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application of crisp and fuzzy logical rules
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Abstract— A new methodology of extraction, optimization and applica-
tion of sets of logical rules is described. Neural networks are used for initial
rule extraction, local or global minimization procedures for optimization,
and Gaussian uncertainties of measurements are assumed during applica-
tion of logical rules. Algorithms for extraction of logical rules from data
with real-valued features require determination of linguistic variables or
membership functions. Context-dependent membership functions for crisp
and fuzzy linguistic variables are introduced and methods of their deter-
mination described. Several neural and machine learning methods of log-
ical rule extraction generating initial rules are described, based on con-
strained multilayer perceptron, networks with localized transfer functions
or on separability criteria for determination of linguistic variables. A trade-
off between accuracy/simplicity is explored at the rule extraction stage and
between rejection/error level at the optimization stage. Gaussian uncer-
tainties of measurements are assumed during application of crisp logical
rules, leading to “soft trapezoidal” membership functions and allowing to
optimize the linguistic variables using gradient procedures.

Numerous applications of this methodology to benchmark and real life
problems are reported and very simple crisp logical rules for many datasets
provided.

Keywords— Neural networks, logical rule extraction, fuzzy systems, fea-
ture selection, MLP, backpropagation.

I. I NTRODUCTION

ADAPTIVE systems, such as the multi-layered perceptron
(MLP) and other neural networks, adjust their internal pa-

rameters performing vector mappings from the input to the out-
put space. Although they may achieve high accuracy of classi-
fication, the knowledge acquired by such systems is represented
in a large number of numerical parameters and network archi-
tectures, in a way that is incomprehensible for humans. Thea
priori knowledge about the problem to be solved is frequently
given in a symbolic, rule-based form. Extraction of knowledge
from data, combining it with available symbolic knowledge and
refining the resulting knowledge-based expert systems is a great
challenge for computational intelligence. Reasoning with logi-
cal rules is more acceptable to human users than recommenda-
tions given by black box systems [1], because such reasoning is
comprehensible, provides explanations and may be validated by
human inspection increasing confidence in the system, impor-
tant relationships and features may be discovered in the data.

Comprehensibility is often regarded in machine learning
(ML) as the most desired characteristic of inductive methods
(i.e. methods that learn from examples). Michalski, one of
the ML pioneers, formulated it in the following way: “The re-
sults of computer induction should be symbolic descriptions of
given entities, semantically and structurally similar to those a
human expert might produce observing the same entities. Com-
ponents of these descriptions should be comprehensible as sin-
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gle ‘chunks’ of information, directly interpretable in natural lan-
guage, and should relate quantitative and qualitative concepts in
an integrated fashion” [2].

Many methods to find logical description of the data have
been designed in the past using statistical, pattern recognition
[3] and machine learning [4] approaches. Rule-based systems
should be preferred over other methods of classification only in
cases when the set of logical rules is not too complex and their
predictive accuracy is sufficiently high. Hundreds of logical
rules produced by some algorithms provide opaque description
of the data and therefore are not more comprehensible than any
black-box classification system. Although the class of problems
with inherent logical structure simple enough to be manageable
by humans may be rather limited, nevertheless it covers some
important applications, such as the decision support systems in
medicine, finances, commerce and other applications.

A good strategy in data mining and classification tasks is to
use the simplest description of the data that does not compro-
mise accuracy: extract crisp logical rules first, use fuzzy rules
if crisp rules are not sufficient, and only if the number of logi-
cal rules required for high accuracy of classification is too large
use other, more sophisticated tools. In many applications sim-
ple crisp logical rules proved to be more accurate and were able
to generalize better than many machine and neural learning al-
gorithms [5]. In other applications fuzzification of logical rules
gave more accurate results [6]. Crisp logical rules may be con-
verted to a specific form of fuzzy rules (Sect. VIII) and op-
timized using gradient procedures, providing higher accuracy
without significant increase of the complexity or decrease of
comprehensibility of the rule-based system.

Are neural methods competitive to other methods in provid-
ing simple and accurate sets of logical rules? There are two is-
sues here: understanding what neural networks really do, and
using neural networks to extract logical rules describing the
data. Many neural rule extraction methods have been devised
in the past, but there are very few comparisons with other meth-
ods and explicit logical rules are almost never published. Sev-
eral neural methods have been compared experimentally [1] on
the mushroom and the three monk problems benchmark datasets
[7], but no comparison with machine learning methods has been
given. There is a strong competition from decision trees [8],
which are fast, accurate and can easily be converted to sets of
logical rules, from inductive methods of machine learning [4],
and from systems based on fuzzy [9], [10] and rough sets [11],
[12].

Despite this competition neural networks seem to have impor-
tant advantages, especially for problems with continuous-valued
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inputs. Good linguistic variables may be determined simultane-
ously with logical rules, selection and aggregation of features
into smaller number of more useful features may be incorpo-
rated in the neural model, adaptation mechanisms for continu-
ously changing data are built in, and wide-margin classification
provided by neural networks leads to more robust logical rules.

In this paper we do not introduce “a new neural method” for
rule extraction, but rather present a complete methodology for
extraction, optimization and application of sets of logical rules.
An overview of neural rule extraction methods is made in the
next section, followed by some comments on types of logical
rules used in inductive methods. The first step in the rule-based
data analysis requires selection of initial linguistic variables, as
described in section four. Several new neural rule extraction
methods are presented in the fifth section and a pedagogical ex-
ample of the actual process of rule extraction, based on the well-
known Iris flower data [7], is given in section six. Once initial
rules are extracted simplification and optimization of linguistic
variables for real-valued attributes is done. In the seventh sec-
tion the accuracy/rejection tradeoff for sets of rules is explored.
A new error function is defined allowing to create hierarchical
sets of rules, starting from rules that are very reliable but reject
many cases (assigning them to the “unknown” class), to rules
that classify all data but are less reliable.

Crisp logical rules assign a given input vector to a single class
with probability equal 1, even in cases when similar probability
for two or more classes should be reported. In section eight a
method for calculation of probabilities for rule-based classifiers
is presented. Assuming Gaussian uncertainties of the measured
features analytical formulas for classification probabilities are
derived. Such approach is equivalent to the use of fuzzy rules
with “soft trapezoid” membership functions applied to crisp in-
put vectors. This enables optimization of linguistic variables for
very large sets of rules using efficient gradient procedures and
preserves the ease of interpretation of crisp logical rules. Illus-
tration of the optimization and probability calculation steps is
done in section nine while in section ten many applications on
well-known data and some real-world examples are presented
and, whenever possible, compared with other approaches. Ex-
plicit form of rules are given, in most cases the simplest and
most accurate reported in the literature so far for these datasets.
Section eleven contains summary and conclusions.

II. A N OVERVIEW OF NEURAL RULE EXTRACTION

METHODS.

A taxonomy of the neural rule extraction algorithms may
characterize different methods using five dimensions [13]: (a)
the ‘expressive power’ of the extracted rules (types of rules ex-
tracted); (b) the ‘quality’ of the extracted rules (accuracy, fi-
delity comparing to the underlying network, comprehensibility
and consistency of the extracted rules); (c) the ‘translucency’
of the method, based on local-global use of the neural network
(analysis of individual nodes versus analysis of the total net-
work function); (d) the algorithmic complexity of the method;
(e) specialized network training schemes. One should add one
more dimension to this scheme, (f) the treatment of linguistic

variables: some methods work only with binary variables, other
with discretized inputs, and yet other with continuous variables
that are converted to linguistic variables automatically.

In the simplest case the inputs are binary and the network
gives logical outputs. After training the network performance is
equivalent to a set of logical rules that may be found by giving as
input all possible combinations of features. Forn binary features
the number of conjunctive rules is 3n (since each feature may ei-
ther be absent, present or its negation may be present in the rule
antecedent). To limit the number of nodes in the search graph
one may try to limit the number of literals in the antecedents of
extracted rules. In one of the first neural rule extraction methods
Saito and Nakano [14] restricted the maximum number of posi-
tive and negative literals and the depth of the breadth-first search
process, additionally restricting the search tree to those combi-
nations of literals that were present in the training set. Due to
these restrictions their method could sometimes accept a rule
that was too general. This drawback has been removed in the
method developed by Gallant [15]. The difficulty comes from
the inputs that are not specified in the rule provided as a candi-
date by the search procedure. Gallant takes all possible values
for these inputs and although his rules are always correct they
may be too specific.

The Validity Interval Analysis (VIA) method developed by
Thrun [16] is a further extension of the global approach. A
validity interval, specifying the maximum activation range for
each input, may be found using linear programming techniques.
These intervals may be propagated backwards and forwards
through the network. Arbitrary linear constraints may be ap-
plied to input as well as output units, giving the method the abil-
ity to check the validity of non-standard form of rules, such as
theM-of-N rules, i.e. logical expressions in which at leastM of
N literals are true. VIA can handle also continuous-valued input
features, starting from the training values and replacing them
with intervals that are increased to achieve good generalization
of rules. The method may be applied to any neural network with
monotonic transfer functions. Unfortunately it has a tendency to
extract rules that are too specific and rather numerous.

These methods are global, based on analysis of outputs of the
whole network for various inputs. Local, or “decompositional”
methods [1] analyze fragments of the network, usually single
hidden nodes, to extract rules. Such networks are either based
on sigmoidal functions (step functions in the logical limit), or
on localized functions. Using step functions the output of each
neuron becomes logical (binary) and since sigmoidal transfer
functions are monotonic and activations are between 0 and 1 it
is enough to know the sign of the network weight to determine
the contribution to activation of a given unit. Search for rules
has now 2n possible combinations of input features (irrelevant
or relevant feature, with negation of literal determined by the
weight sign), while in the global approach monotonicity does
not, in general, hold. Rules corresponding to the whole network
are combined from rules for each network node.

Local methods for extraction of conjunctive rules were pro-
posed by Lin Min Fu [17], [18], [19], [20] and Gallant [15]. As
with the global methods depth of search for good rules is re-
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stricted. The weights may be used to limit the search tree by
providing the evaluation of contributions of inputs that are not
specified in rule antecedents. As shown by Sethi and Yoo [21]
the number of search nodes is then reduced toO(2n/

√
n). In

the Subset algorithm of Towell and Shavlik [22] inputs with
largest weights are analyzed first, and if they are sufficient to ac-
tivate the hidden node of the network irrespectively of the values
on other inputs, a new rule is recorded. Combinations of the two
largest weights follow, until the maximum number of antecedent
conditions is reached. A fuzzy version of this approach has been
proposed by Hayashi [23].

All these methods still have a problem with exponentially
growing number of possible conjunctive prepositional rules.
Towell and Shavlik [22] proposed to use theM-of-N rules, since
they are implemented in a natural way by network nodes. In
some cases such rules may be more compact and comprehen-
sible than conjunctive rules. To avoid combinatorial explosion
of the number of possible input combinations for each network
node groups of connections with similar weights are formed.
Weights in the group are replaced by their averages. Groups that
do not affect the output are eliminated and biases reoptimized
for frozen weights. Such a simplified network has effectively
lower number of independent inputs, therefore it is easier to an-
alyze. If symbolic knowledge is used to specify initial weights,
as it is done in the Knowledge-Based Artificial Neural Networks
(KBANN) of Towell and Shavlik [24], weights cluster before
and after training. The search process is further simplified if the
prototype weight templates (corresponding to symbolic rules)
are used for comparison with the weight vectors [25] (weights
are adjusted during training to make them more similar to tem-
plates). The RuleNet method based on templates has also been
used to find the bestM-of-N rules inO(n2) steps and the best
sets of nestedM-of-N rules inO(n3) steps [26], exploring large
spaces of candidate rules. The method handles only discrete-
valued features, therefore initial discretization is necessary for
continuous features. The network has only one hidden layer
with a specific architecture to inject symbolic rules into the net-
work and refine them iteratively.

Several authors noticed the need for simplification of neural
networks to facilitate rule extraction process. Setiono and Liu
[27] use a regularization term in the cost function to iteratively
prune small weights. After simplification the network is dis-
cretized by clustering activation values of the hidden unit ob-
tained during presentation of the training set. The method does
not guarantee that all rules will be found, but results for small
networks were encouraging. The method of Successive Regu-
larization [28] is based on a similar idea, with Laplace regular-
ization (sum of absolute weight values) in the error function,
inducing a constant decay of weights. Only weights smaller
than some threshold are included in the regularizing term (this
is called “selective forgetting”). Hidden units are forced to be-
come fully active or completely inactive. After training a skele-
tal network structure is left and the dominant rules extracted.
Keeping this skeletal network frozen small connections are re-
vived by decreasing the regularization parameters. After train-
ing of the more complex network additional logical rules are ob-

tained from analysis of new nodes/connections. Another simple
method belonging to that group has been presented by Geczy
and Usui [29]. Weights in the MLP network with one hidden
layer are mapped after training into 0,+1 or−1 values, simpli-
fying the rule search step. In our own MLP2LN approach [30]
described below such a mapping is incorporated in the learning
scheme.

