
FEATURE SELECTION BASED ON INFORMATION THEORY, CONSISTENCY AND
SEPARABILITY INDICES.
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ABSTRACT

Two new feature selection methods are introduced, the first
based on separability criterion, the second on consistency
index that includes interactions between the selected sub-
sets of features. Comparison of accuracy was made against
information-theorybased selection methods on several data-
sets training neurofuzzy and nearest neighbor methods on
various subsets of selected features. Methods based on sep-
arability seem to be most promising.

1. INTRODUCTION

Challenging applications of data mining methods in bioin-
formatics, chemistry and commercial domains demand in-
expensive methods for filtering features that should be used
for modeling data. In bioinformatics a very large (∼ 10 4 −
105)) number of features are associated with gene activ-
ity (over 30.000 genes in humans and even more in some
plants), while properties of proteins may be described by
more than 100.000 features. All these features may be im-
portant for some problems, but for a given task only a small
subset of features is relevant. In commercial applications
the situation is similar. Therefore computationally inexpen-
sive methods of filtering features are urgently needed. Fil-
tering features means either ranking or selecting subsets of
features. Methods of feature ranking treat each feature in an
independent way, trying to determine how useful they may
be. Methods of feature selection try to find a subset of fea-
tures that should lead to the best results. Exhaustive search
to evaluate performance with all possible subsets of features
is the golden standard here, but the number of all subsets for
n features is 2n, making such search unrealistic for larger n.
Finding useful subsets of features is equivalent to assigning
binary weights to inputs.

Filtering methods are inexpensive and independent of
the final system used for data modeling. Computationally
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more demanding, but sometimes more accurate, “wrapper
methods” [1] require evaluation of each potentially useful
subset of features by computational intelligence (CI) sys-
tems that are used on a given data. The name “wrapper" is
used also for a class of parameter adaptation methods call-
ing a “black box" classifier to evaluate results of parameter
changes. Two essential components of such methods are pa-
rameter search and evaluation of results requiring test runs.
Computational complexity of filtering methods is usually
much lower than in the case of wrapper approach. Feature
selection methods may also be based on specific properties
of classification methods (cf. backpropagation with regular-
ization [2, 3]).

Feature filtering methods frequently are based on infor-
mation theoretical methods. If a feature carries no infor-
mation in respect to the task performed and to other fea-
tures that are already selected, it may be safely filtered out.
Several methods based on information theory and other ap-
proaches are presented in the next section. Although quite
popular, they have some disadvantages that led us to devel-
opment of two new methods, based on the separability cri-
terion and consistency index. These methods are described
in the third section. Numerical comparisons on two well
known datasets are presented in section four. The paper is
finished with a number of conclusions.

2. INFORMATION THEORY AND OTHER
FILTERS

Ranking of features determines the importance of individ-
ual features, neglecting possible feature interactions. Rank-
ing methods may use correlation coefficients, may be based
on mutual information between features and classes, or on
some functions of classifier’s outputs.

Consider the joint probability p(Ci, f), i = 1 . . .K of
finding the feature value Xj = f for vectors X that belong
to some class Ck. The amount of information contained
in this joint distribution, summed over all classes, gives an



estimation of the importance of the feature:

I(C, Xj) = −
K∑

i=1

∫
p(Ci, f) lg2 p(Ci, f)df (1)

≈ −
Mj∑
k=1

p(rk(f))
K∑

i=1

p(Ci, rk(f)) lg2 p(Ci, rk(f))

where rk(f) is a partition of the continuous feature range
into Mj intervals (a subset of discrete feature values), and
p(rk(f)) is the probability of finding vectors with Xj =
f ∈ rk(f). Low values of I(C, Xj) indicate that vectors
from single class dominate in some intervals, making the
feature more valuable for prediction.

Information gained by considering the joint distribution
of classes and Xj feature values is a difference between
I(C) + I(Xj) and I(C, Xj):

IG(Xj) = −I(C, Xj) −
K∑

i=1

p(Ci) lg2 p(Ci)

−
Mj∑
k=1

p(rk(f)) lg2 p(rk(f)) (2)

A feature is more important if its information gain is larger.
Various modifications of the information gain have been
considered in the literature on decision trees (cf. [4]), such
as the gain ratio IGR(Xj) = IG(Xj)/I(Xj) or the Man-
taras distance 1 − IG(Xj)/I(C, Xj) (cf. [5]). Another ra-
tio IGn(Xj) = IG(Xj)/I(C), called also “an asymmetric
dependency coefficient" is advocated in [6].

