress on one axis
(measured by the arousal of the amygdala and lateral hypothalamus structures) and the perceived color
on the other axis we may visualize the mind objects that were created due to the conditioning (Fig. 4).
The qualitative character of rat’s experience is quite obvious.
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FIG. 4. Mind space of a rat conditioned to respond with fear to a red light and joy to a green light. The density
of fuzzy mind objects created by this conditioning in the mind space of a rat is represented by the density of lines
in the drawing.

From the subjective, experiential point of view the language of abstract mind events is more relevant
than the language describing the underlying brain dynamics. One may say that if two mind objects in
the mind space are close the probability of association between them is high and they will be labeled
as similar. In this case high transition probability will be found in the brain dynamics between the
two attractor states representing such objects. One may also argue for the Platonic view of the mind:
potentially all mind objects are in the universal mind space, although only something as sophisticated
as the brain can to some degree recognize and thus copy them to a local mind space. The objects and
events of mind are to a large degree realized in a similar way in different brains of the same species.
Mind space as an arena of mind events is a useful metaphor, leading to a specific language to speak
about mind events, a language that is much more natural and easier to use than specification of brain
states.

It should be clear that in this view consciousness or awareness is a subtle reaction of the
mind/brain/body system that requires a very complex mind space with a large dimensionality. In
his cognitive theory of consciousness Baars [56] has introduced the model of consciousness seen as a
global workspace. The idea of a mind space as an approximation to the dynamics of the brain gives
support to this model from quite different perspective. In the long run ideas presented here should lead
beyond metaphoric use of concepts from nonlinear dynamics to psychodynamics and psychoanalysis
[57], although elucidation of the mind space topography at such a level of sophistication as needed in
psychodynamics may be very difficult.

VII. SUMMARY

In a broad sense psychophysics is still being born. It should be one of the core sciences exploring the
relations between the brain and the mind. Many branches of science contribute to the emerging identity
of cognitive science as a unique science aimed at understanding the information processing capabilities
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of the brain, including mental phenomena. Neurosciences, cognitive psychology, linguistics, computer
science (artificial intelligence) and even philosophy have contributed to cognitive science. Contribution
of physics is indirect, via the experimental techniques in the brain research, via biophysical models at
the level of single cell, statistical methods applied to the recurrent neural networks [26] and various
dynamical models of the brain processes [16,28]. Contributions of physics to cognitive science will
not be recognized until psychophysics, the branch of physics devoted to understanding the relations of
the brain and mental processes, will not establish itself within physics first. Most of the computational
work on the brain is done under the “computational cognitive neuroscience” heading by experts coming
from various backgrounds. At present computational physicists and computational mathematicians are
the best qualified scientists to contribute to this new, exciting field.

In this paper I have outlined a new approach to modeling the mind functions. I have argued that
a reasonable view of the mind, including such elusive concepts as consciousness, is possible, and
that all we can hope for is to create many theories, at different levels of description, building bridges
between them. The concepts of neural cell assemblies and their attractor states, identification of the
global brain dynamics with conscious perception, and the approximation of biologically motivated
dynamical, modular neural networks by feature spaces and mind spaces, replacing complex dynamics
by activation of mind objects, seem to be such a bridge between the brain and the mind, or neuroscience
and psychology. If physics is understood as an attempt to understand Nature than understanding of the
mind is its greatest challenge and it is a job for computational physicists.
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