Rule Extraction As Learning (REAL) is a rather general tech-
nique introduced by Craven and Shavlik [31] for incremental
generation of new rules (conjunctive orM-of-N). If a new ex-
ample is not classified correctly by the existing set of rules a
new rule, based on this example, is added and the fidelity of
the extended set of rules is checked against the neural network
responses on all examples used so far. The RULENEG algo-
rithm [1], [32] is based on a similar principle: one conjunctive
rule per input pattern is generated and if a new training vector
is not correctly classified by the existing set of rulesR a new
rule is created as a conjunction of all those inputs literals that
have influence on the class of the vector. This is determined by
consecutive negation of each input value followed by checking
(using the neural network) if the predicted class has changed.

In the BRAINNE algorithm [33] a network ofm inputs andn
outputs is changed to a network ofm + n inputs andn outputs
and retrained. Original inputs that have weights which change
little after extension and retraining of the network correspond
to the most important features. The method can handle contin-
uous inputs and has been used in several benchmark and real-
life problems, producing rather complex sets of rules. Logi-
cal rule extraction has also been attempted using self-organizing
ART model [34] and fuzzy ARTMAP architecture [35]. In the
last case a certainty factors for each rule are provided. Simpler
self-organizing architectures may also be used for rule extrac-
tion [36], although accuracy of the self-organized mapping for
classification problems is rather poor.

The DEDEC algorithm [1], [37] extracts rules by finding a
minimal information sufficient to distinguish, from the neural
network point of view, between a given pattern and all other pat-
terns. To achieve this a new set of training patterns is generated.
First, inputs are ranked in order of their importance, estimated
by inspection of the influence of the input weights on the net-
work outputs. Second, clusters of vectors are selected and used
instead of original cases. Only those features ranked as impor-
tant are used to derive conjunctive rules, which are found by
searching.

Since our goal is to get the simplest logical description of
the data, rather than description of the network mapping, we
are in favor of using specialized training schemes and architec-
tures. Of course any rule extraction method may be used to
approximate the neural network function on some training data.
The network is used as an “oracle”, providing as many train-
ing examples as one wishes. This approach has been used quite
successfully by Craven and Shavlik in their TREPAN algorithm
[38], combining decision trees with neural networks. Decision
trees are induced by querying neural network for new examples,
adding tree nodes that offer the best fidelity to the classification
by the network. New branches of the tree are created only af-
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ter a large number of queries has been answered. Therefore the
method is more robust than direct decision tree approach, which
suffers from small number of cases in the deeper branches. Clas-
sifiers based on ensembles of different models, similarity-based
classifiers, statistical methods or any other classifiers that pro-
duce incomprehensible models of the data may be approximated
by rule-based systems in the same way.

Neural networks based on separable localized transfer func-
tion are equivalent to fuzzy logic systems [39]. Each node has
a direct interpretation in terms of fuzzy rules and there is no
need for a search process. Gaussian functions were used for in-
serting and extracting knowledge into the radial basis set type
of networks [40]. More general proposal for neurofuzzy sys-
tem based on separable functions was made by Duch [41], [42].
Discussion of rule extraction using localized transfer functions
has been given by Andrews and Geva [43]. These authors de-
veloped a quite successful approach called RULEX [44], based
on constrained MLP networks with pairs of sigmoidal functions
combined to form “ridges”, or “local bumps”. Rules may in this
case be extracted directly from analysis of weights and thresh-
olds, without the search process, since disjoint regions of the
data correspond to one hidden unit. In effect the method is sim-
ilar to a localized network with rectangular transfer functions.
The method works for continuous as well as discrete inputs.

Methods of combining neural and symbolic knowledge, re-
fining probabilistic rule bases, scientific law discovery and data
mining are closely related to applications of neural networks for
extraction of logical rules. Symbolic rules may be converted
into RAPTURE networks [45] and trained using a modified
backpropagation algorithms for optimization of certainty fac-
tors. The network prunes small connections and grows adding
new nodes if classification accuracy becomes too low.

It may seem that neurofuzzy systems should have advantages
in application to rule extraction, since crisp rules are just a spe-
cial case of fuzzy rules. Quite many neurofuzzy systems are
known and some indeed work rather well [42], [46], [47], [48],
[49]. However, there is a danger of overparametrization of such
systems, leading to difficulty of finding optimal solutions [10],
[50], even with the help of genetic algorithms or other global
optimization methods. Systems based on rough sets [11] re-
quire additional discretization procedures which may determine
the quality of their performance. We have included a few results
obtained by fuzzy and rough systems in section X presenting
applications. Simpler rule extraction systems based on neural
networks may have advantages over the fuzzy, rough or neuro-
fuzzy systems, although a good empirical comparison of their
capabilities is certainly needed. Many rule extraction methods
have been tested on rather exotic datasets, therefore their relative
advantages are hard to judge.

Most papers on the rule extraction are usually limited to the
description of new algorithms, presenting only a partial solution
to the problem of knowledge extraction from data. Control of
the tradeoff between comprehensibility and accuracy, optimiza-
tion of the linguistic variables and final rules, and estimation of
the reliability of rules are almost never discussed. In practical
applications it may be quite useful to have rough, low accuracy,

simple description of the data and to be able to provide more
accurate, but more complex description, in a controlled manner.
Neural methods of rule extraction may provide initial rules, but
that should not be the end of the story.

III. T YPES OF RULES.

In this section types of logical rules are discussed, stressing
the importance of decision borders they are able to provide in
multidimensional feature spaces. Although non-standard form
of rules, such asM-of-N rules (M out of N antecedents should
be true), fuzzy rules, decision trees [4] and more complex forms
of knowledge representation are sometimes used in this paper
we will consider only standard IF ... THEN prepositional rules.
Since these rules are the simplest and most comprehensible they
should be tried first.

A very general form of prepositional rule is:

IF X ∈ K(i) THEN Class(X) = Ci (1)

i.e. if X belongs to the clusterK (i) then its class is
Ci =Class(K(i)), the same as for all vectors in this cluster. This
general approach does not restrict the shapes of clusters used
in logical rules, but unless the clusters are visualized in some
way (a difficult task in high dimensional feature spaces) it does
not give more understanding of the data than any black box
classifier. Therefore some assumptions regarding the shapes of
clusters should be made, with the goal of obtaining the smallest
number of comprehensible rules in mind.

For clusters with decision borders that have simple convex
shapes several conjunctive rules of the type:

IF
(
x1 ∈ X1∧ x2 ∈ X2∧ ...xN ∈ XN

)
THEN Class= Ck (2)

may be sufficient. IfXi are sets of symbolic values, discrete nu-
merical values, or intervals for continuous features, crisp logic
rules are obtained. They provide hyperrectangular decision bor-
ders in the feature subspaces corresponding to variables appear-
ing in rule conditions. This approximation may not be sufficient
if complex decision borders are required, but it may work quite
well if the problem has inherent logical structure.

A fruitful way of looking at logical rules is to treat them as
an approximation to the posterior probability of classification
p(Ci|X ;M), where the modelM is composed of the set of rules.
Crisp rules givep(Ci|X ;M) = 0,1 but if clusters belonging to
different classes overlap this is obviously wrong. A soft inter-
pretation of the∈ operator requires “membership” functions and
leads to fuzzy rules, for example in the form:

p(Ck|X ;M) =
µ(k)(X)

∑i µ(i)(X)
(3)

where

µ(k)(X) = ∏
i

µ(k)
i (Xi) (4)
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and µ(k)(X) is the value of the membership function defined
for clusterk. Suchcontext-dependent or cluster-dependent
membership functions are rarely used in classification systems
based on fuzzy logics, although they are quite natural in the neu-
rofuzzy systems [42].

The flexibility of the fuzzy approach depends on the choice
of membership functions. Fuzzy logic classifiers frequently use
a few membership functions per input feature [10]. Triangular
membership functions provide oval decision borders, similar to
those provided by Gaussian functions (cf. Fig. 1). Therefore re-
sults should be similar to that of the radial basis function (RBF)
networks and indeed they are formally equivalent [39]. Triangu-
lar membership functions may be regarded as piece-wise linear
approximation to Gaussian membership functions, while trape-
zoidal membership functions are similar approximations to the
soft trapezoid functions obtained from combinations of two sig-
moidal transfer functions (cf. next section).

Thus decision borders provided by the fuzzy rules, although
of different shape than those of crisp rules, do not allow for
more flexible partitioning of the input space. Their big advan-
tage is the ability to provide classification probabilities instead
of yes/no answers. From the accuracy and simplicity point of
view the ability to deal with oblique distribution of data may
be more important than softer decision borders. Rotation of
decision borders requires new linguistic variables, formed by
taking linear combination, or by making non-linear transforma-
tions of input features. The meaning of such rules is sometimes
difficult to comprehend (cf. proverbial “mixing apples with or-
anges”). Another form of incomprehensible rules is obtained
from a union of halfspaces defined by hyperplanes, forming a
convex, polyhedral shapes.

The rough set theory [11] is also used to derive crisp logic
prepositional rules. In this theory for two-class problems the
lower approximation of the data is defined as a set of vectors,
or a region of the feature space containing input vectors that
belong to a single classCk with probability p(Ck|X ;M) = 1,
while the upper approximation covers all instances which have
a non-zero chance to belong to this class (i.e. probability is
p(Ck|X ;M) > 0). In practice the shape of the boundary between
the upper and the lower approximations depends on the indis-
cernibility (or similarity) relation used. Linear approximation
to the boundary region leads to trapezoidal membership func-
tions, i.e. the same shapes of decision borders as obtained by
fuzzy systems with such membership functions. The crisp form
of logical rules is obtained when trapezoidal membership func-
tions are changed into rectangular functions. Rectangles allow
to define logical linguistic variables for each feature by intervals
or sets of nominal values.

Crisp, fuzzy and rough set decision borders are special cases
of more general decision borders provided by neural networks
based on localized separable transfer functions [42]. Although
individual fuzzy, rough and neurofuzzy systems differ in their
approach to logical rule discovery, their ultimate capability de-
pends on the decision borders they may provide for classifica-
tion.
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Fig. 1. Shapes of decision borders for a) general clusters, b) fuzzy rules (using
product of membership function), c) rough rules (trapezoidal approxima-
tion) and d) crisp logical rules.

IV. CONTEXT-DEPENDENT LINGUISTIC VARIABLES.

Logical rules require symbolic inputs, called linguistic vari-
ables. The input data has to be quantized first, i.e. features
defining the problem should be identified and their subranges
(sets of symbolic values, integer values, or continuous intervals)
labeled. For example a variable “size” has the value “small” if
the continuous variablexk measuring size falls in some specified
range,xk ∈ [a,b]. Using one input variable several binary (logi-
cal) variables are created, for examples1 = δ(size,small) equal
to 1 (true) only if variable “size” has the value “small”.

Linguistic variables used by us arecontext dependent, i.e.
they may be different in each rule (cf. [51]). For real-valued
attributes intervals defining linguistic variables used in logi-
cal rules are needed. Determination of these intervals is done
by analysis of histograms (only in simple cases), information-
based criteria like those used for decision-trees [4], using Fea-
ture Space Mapping (FSM) constructive neural network [42],
using special “linguistic units” (L-units) in MLP (multilayer per-
ceptron) networks [51] or using an explicit separability criterion
[52]. Since it is hard to overestimate the importance of good lin-
guistic units these methods are described below in some details.

A symbolic attributecolor may take valuesgreen, red, blue
and appear in a rule as logical condition, for examplecolor=red.
An alternative way is to use a predicate functioncolor(x). De-
pending on the type of variablex the predicate function may
have a different interpretation. For example, ifx is the wave-
length of light andx ∈ [600 nm,700 nm] thencolor(x) is red,
i.e. logical conditioncolor(x)=red is true. One may also in-
troduce predicates for each color defined by logical functions
color-green(x), color-red(x), color-blue(x). Such logical predi-
cate functions are linguistic variables, mapping symbolic or real
values ofx into binary 0, 1 orfalse, true.

If the inputx ∈ X , whereX is the subset of real numbers, or a
large set of integers or symbolic values, linguistic variables are
created dividing the dataX into distinct (for crisp logic) subsets
Xi. Linguistic variables are introduced as:

si(x) =F, unlessx ∈ Xi, thensi(x) =T
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ForX ⊆ R setsXi are usually intervals and linguistic variables
are binary functions mappingx into 0 or 1. A typical linguistic
variable associated with the attribute “tire pressure” will below
if x < 1.7, normal if 1.7≤ x ≤ 2.2 andhigh if x ≥ 2.2. A rule
may then have conditions of the formhigh(x), which is usually
written asx=high, meaning thatx≥ 2.2.

Introducing acolor-red(x) predicate that has values in the
[0,1] range, instead of the binary 0, 1 values, one may interpret
it as estimation of similarity of color thatx has to the typical
red color. Using such predicate functions as logical conditions
is equivalent to some form of fuzzy logic, depending on the way
logical functions are mapped on arithmetic functions [9]. Thus
soft predicate functions play the role of membership functions:
binary valued functions are used in crisp logic and real valued
functions in fuzzy logic (for multistep values multivalued logic
conditions are defined). ForX ⊆ R crisp membership functions
are rectangular while fuzzy membership functions have trian-
gular, trapezoid, Gaussian or other shapes that are useful for
evaluation of similarities.