Mutual information between feature f and classes:

MI(C, f) =
K∑

i=1

Mf∑
k=1

p (Ci ∧ rk(f)) lg2

p (Ci ∧ rk(f))
p (Ci) · p (rk (f))

where r1 (f) , r2 (f) , . . . , rN (f) is a partition of the range
of f values into bins and p(Ci ∧ rk(f) is the probability
that vector X from class Ci has feature f in the bin rk .
The sum runs over all Mf bins and all K classes. Mutual
information is equal to the Kullback-Leibler divergence be-
tween the joint and the product probability distribution, i.e.
MI(PX , PY ) = DKL(PXY |PXPY ).

Selection of features by taking those with the highest
ranking does not include the fact that features may be highly
redundant. Interactions between features should be taken
into account. Mutual information between two features f, s
is defined as:
MI(f, s) =

∑
k,j=1

p (rk(f) ∧ rj(s))·lg2

p (rk(f) ∧ rj(s))
p (rj (s)) · p (rk (f))

The algorithm for finding the best subset of k features
due to Battiti [7] computes the mutual class-feature infor-
mation MI(C, f) for every feature f ∈ F (initially the set
of all features) and the set of classes C = {C1, . . . CK}.

The feature f that maximizes MI(C, f) is found (like in
ranking) and moved from the set F to the set in S (initially
an empty set). Mutual information MI(f, s) is calculated
between features f ∈ F and s ∈ S and a new feature
is chosen, one that maximizes the difference MI(C, f) −
β

∑
s∈S MI(f, s) where β is a parameter in the interval

[0.5,1]. Smaller values of β stress the importance of high
mutual information between the feature and set of classes;
large values stress more mutual information with the fea-
tures already included in the set S [7].

Correlation-based feature selection (CFS) is based on a
similar priniciple: features should be highly correlated with
the class but not with each other. Correlation between fea-
tures may be estimated using entropy distance measure
DI(X, Y ) = I(X |Y )+I(Y |X) or symmetrical uncertainty
coefficient U(X, Y ) = 1 − DI(X, Y )/(I(X) + I(Y )) ∈
[0, 1]. In numerical tests CFS comes close to the wrapper
approach for the Naive Bayes method [8].

Features are also selected during construction of deci-
sion trees, with the most important features near the root of
the tree, and the least important near the bottom. Pruning
leaves only the most important features in the tree. Infor-
mation theory criteria are used in most popular trees, such
as C4.5 [4]. However, Shannon information is not the only,
and perhaps not even the most natural, measure of the simi-
larity of probability distributions.

Consistency-based index is the sum, over all bins (par-
titions), of the number of vectors in the majority class in a
given bin, divided by the number of all vectors. This index
estimates "class purity", and works best with methods that
partition each feature range into bins that contain natural
grouping of data (cf. review in [8]).

3. NEW METHODS: DECISION TREE AND
INTERACTIVE CONSISTENCY INDEX

The Separability Split Value (SSV) criterion [9] selects fea-
tures that give the largest gain of separability index, equal
to the number of correctly separated vectors from different
classes. The inexpensive best-first (BFS) search approach is
used to build decision tree. The tree node split values, calcu-
lated by the maximization of the SSV criterion, provide au-
tomatic discretization of continuous intervals. Information-
theoretic approaches usually require separate discretization
step to determine rk(f) intervals.

The SSV tree may place a given feature at different lev-
els and may use a single feature several times. Feature se-
lection has been done here by increasing the degree of prun-
ing [9] and noting the minimal number of tree nodes for
which a given feature appears. The most important feature
is placed at the highest level and has two nodes (not count-
ing the root). This method includes interactions among fea-
ture subsets. The tree may also be used to rank features eval-



uating the classification results that one may obtain with a
single feature only, but since the tree algorithm is quite fast
(at least in the best-first search mode) there is no reason to
use such ranking.