In many applications of fuzzy sets a common set of linguistic
variables is assumed for all rules. Such membership functions
arecontext-independent, identical for all regions of the input
space. Defining for example 3 triangular membership functions
per attribute,µ1(xi),µ2(xi),µ3(xi), rules for combinations:

IF (µk1(x1)∧µk2(x2) . . .∧µkN (xN))

are sought [9], withki = 1,2,3. Unfortunately the number
of combinations grows exponentially with the number of at-
tributes (here like 3N), and the method works only for 2 or
3 dimensions. Covering of a complex cluster may require a
large number of such membership functions. In both crisp and
fuzzy cases linguistic variables should becontext dependent,
i.e. optimized in each rule. Small tire pressure for bicycle is
different than for a car or a truck. For example ifx 1=broad
for 1≤ x1 ≤ 4, x1=average for 2≤ x1 ≤ 3, andx2=small for
1≤ x2≤ 2, x2=large for 3≤ x2 ≤ 4 then two simple rules:

IF(x1=broad∧x2=small) THEN C=great
IF(x1=average∧x2=large) THEN C=great
ELSE C=so-so

would be more complex if written using linguistic variables that
partitionx1 into distinct or just partially overlapping subsets. In
the context ofx2=large linguistic variablex1 =average, rather
than broad, should be used. Instead of using a fixed number
of linguistic variables one should rather use rule-dependent lin-
guistic variables, optimized for each rule.

The simplest way to select initial linguistic variables is to an-
alyze histograms, displaying data for all classes for each feature.
Histograms should be smoothed, for example by assuming that
each data vector is really a Gaussian or a triangular fuzzy num-
ber. Unfortunately frequently histograms for all features over-
lap. Therefore we have developed several methods for determi-
nation of initial linguistic variables.

A. Selection using density networks

Feature Space Mapping (FSM) is a constructive neural net-
work [42], [53], [54] that estimates the probability density
p(C|X ,Y ;M) of input X-outputY pairs in each classC. Nodes
of this network use localized, separable transfer functions, pro-
viding good linguistic variables. Crisp decision regions are ob-
tained by using rectangular transfer functions; if this is not suffi-
cient Gaussian, trapezoidal or other separable transfer functions
are used.

The network is initialized using a decision tree or a cluster-
ization method based on dendrograms [53], and adapted to the
incoming input data by moving the transfer functions centers,
decreasing and increasing their dispersions, or by adding more
transfer functions (new network nodes) if necessary. The ini-
tialization process is robust and may already lead to reasonable
intervals for the initial linguistic variables. In some cases results
after initialization, before the start of learning, were better than
final results of other classification systems [53]. The FSM net-
work may use an arbitrary separable transfer function, including
triangular, trapezoidal, Gaussian, or the bicentral combinations
of sigmoidal functions [55] with soft trapezoidal shapes. Two
simple bicentral-type functions are constructed as the difference
of two sigmoids,σ(x)−σ(x−θ) or the product of pairs of sig-
moidal functionsσ(x)(1−σ(x)) for each dimension. For logis-
tic functions of the formσ(x) = 1/(1+e−x) after normalization
the two forms become identical:

σ(x+ b)(1−σ(x−b))
σ(b)(1−σ(−b))

=
σ(x+ b)−σ(x−b)

σ(b)−σ(−b)
(5)

The proof is not difficult if one notes the following identities:

σ(b)/σ(−b) = eb; σ(b) = 1−σ(−b) (6)

If the gain of sigmoidal functionsσ(x) is slowly increased
during learning rectangular functions are smoothly recovered
from products∏i(σ(xi−bi)−σ(xi + b′i)). After training nodes
of the FSM network are analyzed, providing good intervals for
logical variables. To encourage broad intervals, increasing sta-
bility of rules and facilitating selection of features, the lower
and the upper values defining linguistic variables are moved
away from the center of the function during iterative training
(the same effect may be achieved by adding penalty terms to the
cost function). To obtain initial linguistic variables for rule ex-
traction we start with rectangular transfer functions which may
be fuzzified by using soft trapezoidal functions.

B. Linguistic neural units

Linguistic neural units (L-units) automatically analyze con-
tinuous inputs and produce linguistic variables [51]. The basic
scheme of such unit is shown in Figure 2. An inputx i is con-
nected viaW1,W2 weights to two neurons, each with its own
separate bias,bi andb′i. All transfer functions are sigmoidal. At
the end of the training they should be very steep, although at the
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beginning they may be quite smooth, allowing for fuzzy approx-
imation of classification borders. The two hidden neurons of the
L-unit are connected to its output neuron using weightsS 1,S2.

Experiments showed that learning is faster if connections
from the two hidden L-unit neurons to other hidden neurons are
added. All weights have values constrained at the end of the
training to 0,±1. The network (Fig. 3) composed of L-units and
hidden units (called R-units, since they provide logical rules) is
an MLP network with specific (constrained) architecture. Since
L-units have only one input, one output and four constrained
weights as parameters, functions realized by these units belong
to one of the four types shown in the limit of large gain in Figure
2.

The first of these functions (Type 1) is obtained as a differ-
ences of two sigmoids and represents a typical linguistic vari-
able sk equivalent toxi ∈ [bi,b′i], the second (Type 2) denotes
negation¬sk while the other two (Type 3 and 4), with only one
non-zero weight, correspond toxi ≥ b or xi ≤ b. The borders
bi andb′i defining linguistic variables and the four constrained
weights are treated as adaptive parameters of our network.

x

+1

+1

2

b'

b

b b' b b'

1
W

W

1S

2
S

σ(W x+b)
1

σ(W x+b')
2

Type 1 Type 2

Type 3 Type 4

Fig. 2. Construction of a linguistic unit converting continuous inputs to linguis-
tic variables.

The threshold of the output unit is kept fixed at one. Input
weightsW1, W2, and the weightsS1,S2, each taking values con-
strained to 0,±1, may take at most 81 values. Only a few com-
binations give different L-unit transfer functions (Table I). Most
combinations are identically zero – in this case the feature does
not contribute to the rule. One could also use a single neuron
with rectangular or bicentral transfer function instead of the L-
unit. The network structure would then look simpler but it would
not be a constrained MLP network, easy to implement using
conventional neural network programs.

In practice training L-units separately from R-units leads to
faster convergence. When the L-unit weights are trained (opti-
mizing linguistic variables) R-unit weights are kept frozen and

vice versa. The output L-unit neurons have frequently both
weightsS1,S2 = 0 and are deleted, because open intervals re-
alized by other hidden L-unit nodes are sufficient.

TABLE I

EXAMPLES OF POSSIBLE FUNCTIONS REALIZED BYL-UNITS, b > b′ , TYPE

1-TYPE 4 AS IN FIG. 2

W1 W2 S1 S2 Function type
+1 +1 +1 -1 Type 1
-1 +1 +1 +1 Type 2
+1 0 +1 0 Type 3
-1 0 -1 0 Type 4

In some applications with a large number of featuresan ag-
gregation of some types of features is possible and should lead
to better linguistic variables. Groups of features that are of the
same type may be combined together by an additional layer of
neurons between input and L-units. These aggregation units (A-
units) are either trained without any regularization, or trained
with initial enforcement of zero connections followed by train-
ing without any regularization. The A-units should be designed
incorporating knowledge about the type of input features. We
have used this approach only in a few difficult cases, when hun-
dreds of features are present.

The L-units take as input continuous vectorsX (p) =
(x(p)

1 , ...x(p)
N ) and give as output a vector of linguistic variables

L(p) = L(X (p)) = (l(p)
1 , ...l(p)

K ). Since this mapping is not one-
to-one it may happen that two or more input vectors belonging
to different classes are mapped to the same vectorL (p). This
leads to classification errors (“conflicts” in the rough set termi-
nology) that other network nodes are not able to remove. If the
network is not able to discover better features that prevent this
kind of errors it may be worthwhile to explicitly force the dis-
tinguishability of all input vectors to avoid such situation. One
solution is to minimize the number of identical linguistic vari-
ables corresponding to vectors that belong to different classes:

E(B,B′) = ∑
p,p′

Cp �=Cp′

δ
(

L(p),L(p′)
)

(7)

whereCp = C(X (p)) is the class theX (p) vector belongs to and
B,B′ are the intervals defining linguistic variablesL. To en-
able gradient minimizationδ functions may be replaced by nar-
row Gaussian distributions. The total error function should be
summed over all intervalsB,B′. Such explicit conditions en-
forcing distinguishability may be desirable, but may also lead to
creation of too many linguistic variables handling noise in the
data.

C. Separability criterion

Another approach to selection of linguistic variables is based
on a general separability criterion introduced by us recently
[52]. The best “split value” for an open interval should sep-
arate the maximum number of pairs of vectors from different
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classes. Among all split values which satisfy this condition the
one which separates the smallest number of pairs of vectors be-
longing to the same class is selected. The criterion is applicable
to both continuous and discrete features. Since one feature is
treated at a time the minimization process is easier than either
trying to minimize classification error or Eq. (7) in respect to all
intervals at the same time.

Thesplit value (or cut-off point) is defined differently for con-
tinuous and discrete features. In the case of continuous features
the split value is a real number, in other cases it is a subset of
the set of alternative values of the feature. In all cases theleft
side (LS) and theright side (RS) of a split values of feature f
for given datasetD is defined as:

LS(s, f ,D) =
{
{x ∈D : f (x) < s} if f is continuous
{x ∈D : f (x) �∈ s} otherwise

RS(s, f ,D) = D−LS(s, f ,D)
(8)

where f (x) is the f ’s feature value for the data vectorx.
Theseparability of a split value s is defined as:

SSV(s) = 2 ∑
c∈C

|LS(s, f ,D)∩Dc| · |RS(s, f ,D)∩ (D−Dc)|

−∑
c∈C

min(|LS(s, f ,D)∩Dc|, |RS(s, f ,D)∩Dc|) (9)

whereC is the set of classes andDc is the set of data vectors
from D which belong to classc. The higher the separability of
a split value the better. Points beyond the borders of feature
values existing in the dataset have the SSV (separability split
value) equal to 0, while separability of all points between the
borders is positive. This means that for every dataset containing
vectors which belong to at least two different classes, for each
feature which has at least two different values, there exists a split
value of maximal separability.

When the feature being examined is continuous and there are
several different split values of maximal separability close to
each other, a reasonable heuristics is to select the split value
closest to the average of all of them. To avoid such situations
split values which are natural for a given dataset are examined,
i.e. values that are between adjacent feature values. If there
are two maxima with smaller split values in between, or if the
feature is discrete, then the selection of the best split value may
be arbitrary.

The separability criterion can be used in several different
ways to discretize a continuous feature, if context-independent
linguistic variables are desired. For instance, the same algorithm
can be followed as for the construction of a decision tree, but the
possible cut points should be checked only for the feature being
discretized. The recursive process stops when the subsequent
splits do not significantly improve the separability or when a
sufficient number of cut points is obtained. The recursive pro-
cess is necessary, because usually features have just one or two

maximal cut points. When the data is split into two parts at least
one best split value for each of the parts will certainly be found
in the next stage.

Sometimes all split values of a given feature have very low
separability. This either means that the feature is not important
or that it should be taken into account in conjunction with dis-
cretization of another feature. The separability of a single split
value can easily be generalized to the separability of a set of all
split values for a given feature, which can be used for the feature
selection. If separability measures for all features are low con-
text dependent linguistic variables are necessary. Search for the
best separability of a pair or a combination of several features is
performed quite efficiently using beam search techniques. For a
pair of features the search complexity is quadratic in the num-
ber of split values considered, enabling in practice exhaustive
search. Searching for all feature split values at the same time
takes into account mutual interaction of features, therefore it
may significantly improve results, but since the search complex-
ity is high the width of the beam search should be selected to
make it practical.

V. RULE EXTRACTION ALGORITHMS

After initial definition of linguistic variables methods to find
logical rules are needed. Neural methods that we will use for
that purpose focus on analysis of parameters (weights and bi-
ases) of trained networks. Since in many cases inductive bias
of neural networks may not be the most appropriate for a given
data methods described below may either be used to extract log-
ical rules directly from the data or to find a set of logical rules
that approximates the mapping generated by a neural network.
These and other methods of rule extraction are useful to gen-
erate initial form of rules that should be further simplified and
optimized together with the linguistic variables.

A. MLP2LN: changing MLP into logical network

To facilitate extraction of logical rules from an MLP net-
work one should transform it smoothly into a network perform-
ing logical operations (Logical Network, LN). This transforma-
tion, called here MLP2LN [56], may be realized in several ways.
Skeletonization of a large MLP network is the method of choice
if our goal is to find logical rules for an already trained net-
work. Otherwise starting from a single neuron and construct-
ing the logical network using training data directly (called fur-
ther C-MLP2LN method) is faster and more accurate. Since
interpretation of the activation of the MLP network nodes is not
easy [57] a smooth transition from MLP to a logical-type of net-
work performing similar functions is advocated. This transition
is achieved during network training by:
a) gradually increasing the slopeβ of sigmoidal functionsσ(βx)
to obtain crisp decision regions;
b) simplifying the network structure by inducing the weight de-
cay through a penalty term;
c) enforcing the integer weight values 0 and±1, interpreted as
0 = irrelevant input,+1 = positive and−1 = negative evidence.
These objectives are achieved by adding two additional terms to
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the standard mean square error functionE0(W ):

E(W ) =
1
2 ∑

p
∑
k

(
Y (p)

k −Fk

(
X (p);W

))2
+ (10)

λ1

2 ∑
i, j

W 2
i j +

λ2

2 ∑
i, j

W 2
i j(Wi j−1)2(Wi j +1)2

The first part is the standard mean square error measure of
matching the network output vectorsF(X (p);W ) with the de-
sired output vectorsY (p) for all training data samplesp. The sec-
ond term, scaled byλ1, is frequently used in the weight pruning
or in the Bayesian regularization method [58], [59] to improve
generalization of the MLP networks.

A naive interpretation why such regularization works is based
on observation that small weights and thresholds mean that only
the linear part of the sigmoid aroundσ(0) is used. Therefore the
decision borders are rather smooth. On the other hand for logical
rules we need sharp decision borders and as simple skeletal net-
work as possible. To achieve these objectives the first regular-
ization term is used at the beginning of the training to force some
weights to become sufficiently small to removed them. The sec-
ond regularization term, scaled byλ 2, is a sum over all weights
and has minimum (zero) for weights approaching zero or±1.
The first term is switched off and the second increased in the
second stage of the training. This allows the network to increase
the remaining weights and together with increasing slopes of
sigmoids to provide sharp decision borders.

The 6-th order regularization term in the cost function, may
be replaced by one of the lower order terms:

|Wi j||W 2
i j−1| cubic

|Wi j|+ |W2
i j−1| quadratic (11)

+1

∑
k=−1

|Wi j + k|− |Wi j−
1
2
|− |Wi j +

1
2
|−1

These extra terms lead to the additional change of weights in
the backpropagation procedure, for example for the 6-th order
term:

Wi j ← λ1Wi j +λ2Wi j(W 2
i j−1)(3W 2

i j−1) (12)

Although non-zero weights have values restricted to±1 in-
creasing the slopesβ is equivalent to using one, large non-zero
weight value±W . One could consider several different maxi-
mal values ofW in the final network, for example by adding,
after skeletonization of the network, the following penalty term:

∑
i, j

(σ(Wi j +1)−σ(Wi j−1)) (13)

This term will not restrict the weights to±1 but will allow them
to grow beyond these values. We have not explored yet this

possibility because at the end of the training the slopes should
be infinitely steep, corresponding to infinite non-zero weights.
Such approach may be interesting if the final goal is a hybrid,
network-rule based system.

Introduction of integer weights may also be justified from the
Bayesian perspective [58], [59]. The cost function specifies our
prior knowledge about the probability distributionP(W |M) of
the weights in our modelM. For classification tasks, when crisp
logical decisions are required, the prior probability of the weight
values should include not only small weights, but also large pos-
itive and negative weights distributed around±1. For example:

P(W |M) = Z(α)−1e−αE(W |M) ∝ (14)

∏
i j

e−α1W 2
i j ∏

i j
e−α2|W 2

i j−1|

where the parametersα i play a similar role for probabili-
ties as the parametersλ i for the cost function. Using alterna-
tive cost functions amounts to different priors for regularization,
for example using Laplace instead of the Gaussian prior. Initial
knowledge about the problem may also be inserted directly into
the network structure, defining initial conditions modified fur-
ther in view of the incoming data. Since the final network struc-
ture becomes quite simple insertion of partially correct rules to
be refined by the learning process is quite straightforward.

X
1

X

X

2

3

L-units R-units

Fig. 3. MLP network with linguistic and rule units. An additional aggregation
layer may be added between the input and L-units.

The training proceeds separately for each output class. Al-
though the method works with general multilayer backpropaga-
tion networks we recommend the C-MLP2LN constructive pro-
cedure that frequently leads to satisfactory solutions in a much
faster way. As with all neural procedures for some data the net-
work training may slow down and require some experimenta-
tion. Initially several constructive networks should be trained
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without regularization to determine the expected training error
and the average number of epochs needed for convergence. Be-
low typical values of parameters that work well in most cases
are given.

1. Create one hidden neuron (R-unit neuron).
2. Train the neuron on data for the first class using backpropa-
gation procedure with regularization. Start with smallλ 1 = 10−5

andλ2 = 0 and the unit slopeσ(x/T ),T = 1.
3. If convergence is slow (for example, for 10% of the max-
imum number of training epochs the decrease of the error is
lower than 1/n, wheren is the number of the training samples)
try training two neurons simultaneously; in rare cases training
more than two neurons simultaneously may significantly speed
up the training.
(a) Train as long as the error decreases; then increaseλ 1←

10λ1 and the slope of sigmoidal functionsT ← T +1 and train
further; repeat this step until sharp increase of the error (typical
more than 5 times) is noticed whenλ 1 is increased.
(b) Decreaseλ1 slightly until the error is reduced to the previ-

ous value and train until convergence.
(c) Remove weights smaller than|W |< 0.1.
(d) Takeλ2 = λ1 andλ1 = 0 and train slowly increasing the

slopes andλ2 until the remaining weights reach 0±0.05 or±1±
0.05.
(e) Set very large slopesT ≈ 1000 and integer weights 0,±1.

4. Analyze the weights and the threshold(s) obtained by check-
ing the combinations of linguistic features that activate the first
neuron(s). This analysis (see Section VI for an example) allows
to write the first group of logical rules that cover the most com-
mon input-output relations.
5. Freeze the weights of existing neurons during further train-
ing. This is equivalent to training only new neurons (usually
one per class at a time) on the data that has not been properly
handled so far.
6. Add the next neuron and train it on the remaining data in the
same way as the first one. Connect it to the output neuron for
the class it belongs to.
7. Repeat this procedure until all data are correctly classified, or
the number of rules obtained grows sharply, signifying overfit-
ting (for example one or more rules per one new vector classified
correctly are obtained).
8. Repeat the whole procedure for data belonging to other
classes.

Thus the network expands after a neuron is added and then
shrinks after connections with small weights are removed. A
set of rulesR 1∨ R 2...∨ R n is found for each class separately.
The output neuron for a given class is connected to the hidden
neurons created for that class – in simple cases only one neu-
ron may be sufficient to learn all instances, becoming an output
neuron rather than a hidden neuron (Fig. 3). Output neurons
performing summation of the incoming signals are linear and
have either positive weight+1 (adding more rules) or negative
weight−1. The last case corresponds to those rules that can-
cel some of the errors created by the previously found rules that
were too general. They may be regarded as exceptions to the
rules.

Since each time only one neuron per class is trained the C-
MLP2LN training is fast. Both standard MLP architecture with
linguistic inputs or the L-R network may be used with the C-
MLP2LN approach. Since the first neuron for a given class is
trained on all data for that class the rules it learns are most gen-
eral, covering the largest number of instances. Therefore rules
obtained by this algorithm are ordered, starting with rules that
have the largest coverage and ending with rules that handle only
a few cases. This order allows for a very easy check of the qual-
ity of a set of rules by looking at the errors on the training data.
An optimal balance between the number of rules and the gener-
alization error is usually obtained when only the rules that cover
larger number of cases are retained.

The final solution may be presented as a set of rules or as a
network of nodes performing logical functions, with hidden neu-
rons realizing the rules, and the hidden-output neuron weights
set to±1. However, some rules obtained from analysis of the
network may involve spurious conditions and therefore the op-
timization and simplification step is necessary (cf. Section VII).

Although constraints Eq. (10) do not change the MLP exactly
into a logical network they are sufficient to facilitate logical in-
terpretation of the final network function.λ 1 andλ2 parameters
determine the simplicity/accuracy tradeoff of the generated net-
work and extracted rules. If a very simple network (and thus
simple logical rules) is desired, giving only rough description of
the data,λ1 should be as large as possible: although one may
estimate the relative size of the regularization term versus the
mean square error (MSE) a few experiments are sufficient to
find the largest value for which the MSE is still acceptable and
does not decrease quickly whenλ 1 is decreased. Smaller values
of λ1 should be used to obtain more accurate networks (larger
sets of rules). The final value ofλ2 near the end of the training
may grow larger than the maximum value ofλ 1.

The only way to change MLP into a logical network is by in-
creasing the slope of sigmoidal functions to infinity, changing
them into the step-functions. Such a process is difficult since
a very steep sigmoid functions leads to the non-zero gradients
only in small regions of the feature space, and thus the num-
ber of vectors contributing to the learning process goes to zero.
Therefore when convergence becomes slow for large slopes it is
necessary to stop network training, extract logical rules and op-
timize the intervals of the linguistic variables. This optimization
step, described in Section VII, is performed at the level of the
rule-based classifier, not the MLP network. A direct method to
obtain logical MLP network is described below.

B. Search-based MLP

Minimization and search methods share the same goal of op-
timizing some cost functions. Quantization of network param-
eters (weights and biases) allows to replace minimization by
search. Increasing step by step the resolution of quantization
from coarse to fine allows to find the network parameters with
arbitrary precision. Search-based optimization allows to use
step-like discontinuous transfer functions as well as any smooth
functions. Replacing the gradient-based backpropagation train-
ing methods by global search algorithm to minimize the value of
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the error function is rather expensive, therefore some form of a
heuristic search should be used, for example the best first search
or the beam search [60]. Even if the best first search algorithm
is used (corresponding to the steepest gradient descent) a good
solution may be found gradually increasing the resolution of the
discrete network parameters [61]. In backpropagation training
this would roughly correspond to a period of learning with rather
large learning constants, with some annealing schedule for de-
creasing the learning constant.

Given a network architecture the algorithm starts with all
weightsWi j = 0 and biasesθi = −0.5, so that all data is as-
signed to the default class (corresponding to zero network out-
put). At the beginning of the search procedure the step value∆
for weights (and biases) is set. This value is added or subtracted
from weights and biases,Wi j±∆, θi±∆. This significantly re-
duces the search space. The best first and the beam search strate-
gies are used to modify one parameter at a time. Since computer
experiments showed that sometimes such search is not sufficient
computationally more demanding variants of the search meth-
ods modifying two weights at a time may be used. To speed
up the search they are performed in two stages. First, all the
single changes of parameters are tested and a number of the
most promising changes (i.e. changes decreasing the value of
the cost function) is selected (the beam width). Second, all pairs
of parameter changes from the chosen set, or even all the sub-
sets of this set, are tested, and the best combination of changes
applied to the network. Since the first stage reduces the number
of weights and biases that are good candidates for updating the
whole procedure is computationally efficient.

The search-based training procedure is an interesting al-
ternative to the gradient-based backpropagation training [61].
Adding some constraints to the optimized cost function can pro-
duce networks easily convertible to crisp logical rules or fuzzy
logical rules with soft trapezoidal membership functions ob-
tained by subtracting two sigmoidal functions (Eq. 5). If all
the weights are integers (which is the case when∆ = 1) and the
hidden neuron transfer function is sufficiently steep, then the re-
sulting network can easily be converted to a set ofM-of-N rules.
The rules are generated by simple analysis of network param-
eters. All the input combinations are checked and if their sum
exceeds appropriate bias a logical rule is generated. To obtain
small number of conjunctive logical rules the space of weight
values is searched assuming that biases are always equal to the
sum of the incoming weights minus 0.5, i.e.θi = ∑ j |Wi j|−0.5.
In such cases a single neuron is equivalent to just one logical
rule, since only one combination of inputs gives a sum greater
than the bias. For example, if the only non-zero weights for
neuron 1 areW11 = +1,W12 =−1, the threshold is+1.5 and the
rule is: IFX1∧¬X2 THEN True.

C. Probability density networks

Although constructive C-MLP2LN algorithm and search
based MLP method work very well, especially with the opti-
mization of final rules described in section VII, in complex cases
FSM network with rectangular functions (or soft rectangular
functions that are changed into rectangular during training) may

be easier to use. FSM uses efficient clusterization procedures
(based on dendrograms or decision trees) for initialization, fre-
quently obtaining quite good results without any training (see
[42], [53], [54] papers, where details of the training algorithm
are described). Each network node covers a cluster of input
vectors. The training procedure changes the node parameters
(such as their positions in the input space) until the error func-
tion reaches a minimum. Nodes that cover only a few training
vectors are removed and nodes that cover many training vectors
are optimized.

The node that has the largest output most often when all train-
ing vectors are presented covers the largest number of input vec-
tors. This node, assigned to a certain classCi (this is the class
majority of the vectors it covers belong to), corresponds to the
most general logical rule. The interval[bk,b′k] for the selected
node is adjusted to cover allCi class vectors that activate it. The
valuebk (b′k) is set between the lowest (highest) value of thexk

belonging to the training vectors of theCi class covered by this
node and thexk value of the nearest vector from another class.
Those features that cover the whole input data range are deleted
since their contribution is always constant. For the remaining
features further selection is done by checking the number of er-
rors on vectors belonging to classes other than the class assigned
to a given node. This procedure is repeated for all network nodes
[54].