The second method presented here, the Interactive Con-
sistency Index (ICI) method, starts from computing the IC(f)
indices for all features f :

IC(f) =
1

Mf

Mf∑
k=1

max
C

p(rk(f))p(Ci, rk(f)) (3)

Partitions rk(f) may be created by standard techniques
used for histogram partitioning (equiwidth, equidepth, least
variance etc,) or by using the SSV criterion [9] on the single
feature f . Such partitioning guarantees that for data that is
separable using feature f only, the index IC(f) = 1. In
the worst case if feature f used separately from all others
is useless, for K classes the index may be IC(f) = 1/K .
Rescaling it by (K · IC(f) − 1) /(K − 1) gives an index
with values in [0, 1] that may be used for ranking.

The ICI index is useful for feature ranking. Feature se-
lection requires evaluation of subset of features. Let S =
{s} be the current subset of M features. New feature f to
be added to the subset should improve the IC(S + {f})
index value, but it should also be different than features al-
ready included in S. In context of the consistency index an
appropriate measure of difference between two features s, f
is given by the distance function:

DC(s, f) =
∑
i,j

min
C

[pC(si, fj) − pC(si)pC(fj)] (4)

where DC(s, f) ∈ [0, 1]. The ICI algorithm starts with
empty S and selects the feature with the highest ICI index.
Selection of the next feature f should maximize the ICI in-
dex value calculated over partition of S + f . This method
includes interactions between features selected, avoiding re-
dundant features. Hashing techniques have been used to
avoid high computational costs of summing over empty S+
f areas.

4. NUMERICAL EXPERIMENTS

The new methods, ICI and SSV feature selection, have been
tested against 17 other methods of feature ranking or se-
lection. Due to the space restrictions we report here only
results obtained with information gain (IGn) ranking [6]
and Battiti selection method (BA) [7] on two datasets [10]:
Monk-1 artificial data and hypothyroid problems. Monk-1
data has only 6 features of which 5, 1, 2 are used to form a
rule determining the class. 124 training cases are used for
feature selection, and 432 cases are used for testing. Since
all features are symbolic discretization is not needed.

In each case subsets of features have been generated an-
alyzing the training set using the normalized information
gain [6], Battiti’s information gain with feature interaction
[7], and using two new methods presented here, the SSV
separability criterion and the ICI method. An additional
ranking has been provided with k nearest neighbor method
using SBL program [11] as a wrapper, with feature drop-
ping method to determine feature importance. kNN with
optimization of k and similarity measure, the Feature Space
Mapping (FSM) neurofuzzy system [12], and several statis-
tical and neural methods (not reported here due to the lack
of space) were used to calculate accuracy on the test set us-
ing the feature sets with growing number of features. The
best feature selection method should reach the peak accu-
racy for the smallest number of features.

Both kNN (k=1, Canberra distance) and FSM achieve
100% on the Monk-1 data using the 3 important features,
but not all methods found them. Our reference method based
on feature dropping in the kNN gave feature number 1 as a
clear winner. All other methods start correctly from feature
5, achieving 25% higher accuracy with single feature (Fig.
1), but dropping below the SBL ranking for two features.
Same ranking was found using the SSV criterion and the
beam search method for tree construction. Rankings based
on information gain (in several versions that we have tried)
failed to find the 3 important features correctly. Battiti’s
approach (BA in Table 1 and 2, and Fig. 1 and 2) after cor-
rectly recognizing the importance of feature 5 and 1 failed
for all recommended β values to recognize the importance
of feature 2.

The hypothyroid dataset has been created from real
medical screening tests for hypothyroidproblems [10]. Since
most people were healthy 92.7% of test cases belong to the
normal group, and 7.3% of cases belonging to the primary
hypothyroid or compensated hypothyroid group. Hypothy-
roid data offers a good mixture of nominal (15) and numer-
ical (6) features. A total of 3772 cases are given for training
(results from one year) and 3428 cases for testing (results
from the next year). We have provided comparison with re-
sults of other classifiers elsewhere [2], here the data is used
only for evaluation of feature selection.