For radial membership functions, such as Gaussians, one
could also use the RBF networks for extraction of crisp rules,
although we are not aware of any papers in which the transition
from Gaussian-like functions to rectangular function limit (for
example by increasing exponentn in exp(−x2n) function) has
been studied.

D. Rule generation using separability criterion

SSV separability criterion defined in Eq. (9) has a natural ap-
plication in construction of decision trees. The simplest method
of building such a tree is to use the best first search method.
The separability of each possible cut point of each continuous
feature, or of each subset of the set of values of each discrete
feature, is evaluated. The best splits are selected and the space
(and dataset as well) is divided into two parts by the first two
branches of the binary tree. The criterion is then applied recur-
sively to each of the resulting parts of the input space (with their
corresponding data subsets). The tree is finished when it classi-
fies the data with maximal accuracy. 100% accuracy is possible
only if there are no contradictory examples in the dataset.

The accuracy of 100% usually means overfitting. To avoid it a
pruning technique is usedto maximize generalization capacity
of the resulting tree. 10-fold crossvalidation for the training set
is performed. In each crossvalidation pass unseen samples are
used to find the best way to prune the tree. Leaves that lead to
overfitting cannot be determined because the final tree may be
quite different than the tree built for the training data available
during crossvalidation (i.e. 90% of the data in 10-fold crossval-
idation), since decision trees, as well as most other classifiers,
are unstable [62]. Therefore an optimaldegree of pruning is de-
termined. Pruning with the degree ofn means cutting off all the
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pairs of leaves which reduce the number of errors of their par-
ent by not more thann. In each pass of the crossvalidation the
number of errors counted for the test part of the data is checked.
The optimal degree of pruning is the maximal degree (natural
number) corresponding to the minimal total crossvalidation test
error (sum of all crossvalidation test errors).

Each step of the best first search grows the decision tree by
splitting one of its leaves in two. So after each step we improve
(or in the worst case preserve) the classification accuracy. It
means that the best first search follows a single branch of the
search tree: if at a given stage we choose the best split we will
never try any alternative split although it can finally give much
better (i.e. smaller) tree. To diminish this drawback we use beam
search instead of best first search, capable of finding better re-
sults at a larger computational cost.

The decision tree is easily converted into a set of crisp logical
rules (each branch of the tree represents one rule). However, the
rules containing premises describing all the nodes from the root
of the tree to it’s leaves can be more complex than necessary.
Especially in bigger trees it may turn out that the decisions made
at the very beginning are not important for classification of data
vectors which end up in a leaf. They may be important for a
large data set, but not necessarily for smaller, localized samples.
Therefore redundant rule antecedents should be removed. To
find out which premises are spurious they are deleted one by one
and a check of the accuracy is made. If the accuracy is decreased
the premise should be kept. We will refer to this method of
generating rules as SSV, i.e. using the same name as for the
separability criterion.

VI. EXTRACTION OF RULES– PEDAGOGICAL

ILLUSTRATION

For pedagogical purposes we will illustrate the first steps of
our methodology using the Fisher Iris dataset. The data has been
taken from the UCI machine learning repository [7]. The Iris
data has 150 vectors evenly distributed in three classes: iris-
setosa, iris-versicolor and iris-virginica. Each vector has 4 fea-
tures: sepal lengthx1 and widthx2, and petal lengthx3 and width
x4 (all given in centimeters).

The simplest way to obtain linguistic variables, often used in
design of fuzzy systems, is based on division of each feature
data range into a fixed number of parts and use of the triangular
(or similar) membership functions for each part [10]. The same
approach may be used for crisp logic. Dividing the range of each
feature into three equal parts, called small(s), medium(m) and
large(l) the x1 feature will be called small if it is in[4.3,5.5]
range, medium in(5.5,6.7] and large in(6.7,7.9]. Thus instead
of four continuous-valued inputs a network with 12 binary in-
puts equal to±1 is constructed. For example, the medium value
of a single feature is coded by three input units(−1,+1,−1).
With this discretization of the input features three vectors of
the iris-versicolor class (coded as(m,m, l, l), (m, l,m, l) and
(m,s, l,m)) become identical with some iris-virginica vectors
and cannot be classified correctly. Therefore after discretization
the maximum classification accuracy is 98.7%. Indistinguish-
able vectors should be removed from the training sequence.

Although there is no reason why such procedure should pro-
vide good linguistic units for the Iris example by chance it is not
so bad! The accuracy of classification using logical rules crit-
ically depends on selection of linguistic variables. Using two
variables per feature, small and large, dividing the range of fea-
ture values in the middle, 13 vectors from Iris-setosa class get
mixed with the vectors from two other classes. Using 4 linguis-
tic variables per feature also decreases classification accuracy,
mixing 16 Iris-versicolor cases with Iris-virginica. Evidently di-
vision into 3 classes is fortuitous. Analysis of the histograms
of the individual features for each class, shown in Fig. 4 and
Table II, proves that the division into 3 equal parts is almost op-
timal, cutting the histograms into the regions where values of
features are most frequently found in a given class. For exam-
ple, Iris-virginica class is more frequent for the value ofx 3 above
4.93 and Iris-versicolor are more frequent below this value. Dis-
cretization based on histograms (shown in Table II) was made
by dividing the data range into 15 bins and smoothing these his-
tograms by counting not only the number of vectors falling in a
given bin, but also adding 0.4 to adjacent bins.
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Fig. 4. Histograms of the fourx1− x4 Iris features. Thex3, x4 features (lower
part) allow for better discrimination than the first two features.

This discretization is quite useful for the initialization of L-
units, although random initialization would, after some training,
also lead to similar intervals. It may also be used for initial-
ization of the FSM network nodes, although dendrogram-based
methods work quite well. For the Iris case dendrogram initial-
ization with Gaussian nodes gives 95% correct answers without
any training of the network or optimization of rules. The net-
work has 4 nodes corresponding to 4 fuzzy rules. FSM initial-
ization with rectangular functions gives 80% of correct answers
and requires short training to improve the linguistic variable in-
tervals [53].

A single neuron per class was sufficient to train the C-
MLP2LN network, therefore the final network structure (Fig. 5)
has 12 input nodes and 3 output nodes. Hidden nodes are only
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TABLE II

L INGUISTIC VARIABLES OBTAINED BY ANALYSIS OF HISTOGRAMS.

s m l

x1 [4.3,5.5] (5.5,6.1] (6.1,7.9]
x2 [2.0,2,75] (2.75,3.2] (3.2,4.4]
x3 [1.0,2.0] (2.0,4.93] (4.93,6.9]
x4 [0.1,0.6] (0.6,1.7] (1.7,2.5]

needed when more than one neuron is necessary to cover all the
rules for a given class. The network was trained for about 1000
epochs and the final weights were within 0.05 from the desired
±1 or 0 values. The following weights and thresholds for the
three neurons were obtained (only the signs of the weights are
written):

Setosa (0,0,0 0,0,0 +,0,0 +,0,0) θ = 1
Versicolor (0,0,0 0,0,0 0,+,0 0,+,0) θ = 2
Virginica (0,0,0 0,0,0 0,0,+ 0,0,+) θ = 1
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all correct
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3 wrong

Fig. 5. Final structure of the network for the Iris problem.

These weight vectors are so simple that there is no need for
rule extraction. The corresponding rules are:

Iris-setosa ifx3 =s∨ x4 = s
Iris-versicolor ifx3 =m∧ x4 =m
Iris-virginica if x3 =l ∨ x4 =l

Only two features,x3 andx4, are relevant since all weights for
the remaining features become zero. The trained network struc-
ture is shown in Fig. 5. The first rule correctly classifies all
samples from the Iris-setosa class. Together with the other two
rules 147 vectors (98%) are correctly classified using only the
x3 andx4 features.

Linguistic variables were not optimized in the example above.
As a result the solution obtained is rather brittle (Fig. 6) – the

decision borders are placed too close to the data.
Using L-R network several solutions with optimized linguis-

tic variables are found, depending on the regularization parame-
tersλ. The simplest rules involve only one attribute, petal length
x3.

R (1)
1 : iris-setosa ifx3 < 2.5 (100%),

R (1)
2 : iris-virginica if x3 > 4.8 (92%),

R (1)
3 : else iris-versicolor (94%)
The first rule is accurate in 100% of cases since the setosa

class is easily separated from the two other classes. The overall
accuracy is 95.3% (7 errors). Slightly more accurate rules (96%)
are obtained for smaller regularization parameters:

Iris-setosa ifx3≤ 2.56
Iris-virginica if x4 > 1.63
Iris-versicolor otherwise

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

x setosa       o versicolor       + virginica

Fig. 6. Iris dataset displayed inx3 andx4 coordinates; decision regions (rules)
for the three classes are also shown. Note the three Iris-versicolor cases that
are incorrectly classified using these two features only. The brittleness of
rules is illustrated by decision border that is placed too close to the setosa
class.

Similar solutions are found with search-based MLPs. All
these rules are more robust than those obtained with linguis-
tic variables from histograms. SSV criterion has found another
simple set of rules, offering 98% accuracy:

Iris-setosa ifx4 < 0.8
Iris-virginica if x3 > 4.95∧ x4 > 1.65
Iris-versicolor otherwise

What about more complex solutions? Usingλ 1 = 0 and small
value ofλ2 the following weights and thresholds are found:

Setosa (+,0,0 0,0,+ +,-,0 +,-,-) θ = 2
Versicolor (0,0,0 0,0,0 0,+,- 0,+,-) θ = 3
Virginica (0,0,0 0,0,0 -,-,+ -,-,+) θ = 1
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To analyze these vectors note that in MLP2LN or in search-
based MLPs with discretized network parameters rulesRk im-
plemented by trained neurons are written in the form of logical
conditions by considering contributions of inputs for each lin-
guistic variable. Such variables is represented by a vectorVs and
its contribution to the activation is equal to the dot product of the
subsetWs of the weight vectorVs ·Ws. To find all rules that are
compatible with a given set of weights and thresholds one has to
perform a search process, considering combinations of all inputs
to the activation of the network node. Since MLP2LN method
guarantees that only relevant inputs have non-zero weights the
search space has 2n elements, wheren is the number of used
features.

For the Iris-setosa vectors the weights for the first feature are
(+,0,0), therefore contribution fromx1 = s is ∆ = +1. From
both x1 = m andx1 = l, equivalent tox1 = ¬s, contribution is
∆ = −1. Analysis of other features and weights is summarized
in the Table III and the structure of the network for this case is
shown in Fig.7.

TABLE III

CONTRIBUTIONS OF FEATURES FOR THE FIRST CLASS(IRIS-SETOSA).

No. value ∆ value ∆ value ∆
x1 s +1 ¬s -1
x2 l +1 ¬l -1
x3 s +2 m -2 l 0
x4 s +3 ¬s -1
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Fig. 7. Structure of the network trained withλ1 = 0 on the Iris problem.

Using Table III one can easily create a search tree (Fig. 8)
with weights equal to the total contribution of each feature to
the final activation. At the first level there are 2 branches, at the
second level also 2, forx3 it is 3 and forx4 it is 2, giving a total
of 24 leaves. At the first level contribution ofx1 is +1 for x1 = s
or −1 for x1 = ¬s. For Iris-setosa class only the leaves with

activation equal to or larger than the thresholdθ = 2 should be
considered.

Logical rules are read directly from this tree. Changing the
order in which the levels are considered equivalent rules are ob-
tained. A useful heuristic to find the simplest set of rules is to
start with features that contribute the most to the activation (fea-
tures 4 and 3 in this case). As shown in Fig. 8, ifx4 = s the acti-
vation∆ is already 3 and if it is followed byx3 = s the activation
∆ = 5 and the two other features will not reduce the activation
below 3 (since each may subtract at most 1). Therefore the acti-
vation is greater than the threshold∆≥ θ = 2 for x3 = s∧x4 = s.
In the same way other conditions consistent with the weights are
found, giving a rule with four antecedents for class Iris-setosa,
one rule for Iris-versicolor and one for Iris-virginica:

IF (x3 = s∧ x4 = s)∨
(x1 = s∧ x3 = l∧ x4 = s)∨
(x1 = ¬s∧ x2 = l∧ x3 = l∧ x4 = s)∨ (15)

(x1 = s∧ x2 = l∧ x3 = s∧ x4 = ¬s)
THEN iris-setosa

IF (x3 = m∧ x4 = m) THEN iris-versicolor

IF (x3 = l)∨ (x4 = l) THEN iris-virginica

Fig. 8. Tree-based search for rules after network has been trained.

These rules allow for correct classification of 147 vectors,
achieving the highest theoretical accuracy (98%) for the his-
togram discretization. Comparing them to simpler rules of the
same accuracy presented above it is clear that they are too com-
plex. Large thresholds may simplify the rule extraction process,
leading to simpler search trees. One could implement addi-
tional conditions in the MLP2LN algorithm to encourage such
large thresholds, but we have not tested this option yet, although
we use it in SSV and search-based MLPs. The validity of all
rules presented here has been confirmed with a Prolog program,
which is also used to search for rules in complex cases.

Density networks provide logical rules without the need to
check the combination of linguistic features. An FSM node
implementing rectangular transfer function has the intervals de-
fined for each relevant feature and is equivalent to a conjunctive
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rule. Using Gaussian or other soft transfer functions has direct
interpretation in form of fuzzy rules, and the transition process
between fuzzy and crisp rules may be studied by increasing the
slopes of sigmoidal functions combined to create bicentral trans-
fer function Eq. (5).

It is impossible to estimate statistical accuracy of the logical
rules in cross-validation tests since for each training data set a
different set of rules is obtained. Comparison of accuracy on
datasets with separate training and test parts is done in Section
X.

VII. O PTIMIZATION AND RELIABILITY OF RULES

Rules obtained from analysis of neural networks or decision
trees may involve spurious conditions, more specific rules may
be contained in general rules or logical expressions may be sim-
plified if written in another form. Therefore an important part
of rule optimization involves simplification and symbolic oper-
ations on rules. We use a Prolog program for such simplifica-
tions. In addition optimal linguistic variables for continuous-
valued features may be found for the sets of rules extracted.
These optimized linguistic variables may be used to extract bet-
ter rules in an iterative process, starting from initial values of
linguistic variables, extracting logical rules, optimizing linguis-
tic variables, and repeating the whole process with new linguis-
tic variables until convergence is achieved. Usually two or three
iterations are sufficient to stabilize the sets of rules.

Optimal linguistic variables (intervals) and other adaptive pa-
rameters may be found by maximization of a predictive power
of a rule-based (or any other) classifier. LetF (Ci,Cj|M) be the
confusion matrix, i.e. the number of instances in which class
Cj is predicted when the true class wasCi, given some parame-
tersM. Then forn samplespM(Ci,Cj) = F (Ci,Cj|M)/n is the
probability of (mis)classification. The best parametersM are
selected by maximizing the number (or probability) of correct
predictions (called also the “predictive power” of rules):

max
M

[Tr F (Ci,Cj|M)] (16)

over all parametersM, or minimizing the number of wrong pre-
dictions (possibly with some risk matrixR(Ci,Cj)):

min
M

[
∑
i�= j

R(Ci,Cj)F (Ci,Cj|M)

]
(17)

Weighted combination of these two terms:

E(M) = γ∑
i�= j

F (Ci,Cj|M)−Tr F (Ci,Cj|M) (18)

is bounded by−n and should be minimized over parameters
M without constraints. For discontinuous cost functionE(M)
this minimization may be performed using simulated annealing
or multisimplex global minimization methods. Ifγ is large the
number of errors after minimization may become zero but some
instances may be rejected (i.e. rules will not cover the whole in-
put space). Thus optimization of the cost functionE(M) allows
to explore theaccuracy-rejection rate tradeoff.

Since rules discriminate between instances of one class and
all other classes one can define a cost function for each rule
separately:

ER(M) = γ(F+−+ F−+)− (F++ + F−−) (19)

and minimize it over parametersM used in the ruleR only
(+ means here one of the classes, and− means all other
classes). The combinationF++/(F++ + F+−) ∈ (0,1] is some-
times called the sensitivity of a rule [75], whileF−−/(F−−+
F−+) is called the specificity of a rule. Some rule induction
methods optimize such combinations ofFx,y values.

Estimation of the reliability of rules is very important in
many applications. Tests of classification accuracy should be
performed using stratified 10-fold crossvalidation, each time in-
cluding rule optimization on the training set. Changing the value
of γ will produce a series of models with higher and higher clas-
sification accuracy at the expense of growing rejection rate. A
set of rules may classify some cases 100% correctly for all data
partitionings; if some instances are not covered by this set of
rules another set of rules of lower accuracy is used (the accu-
racy of rules is estimated on the training set only). High accu-
racy rules should give more confidence that they are reliable.

Most rule extraction procedures give only one set of rules,
assigning to each rule a confidence factor, for examplec i =
pM(Ci,Ci)/∑ j pM(Ci,Cj). This is rather misleading. A rule
R (1) that does not make any errors on the training set covers
typical instances and its reliability is close to 100%. If a less ac-
curate ruleR (2) is given, for example classifying correctly 90%
of instances, the reliability of classification for instances covered
by the first rule is still close to 100% and the reliability of classi-
fication in the border regionR (2)\R (1) (cases covered byR (2)

but not byR (1)) is much less than 90%. Including just these
border cases gives much lower confidence factors and since the
number of such cases is relatively small the estimate itself has
low reliability. A possibility sometimes worth considering is
to use a similarity-based classifier (such as the k-NN method
or RBF network) to improve accuracy in the border region. This
may be useful if the optimal classification borders have complex
shape that logical rules are not able to approximate.

Logical rules, similarly as any other classification systems,
may becomebrittle if the decision borders are placed too close
to the data vectors instead of being placed between the clusters
(cf. Fig. 6). The brittleness problem is solved either at the opti-
mization stage by selecting the middle values of the intervals for
which best performance is obtained or, in a more general way,
by adding noise to the data. Using the first method one deter-
mines the largest cuboid (in the parameter space) in which the
number of errors is constant, starting from the values of the opti-
mized parameters. The center of this cuboid is taken as the final
estimation of the adaptive parameters. A better method to over-
come the brittleness problem is presented in the next section.

VIII. P ROBABILITIES FROM CRISP RULES

Neural systems have good generalization properties because
they are wide margin classifiers. Their decision borders are ob-
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tained from the mean square error optimization of smooth func-
tion that extends over larger neighborhood contributing to the
error. This allows for three important improvements: 1) the use
of inexpensive gradient method instead of global minimization;
2) more robust rules with wider classification margins; 3) esti-
mation of class probability, instead of 0-1 decisions.

Input values result usually from observations which are not
quite accurate, therefore instead of the attribute valuex a Gaus-
sian distributionGx = G(y;x,sx) centered aroundx with disper-
sion sx should be given. This distribution may be treated as a
membership function of a fuzzy numberG x. To compute prob-
abilities p(Ci|X) a Monte Carlo procedure may be performed,
sampling vectors from Gaussian distributions defined for all at-
tributes. Analytical evaluation is based on the cumulative distri-
bution function:

ρ(a− x) =
Z a

−∞
G(y;x,sx)dy = (20)

1
2

[
1+erf

(
a− x

sx
√

2

)]
≈ σ(β(a− x))

where erf is the error function andβ = 2.4/
√

2sx makes the erf
function similar to the standard unipolar sigmoidal function with
the accuracy better than 2%. A ruleRa(x) with single crisp con-
dition x≥ a is fulfilled by a Gaussian numberGx with probabil-
ity:

p(Ra(Gx) = T ) =
Z +∞

a
G(y;x,sx)dy≈ σ(β(x−a)) (21)

Taking instead of the erf function a logistic function corre-
sponds to an assumption about the error distribution ofx from
Gaussian toσ(x)(1−σ(x)), approximating Gaussian distribu-
tion with s2 = 1.7 within 3.5%. If the rule involves closed in-
terval [a,b],a≤ b the probability that it is fulfilled by a sample
from the Gaussian distribution representing the data is:

p(Ra,b(Gx) = T )≈ σ(β(x−a))−σ(β(x−b)) (22)

Thus the probability that a given condition is fulfilled is propor-
tional to the value of soft trapezoid function realized by L-unit.
Crisp logical rules with assumption that data has been measured
with finite precision lead to soft L-functions that allow to com-
pute classification probabilities that are no longer binary. In this
way we may either fuzzify the crisp logical rules or obtain fuzzy
rules directly from neural networks. Crisp logical rules with the
assumption of input uncertainties are equivalent to fuzzy rules
with specific membership functions. The ease of interpreta-
tion favors crisp rules, while the accuracy and the possibility of
application of gradient-based techniques to optimization favors
fuzzy rules: we have the best of both worlds.

It is easy to calculate probabilities for single rule conditions
of the formx < a, x > a or x ∈ (a,b):

p(x < a) =
Z a

−∞
G(y;x,sx)dy =

1
2

[
1+erf

(
a− x

sx
√

2

)]

p(x > a) =
Z +∞

a
G(y;x,sx)dy =

1
2

[
1−erf

(
a− x

sx
√

2

)]

p(x ∈ (a,b)) =
1
2

[
erf

(
b− x

sx
√

2

)
−erf

(
a− x

sx
√

2

)]
(23)

Notice that this interpretation does not differentiate between in-
equalities≤ and<. To obtain reasonable probabilities rules with
borders such that≤may be replaced by< without loss of accu-
racy are required, i.e. borders should be placed between discrete
values.

The probability that a vectorX belongs to a ruleR = r1∧ . . .∧
rN may be defined as the product of the probabilities ofXi ∈ ri

for i = 1, ...N. Such definition assumes that all the attributes
which occur in ruleR are mutually independent, which is usu-
ally not the case. However, if a pair of strongly dependent at-
tributes is used in linguistic variables that appear in a single rule
one of these variables is dropped and the other re-optimized at
the stage of rule simplification. Therefore the product should be
very close to real probability. Obviously the rule may not con-
tain more than one premise per attribute, but it is easy to convert
the rules appropriately if they do not satisfy this condition.

Another problem occurs when probability ofX belonging to
a class described by more than one rule is estimated. Rules usu-
ally overlap because they use only a subset of all attributes and
their conditions do not exclude each other. Summing and nor-
malizing probabilities obtained for different classes may give
results quite different from real Monte Carlo probabilities. To
avoid this problem probabilities are calculated as:

p(C|X ;M) = ∑
R∈2RC

(−1)|R|+1p(X ∈
\

R) (24)

whereRC is the set of the classification rules for classC, 2RC

is the set of all subsets of rules and|R| is the number of ele-
ments inR. The probabilityp(X ∈ TR) is calculated as a prod-
uct of probabilities for single rule conditions according to Eq.
(23) (X ∈ TR may be treated as a single conjunctive rule). This
formula takes care of overlapping rule regions, for example for
two rulesR1(X),R2(X) for classC the probabilityp(C|X ;M) is
p(X ∈ R1)+ p(X ∈ R2)− p(X ∈ R1∩R2).

Instead of the number of misclassifications the error function
may include a sum over all probabilities:

E(M,sx) =
1
2 ∑

X
∑

i
(p(Ci|X ;M)−δ(C(X),Ci))

2 (25)

whereM includes intervals defining linguistic variables,sx are
Gaussian uncertainties of inputs andp(Ci|X ;M) is calculated
using Eq. (24). The confusion matrix computed using prob-
abilities instead of the error counts allows for optimization of
Eq. (18) using gradient-based methods. This minimization may
be performed directly or may be presented as a neural network
problem with a special network architecture.

Uncertaintiessx of the values of features are additional adap-
tive parameters that may be optimized. We have used so far a
very simple optimization with allsx taken as a percentage of the
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range of featurex to perform one dimensional minimization of
the error function independently of other steps.

An alternative possibility that we have considered1, but not
implemented yet, is to use the renormalized network outputs to
compute probabilities:

p(Ck|X) =
ok(X)

∑i oi(X)
(26)

with output neurons for classk summing the contributions of
rule nodes

ok(X) = σ

(
∑

i
Ri,k(X)

)
(27)

Each of these rule nodes computes normalized products of L-
unit outputs connected to it. Although results will not be equiv-
alent to Monte Carlo simulations,p(Ck|X) values behave like
probabilities and may be useful.

This approach to soft optimization may be used with any set
of crisp logical rules to overcome the brittleness problem and to
obtain robust wide margin rule-based classifiers. Wide margins
are desirable to optimize the placement of decision borders from
generalization point of view. If a single parameters scaling all
sx is used it may be hard to avoid an increase of the number of
classification errors despite the fact that the overall probability
of correct classification will increase. To avoid this problem a
few iterative steps are used: after minimizations is decreased
and minimization repeated untils becomes sufficiently small
and probabilities almost binary. In the limit minimization of
MSE becomes equivalent to minimization of the classification
error, but the brittleness problem is solved because the intervals
that are optimally placed for larger input uncertainties do not
change in subsequent minimizations.

IX. OPTIMIZATION AND PROBABILITIES FOR IRIS DATA.

In the MLP2LN methodλ1 andλ2 constraint parameters al-
low to generate different sets of rules. If the L-R network ar-
chitecture is used iterative optimization of linguistic variables
is possible. The initial rules were derived in Section VI. The
cost function in Eq. (18) allows for final optimization of lin-
guistic variables. Fuzzy rules allow for direct gradient-based
optimization. For crisp rules probabilites should be introduced
first, as described in Section VIII, or non-gradient optimization
techniqes should be used. Different values of theγ andλ 1 pa-
rameters (λ2 is not so important here) lead to a hierarchy of rules
with increasing reliability.

This process is illustrated below on the Iris data. In the previ-
ous section the simplest set of rulesR (1) using only one feature,
x3, was found. Lowering the final hyperparameterλ 1 leads to
the following set of rules:

R (2)
1 : setosa if(x3 < 2.9 ∨ x4 < 0.9) (100%)

R (2)
2 : versicolor if(x3 ∈ [2.9,4.95]∧ x4∈ [0.9,1.65]) (100%)

R (2)
3 : virginica if (x3 > 4.95) ∨ (x4 > 1.65) (94%)

1We are grateful to Norbert Jankowski for this idea.