This is a much more difficult case due to the strong cor-
relations between features. We have used both equiwidth
and equidepth discretization of continuous features, but the
results were similar. Dropping features in SBL gives very
good results, although SSV finds a subset of 3 features (17,
21, 3) that give higher accuracy with both kNN and FSM
methods. Overall SSV finds very good subsets of features
leading to best results for small number of features. IGn
selects all important features but does not include any fea-
ture interaction; as a result high accuracy is achieved with
at least 5 features. On the other hand adding feature inter-
actions in the Battiti method, even with small β, leaves out



Method Most – Least Important
SBL 1 2 5 3 6 4
BA β = 0.7 5 1 3 4 6 2
ICI ranking 5 1 2 3 4 6
ICI selection 5 1 2 3 4 6
IGn 5 1 4 2 3 6
SSV 5 1 2 3 4 6

Table 1: Results of feature ranking on the Monk 1 data using six methods.
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Figure 1: Monk 1 artificial data, results obtained on subsets of features with ranking by 4 methods. Left figure: results from
kNN, Canberra distance, k=1; right figure: results from FSM neurofuzzy network.

Method Most Important – Least Important
SBL 17 3 8 19 21 5 15 7 13 20 12 4 6 9 10 18 16 14 11 1 2
BA β = 0.5 21 17 13 7 15 12 9 5 8 4 6 16 10 14 2 11 3 18 1 20 19
IGn 17 21 19 18 3 7 13 10 8 15 6 16 5 4 20 12 1 2 11 9 14
ICI ranking 1 20 18 19 21 17 15 13 7 5 3 8 16 12 4 2 11 6 14 9 10
ICI selection 1 19 20 18 2 21 3 11 16 10 6 14 8 9 4 12 13 17 5 7 15
SSV BFS 17 21 3 19 18 8 1 20 12 13 15 16 14 11 10 9 7 6 5 3 2

Table 2: Results of feature ranking on the hypothyroid dataset; see description in text.
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Figure 2: Hypothyroid data, results obtained on subsets of features created by 4 methods. Left figure: results from kNN,
Canberra distance, k=4; right figure: results from FSM neurofuzzy network.



important features 3, 18-20, leading to poor accuracy with
sets smaller than 17 features. BA has left out some impor-
tant features that had large mutual information with features
17 and 21, selected as the first two features. ICI ranking
and selection incorrectly start from feature number 1. This
seems to be a result of naive discretization. IGn behaves
correctly, climbing slowly and reaching a plateau and de-
clining when irrelevant features are added. The variance of
the FSM results is rather high (few points have been av-
eraged over 10 runs), but that does not change the overall
character of curve in Fig. 2.

The best kNN result (k=4, Canberra) is achieved with 5
features, 17,3,8,19,21, reaching 98.75% on the test set, sig-
nificantly higher than 97.58% with all features. This seems
to be the best kNN result achieved so far on this dataset.

5. CONCLUSIONS

Two new feature selection methods have been introduced
and compared with a wrapper method, a ranking method
based on normalized information gain and selection method
based on mutual information that includes correlation among
features. Only a few results obtained with several feature se-
lection schemes and classification methods have been pre-
sented here. Several conclusions may be drawn from this
and our more extensive studies:
1) Results of ranking algorithms depend strongly on dis-
cretization procedures for continuous features; dependence
on the choice of the number of intervals for calculation of
information may partially be removed if Gaussian overlap-
ping windows are used instead of intervals, but better rank-
ing methods should be based on separability or entropy-
based discretization criteria.
2) Decision trees may provide very good selection and rank-
ing; in particular SSV tree consistently selected small sub-
sets of most important features, sometimes giving better re-
sults than wrapper methods.
3) Selection of relevant feature subsets is more difficult than
feature ranking; best-first search is not always sufficient. A
good strategy is to use ranking method to find a subset of
features and then to use selection method to find a smaller
set of features.
4) Selection methods that include correlation among fea-
tures may find smaller subsets of features, but may also miss
importat features.
5) Classification method may benefit to a different degree
from different selection methods, therefore finding the best
selection method for a given classification method is an open
question.
6) Methods based on consistency indices may outperform
information theory methods but are sensitive to discretiza-
tion.
7) In multiclass problems a better feature selection strat-

egy is to select features useful for discrimination of a sin-
gle class from the rest; this is especially important for such
datasests as thyroid, with 92% of cases in one class.
8) Aggregation (for example by linear combination) of fea-
tures may be easier than selection.
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