TheR (2) set of rules classifies correctly 147 vectors, achiev-
ing the overall 98.0% accuracy. However, the first two rules
have 100% reliability while all errors are due to the third rule,
covering 53 cases. Further decrease of constraint hyperparam-
etersλ allows to replace one of these rules by four rules, with
a total of three attributes and 11 antecedents, necessary to clas-
sify correctly a single additional vector, a clear indication that
overfitting occurs. One cannot find more reliable rules this way.

100% reliability of all rules is achieved after optimization of
R (2) rules with increasingγ≥ 0 and minimizing Eq. (18). The
smallest value ofγ for which all rules do not make any errors is
found. For Iris this set of rules leaves 11 vectors, 8 virginica and
3 versicolor, as unclassified:

R (3)
1 : setosa if (x3 < 2.9) (100%)

R (3)
2 : versicolor if (x3 ∈ [2.9,4.9] ∧ x4 < 1.7) (100%)

R (3)
3 : virginica if (x3≥ 5.3 ∨ x4≥ 1.9) (100%)
The vectors rejected byR (3) rules may be classified byR (2)

rules, but the reliability of classification for the vectors in the
R (2)\ R (3) border region is rather low: withp = 8/11 they
should be assigned to the virginica class and withp = 3/11 to
the versicolor class. It is possible to generate more specific rules,
including more features, just for the border region, or to use in
this region similarity-based classification system, such as k-NN,
but for this small dataset we do not expect any real improvement
since the true probability distributions of leave’s sizes for the
two classes of iris flowers certainly overlap.

The Iris example is too simple to see the full advantage of
applying the optimization and probabilistic evaluation, since the
number of parameters to optimize is small and optimal accuracy
(98%) is achieved with crisp rules. For cases near the decision
border between Iris virginica and Iris versicolor a more realis-
tic probabilitiesp(C|X ;M) are calculated using formula (23).
The natural uncertainties here are±0.1, equal to the accuracy of
measurements. Six vectors near that border have probabilities
around 0.5, up to 0.75, the remaining vectors have higher proba-
bilities. Calculation of probabilities was essential in our real-life
application of rule extraction methods to psychometric data and
NASA shuttle, presented below.

We have used the Iris example for pedagogical reasons only.
Reclassification accuracy (in-sample accuracy for the whole
dataset) of rules derived by several rule extraction systems are
collected in Table IV. Unfortunately the statistical estimation
of accuracy (out-of-sample accuracy) has not been given by the
authors of these methods (such comparison is done on data with
separate test parts). Nevertheless complexity and reclassifica-
tion accuracy of rules found by different methods give some idea
about their relative merits. The number of rules and conditions
does not characterize fully the complexity of the set of rules,
since fuzzy rules have additional parameters. “Else” condition
is not counted as a separate rule.

The neurofuzzy NEFCLASS system [70] belongs to the best
of its kind and if it had used context dependent linguistic vari-
ables it would probably achieve better results, but following the
crowd the authors used three equally distributed fuzzy sets for
each feature. The best 7 fuzzy rules classified correctly 96.7%
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TABLE IV

SUMMARY OF RULE EXTRACTION RESULTS FOR THEIRIS DATASET.

F=FUZZY, C=CRISP, R=ROUGH, W=WEIGHTED.

Method Rules/cond. Type Reclassification
features accuracy

ReFuNN [10] 9/26/4 F 95.7
ReFuNN [10] 14/28/4 F 95.7
ReFuNN [10] 104/368/4 F 95.7
Grobian [72] 118/-/4 R 100.0
GA+NN [65] 6/6/4 W 100.0
NEFCLASS[70] 7/28/4 F 96.7
NEFCLASS[70] 3/6/2 F 96.7
FuNe-I[74] 7/-/3 F 96.0
C-MLP2LN 2/2/1 C 95.7
C-MLP2LN 2/2/2 C 96.0
C-MLP2LN 2/3/2 C 98.0
SSV 2/2/2 C 98.0

of data. The system is not able to reduce the number of fea-
tures automatically, but if used with the last two iris features it
will give the same performance using only 3 best rules (out of 9
possible) with 6 conditions. Other neurofuzzy systems, such as
FuNe-I [74], give even worse results. Kasabov [71] has used his
neurofuzzy FuNN system partitioning each feature into 5 fuzzy
linguistic variables, obtaining as a result 104 fuzzy rules with
368 conditions (for 150 data vectors)! Instead of compression
of information that logical rules should provide a reverse process
occurred. Ishibuchiet al. [66] report better results by combining
several fuzzy systems and using various voting methods. Jagiel-
skaet al. [65] reports 100% re-classification accuracy with 6
genetically optimized weighted rules, which mans that the data
is overfitted and the method should give poor result in crossval-
idation tests of classification accuracy. Unfortunately the main
purpose of building rule-based systems, i.e. comprehensibility
of data description, is lost in both cases.

Rough sets also do not produce comprehensible description
of this simple data, producing a large number of rules. Grobian
[72] uses 118 rules for perfect classification, clearly overfitting
the data, reaching only 91-92% in 10-fold crossvalidation tests.
Earlier application of rough sets to the Iris data [73] gave very
poor results (77% accuracy), probably because 4 linguistic at-
tributes per feature were used. This shows again the importance
of optimization and the use of context-dependent linguistic vari-
ables instead ofad hoc partitions of input features. Thus even
such a simple data seems to be difficult to handle for many rule
extraction systems.

X. I LLUSTRATIVE APPLICATIONS

We have analyzed a large number of datasets comparing our
results with the results obtained by other methods whenever pos-
sible. Many results, including explicit logical rules, are col-
lected at the:
http://www.phys.uni.torun.pl/kmk/projects/rules.html

Web page. As we have already stressed rules are useful if they
are comprehensible and accurate. Although many sets of rules
of various complexity have been found only the simplest and the
most accurate sets of rules are given here. They may be used as
a reference or benchmark for other rule extraction systems.

Crossvalidation is useful as a measure of generalization capa-
bility since classifiers may overfit the training data. Such danger
does not exist if a small number of simple rules is extracted.
Accuracy on the training data should in such cases be similar
as the accuracy on the test data and the differences tell us more
about the statistical representativeness of the training and the
test data than about the classification method itself (cf. results
for larger datasest given below). Statistical tests, such as the
stratified 10-fold crossvalidation or the leave-one-out tests, are
difficult to perform since rules have to be extracted many times.
Moreover, since different rules may be extracted for different
data partitions it is impossible to present a single set of rules or
to compare rules obtained by different methods.

The simplest form of rules is frequently quite stable when
training on 90% of the data. In the mushroom case described be-
low it is sufficient to use 10% of the data for training to find the
first two rules that cover 99.4% of all the cases. During cross-
validation it may happen that the rare cases, covered by the two
remaining rules, will be missing from the training part and thus
the rules will not be found. Thus the averaged accuracy of the
method will be below 100%, although the method is capable of
finding 100% accurate rules for this data. Crossvalidation may
not be so useful for evaluation of the rule extraction methods.

Quite frequently only the reclassification accuracy (in-sample
or overall accuracy) on the whole dataset for extracted rules is
quoted. This may not be sufficient to estimate statistical accu-
racy of rules, therefore in a few cases crossvalidation results are
also given here. The best comparison of accuracy is offered on
large dataset with the separate test part, such as the hypothyroid
or the NASA shuttle problem. We have analyzed 6 databases
with such separate test sets, allowing to judge generalization ca-
pability of the methods proposed in this paper.

Rule extraction methods should not be judged only on the
basis of the accuracy of the rules but also on their simplicity and
their comprehensibility. The simplest rules are usually rather
stable in crossvalidation tests and for such rules reclassification
accuracy is close to statistical estimations.

A. Mushrooms.

In the mushroom problem [1], [7] the database consists of
8124 vectors, each with 22 symbolic attributes with up to 12
different values, equivalent to 118 logical features. 51.8% of
the cases represent edible, and the rest non-edible (mostly poi-
sonous) mushrooms.

A single neuron is capable of learning all the training samples
(the problem is linearly separable), but the resulting network has
many nonzero weights and is difficult to analyze from the logical
point of view. Using the C-MLP2LN algorithm with the cost
function Eq. (10) the following disjunctive rules for poisonous
mushrooms have been discovered:

R 1) odor=¬(almond∨anise∨none)
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R 2) spore-print-color=green
R 3) odor=none∧stalk-surface-below-ring=scaly∧

(stalk-color-above-ring=¬brown)
R 4) habitat=leaves∧cap-color=white

Rule R 1 misses 120 poisonous cases (98.52% accuracy),
adding ruleR 2 leaves 48 errors (99.41% accuracy), adding third
rule leaves only 8 errors (99.90% accuracy), and all rulesR 1to
R 4 classify all poisonous cases correctly. The first two rules are
realized by one neuron. For large value of the weight-decay pa-
rameter only one rule with odor attribute is obtained, while for
smaller hyperparameter values a second attribute (spore-print-
color) is left. Adding a second neuron and training it on the
remaining cases generates two additional rules,R3 handling 40
cases andR4 handling only 8 cases. We have also derived the
same rules using only 10% of all data for training, therefore re-
sults from crossvalidation should be identical to the results given
in Table V. This is the simplest systematic logical description of
the mushroom dataset that we know of (some of these rules have
probably been also found by the RULEX and TREX algorithms
[1]) and therefore should be used as a benchmark for other rule
extraction methods.

For the mushroom dataset SSV tree has found 100% accu-
rate solution which can be described as four logical rules using
only 5 attributes. The first of these is identical as found by the
C-MLP2LN, but next two rules are different, using “gill-size”
instead of stalk and cap related attributes. Since the last two
rules cover only a small percentage of all cases many equivalent
descriptions are possible. SSV rules give perhaps the simplest
set of rules found so far.

R 1: odor=¬(almond∨anise∨none)
R 2: spore-print-color= green
R 3: gill-size = narrow∧ (stalk-surface-above-ring =

(silky ∨ scaly)∨ population = clustered

If odor is removed from the list of available features 13 rules
are needed to reach 100% correct classification. This example
illustrates how important the simplicity of the rules is. Although
neural and other methods may give a perfect solution logical
rules derived here give probably the most comprehensible de-
scription of the data.

B. The 3 Monk problems.

The three monk problems are artificial, small problems de-
signed to test machine learning algorithms [67], [1], [76]. Each
of the three monks problems is to determine whether an object
described by six features (shown in Fig. 9) is a monk or not. The
3 problems define “being a monk” as having features satisfying
the following formulae respectively:
1. head shape = body shape∨ jacket color =red
2. exactly two of the six features have their first values
3. ¬ (body shape =octagon ∨ jacket color =blue)
∨ (holding =sward ∧ jacket color =green)

There are 432 combinations of the 6 symbolic attributes. In
the first problem 124 cases were randomly selected for the train-
ing set, in the second problem 169 cases and in the third problem
122 cases of which 5% were misclassifcations introducing some

TABLE V

SUMMARY OF RULE EXTRACTION RESULTS FOR THEMUSHROOM

DATASET; RECLASSIFICATION ACCURACY IS GIVEN IN PERCENTS.

Method Rules/cond. Reclassification
features Accuracy

RULENEG[33] 300/8087 91.0
REAL [31] 155/6603 98.0
DEDEC [37] 26/26 99.8
TREX[1] 3/13 100.0
C4.5 (decision tree) 3/3 99.8
RULEX[44] 1/3/1 98.5
Successive Regulariz.[90] 1/4/2 99.4
Successive Regulariz.[90] 2/22/4 99.9
Successive Regulariz.[90] 3/24/6 100.0
C-MLP2LN, SSV 1/3/1 98.5
C-MLP2LN, SSV 2/4/2 99.4
C-MLP2LN 3/7/4 99.9
SSV 3/7/4 99.9
C-MLP2LN 4/9/6 100.0
SSV 4/9/5 100.0

noise in the data. Such artificial data may be difficult to han-
dle. Attempts to train the MLP2LN network with a single neu-
ron were not successful – convergence was unacceptably slow
and therefore the final error was too large. It was necessary to
train two or more neurons in the hidden layer simultaneously.
The number of neurons trained should be increased until con-
vergence is fast (the definition of “fast” depends on the data, but
it does not differ from evaluation of the convergence of standard
MLP). After training on the Monk 1 data the weights for the two
neurons were frozen (Fig. 9). This technique has also been used
in the Monk 2 problem where up to four neurons were trained
simultaneously (real data never required more than 2 neurons to
be simultaneously trained).

Initial rules derived for the Monk problems were too general,
i.e. each rule covered relatively large percentage of cases from
a wrong class. The first two neurons in the Monk 1 problem
classify properly all positive examples accepting some nega-
tive ones. The patterns which are not recognized properly are
treated as exceptions to the general rules extracted from the net-
work. The hidden layer had to be extended adding neurons with
a negative contribution to the output node. After the whole rule
extraction process is finished two separate sets of rules are ob-
tained, one comprising information on positive examples, and
the other describing exceptions, modifying the first set of rules.
Below we will use the word “rules” to mean the rules of the first
set, and the word “exceptions” for the members of the second
set. To classify a pattern correctly, the first condition one ought
to check is whether it is an exception, and then (only if it is not
true) the basic classification rules can be applied to determine if
the pattern belongs to the class.

C-MLP2LN method applied to the Monk 1 problem needed
three passes (one pass, or training stage, is a single process
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Fig. 9. The network for the Monk 1 problem. The first two neurons were taught
simultaneously. The other two handle exceptions.

of training leading to convergence, finished with freezing the
weights of all trained neurons). The two hidden neurons trained
during the first pass recognized all the positive examples and
11 negative ones. In the second training pass one hidden neu-
ron detected 6 exceptions and in the third pass another hidden
neuron was taught the remaining 5 exceptions. Some statistics
concerning all the stages of the algorithm for all 3 Monk prob-
lems is given in Table VI. Successive columns of the table have
the following meaning: the first specifies problems and the fi-
nal numbers of generated rules and exceptions, the second enu-
merates particular stages, the third gives the number of neurons
trained simultaneously and fourth says if the aim was search-
ing for rules or exceptions (to highlight the difference rules are
printed in bold and exceptions in italic). The fifth column con-
tains the numbers of instances classified properly thanks to rules
generated during a given pass. The last column supports our
claim that the method learns the most common rules first. The
isolated cases are being recognized after subsequent stages.

In the Monk-1 problem 4 rules and 2 exceptions have been
generated, altogether composed of 14 atomic formulae. They
classify the training data without any errors.

Although the definition of the Monk-2 problem is very sim-
ple, the training process required much more effort. As shown
in Table VI it needed the biggest number of passes of the algo-
rithm. Each of the three first rule searching stages ended with
some exceptions and thence required additional stages. More-
over last stages made the impression that the relations among
the training samples were very difficult to detect. Three passes
trained networks with two hidden units, and the last one required
even four units. It is worth to point out that the four nodes of the
network constructed during the last pass are responsible for cor-
rect classification of just five examples. This shows how the
neurons trained in the final passes of our algorithm can special-
ize in recognizing patterns which do not resemble other patterns.

TABLE VI

TRAINING STAGES IN THE 3 MONK PROBLEMS.

Problem Pass No. Neurons Rules/Exc. Examples

Monk 1 1 2 rules 42
4 rules 2 1 exceptions 6
2 exceptions 3 1 exceptions 5
Monk 2 1 1 rules 33
16 rules 2 1 exceptions 5
8 exceptions 3 1 rules 16

4 2 exceptions 6
5 2 rules 10
6 2 exceptions 3
7 4 rules 5

Monk 3 1 1 rules 57
3 rules 2 2 exceptions 5
4 exceptions 3 1 rules 3

16 rules and 8 exceptions were extracted from the resulting net-
work. The number of atomic formulae which compose them is
132.

The third Monk problem also required one additional pass to
find exceptions. Two neurons gave three rules, and two other
neurons generated four exceptions. The whole logical system
for this case contains 33 atomic formulae. Although the data has
been deliberately contaminated with 5% noise it is well known
[67] that rules giving 100% accuracy may be found.

FSM fuzzy rules obtained with Gaussian membership func-
tions were not so good as the crisp rules from C-MLP2LN. For
the Monk 1 problem 16 rules were generated, giving 97.9% ac-
curacy on the training and 94.5% accuracy on the test set. For
Monk 2 the number of generated rules was 32, and the accuracy
was 94% on training and only 79.3% on the test set. 15 rules
generated for Monk 3 gives 96.7% on the training and 95.5%
on the test set. Soft decision borders are not appropriate for
this problem, therefore fuzzy methods will not be as accurate
as crisp rule extraction. Results obtained with many machine
learning rule-based systems described in the original paper on
the 3 monk problems [67] are compared in Table VII.

C. The appendicitis data.

The appendicitis data contains only 106 cases, with 8 at-
tributes (results of medical tests), and 2 classes: 88 cases with
acute appendicitis and 18 cases with other problems. For this
small dataset very simple classification rules have been found
by Weiss and Kapouleas [80] using their PVM (Predictive Value
Maximization) approach. Since PVM makes exhaustive search
testing all possible simple rules we may be sure that this is in-
deed the simplest solution. Using histograms for the two classes
initial linguistic variables were found. Initially two simple rules
have been found [81]:

MNEA > 6650∨MBAP > 12 (28)
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TABLE VII

COMPARISON OF RESULTS FOR THE 3 MONK DATASETS, ACCURACY ON

THE TEST SET IN %.

Method Monk-1 Monk-2 Monk-3
AQ17-DCI 100 100 94.2
AQ17-HCI 100 93.1 100
AQ17-GA 100 86.8 100
Assistant Pro. 100 81.5 100
mFOIL 100 69.2 100
ID5R 79.7 69.2 95.2
IDL 97.2 66.2 -
ID5R-hat 90.3 65.7 -
TDIDT 75.7 66.7 -
ID3 98.6 67.9 94.4
AQR 95.9 79.7 87.0
CN2 100 69.0 89.1
AQR 95.9 79.7 87.0
CLASSWEB 0.10 71.8 64.8 80.8
CLASSWEB 0.15 65.7 61.6 85.4
CLASSWEB 0.20 63.0 57.2 75.2
PRISM 86.3 72.7 90.3
ECOWEB, ext 82.7 71.3 68.0
Neural methods
MLP 100 100 93.1
MLP+regularization 100 100 97.2
Cascade Corelation 100 100 97.2
FSM, fuzzy rules 94.5 79.3 95.5
SSV, crisp rules 100 80.6 97.2
C-MLP2LN rules 100 100 100

The overall accuracy of these rules is 91.5%. Since these are
essentially the same rules as found by Weiss and Kapouleas [80]
using their PVM approach the leave-one-out accuracy should
also be close to 89.6%. Rules are rather robust and do not
change much if a single vector is removed from the training set
in the leave-one-out procedure. Although we have improved
classification accuracy by generating two more rules (adding a
second neuron) the first of these rules covers just 2 cases and the
second just one case. Such rules are more likely due to the noise
in the data then to a highly specific and rare case of interest to
an expert. Using L-units and random MLP initialization another
set of rules giving 89.6% of accuracy has been found:

WBC1 > 8400∨MBAP≥ 42 (29)

with the confusion matrix P =
(

84 10
1 11

)
. Here column la-

bels are of the true class and row labels of the assigned class, i.e.
one real appendicitis case was classified as “other problem” and
10 “other problems” as appendicitis. For comparison [75] k-NN
in the leave-one out test gives 82.1% and with optimization of
distance function and k accuracy is about 89%, MLP reaches
about 86% and Bayes rule 83%. C4.5 decision tree gives 3 rules

correctly covering 91.5% of all cases. For this case we would
expect about the same accuracy in the leave-one-out tests from
our C-MLP2LN rules, PVM rules and CART or C4.5 decision
trees since these methods consistently generate similar rules for
this dataset. 12 fuzzy rules from FSM achieve 84.5% accuracy
in the leave-one-out test, and in the 10-fold crossvalidation ac-
curacy is only slightly lower, 84.3%.

The decision tree built with SSV converted into logical rules
gives just two rules per class. Because there are no “don’ t know”
answers, only the rules for one of the cases need to be presented,
the other class can be summarized using the ELSE condition.
The first rule obtained using separability criterion gives 91.5%
accuracy. The second one is already unreliable, covering only
three additional data vectors and increasing the accuracy of re-
classification to 94.3%.

R 1: HNEA < 7520.5∧MBAP < 12
R 2: HNEA ∈ (9543.5, 9997.5)

Statistical accuracy is of course lower. In the leave-one-out
test rules differ only slightly for different runs, achieving 89.6%
of accuracy. In the 10-fold crossvalidation tests (repeated 10
times) SSV rules achieve on average 86.3% accuracy (best re-
sults +2.6% and worst -1.1%). In Table VIII results of differ-
ent methods for this dataset are compared. 12 fuzzy rules from
FSM were derived using Gaussian membership functions. We
have not made the leave-one-out test with the more complex
C-MLP2LN rules, but the results should be close to 89.6% ob-
tained with a single neuron and with SSV rules.

TABLE VIII

RESULTS FOR THE APPENDICITIS DATASET; RECLASSIFICATION AND THE

LEAVE-ONE-OUT ACCURACY ARE GIVEN IN PERCENTS.

Method Reclassific. L-one-out
SSV, 2 crisp rules (our) 94.3 89.6
C-MLP2LN, 1 neuron (our) 91.5 89.6
PVM [75] 91.5 89.6
MLP+backprop [75] 90.2 85.8
CART [75] 90.6 84.9
FSM, 12 fuzzy rules (our) 92.5 84.4
Bayes [75] 88.7 83.0
k-NN [75] – 82.1
C-MLP2LN, 2 neurons (our) 94.3 –

D. Hepatitis.

This is another small medical database from UCI [7], con-
taining only 155 samples belonging to two different classes (32
“die” cases, 123 “ live” cases). There are 19 attributes, 13 bi-
nary and 6 attributes with 6 to 8 discrete values. This data is
quite “dangerous” to use, since it contains many missing values
– for some features almost half of the vectors have missing val-
ues. Using averages of these missing values leads to very good,
but quite useless results. For example, using L-units to generate
linguistic variables we were able to find one rule for the “die”
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class, achieving overall 96.1% of accuracy.

age≥ 30∧ sex=male∧ fatigue = no∧protime≤ 50 (30)

The confusion matrix (live, die) is now: P =
(

120 3
3 29

)
This single rule is very accurate but it uses variable “protime”

which is missing in almost half of the cases. Rules discovered
using the C-MLP2LN method do not contain such misleading
attributes [81]:

age > 52∧bilirubin > 3.5

histology = yes∧ ascites = no∧ age ∈ [30,51]

TABLE IX

RESULTS FROM THE 10-FOLD CROSSVALIDATION FOR THE HEPATITIS

DATASET.

Method Accuracy Remarks
k-NN, k=18, Manhattan 90.2± 0.7 our result
FSM + rotations 89.7 our results
LDA 86.4 Ref. [88]
Naive Bayes 86.3 Ref. [88]
IncNet + rotations 86.0 Ref. [69]
QDA 85.8 Ref. [88]
1-NN 85.3 Ref. [88]
ASR 85.0 Ref. [88]
FDA 84.5 Ref. [88]
LVQ 83.2 Ref. [88]
CART 82.7 Ref. [88]
MLP with BP 82.1 Ref. [88]
ASI 82.0 Ref. [88]
LFC 81.9 Ref. [88]
Deafult 79.4

These rules classify correctly 14 of the 32 vectors represent-
ing the “die” class, giving 88.4% accuracy for the reclassifcation
of the whole dataset. Further efforts to add new neurons to clas-
sify the remaining data lead to a large number of rules which is
a clear indication of data overfitting.

The highest accuracy, 90.2 ± 0.7% was obtained using k-
nearest neighbors method, with only slightly lower accuracy of
89.7% obtained from FSM generating fuzzy rules, using Gaus-
sian membership functions and allowing for rotation. Other
classification methods give slightly lower accuracy, for example
CART decision tree giving only 82.7%, k-NN 85.5% (for k=1)
and linear discriminants analysis 86.4%. A majority classifier is
correct in 79.4% of cases.

Considering that k-NN has rather small variance of 0.7% the
differences between the two best methods and the rest are sig-
nificant. The two best methods provide quite complex decision
borders, perhaps indicating that classification using simple rules

cannot be accurate in this case. One may still argue that logical
rules are a reasonable way to approach such small datasets. Al-
though statistical accuracy offered is lower rules give at least
some guidance and allow for validation of the classification
model by experts.

E. The Ljubliana cancer data.

The Ljubliana cancer data [7] contains 286 cases, of which
201 are no-recurrence-events (70.3%) and 85 are recurrence-
events (29.7%). There are 9 attributes, with 2 to 13 different
values each. A single logical rule for the recurrence-events:

involved nodes=¬[0,2]∧ Degree-malignant = 3

with ELSE condition for the second class, gives over 77% accu-
racy in crossvalidation tests. Such simple rule cannot overfit the
data and is found on any crossvalidation partition. Therefore the
10-CV accuracy is identical to reclassification accuracy. This
rule is easy to interpret: recurrence is expected if the number of
involved nodes is bigger than 2 and the cells are highly malig-
nant. More accurate optimized rules:

R 1: Degree malignant = 3 ∧ breast=left ∧ node caps=yes
R 2: (Degree malignant = 3 ∨ breast=left) ∧ age = �∈ [30−49]∧

tumor size = [35-54]

give slightly higher reclassification accuracy, but no increase in
crossvalidation. Since the dataset is small many different sets of
rules may give similar accuracy. Using the separability split val-
ues (SSV) to generate linguistic variables one rule for the class
of recurrence-events is obtained:

involved nodes¬[0,2]∧ Degree-malignant ∈ [2,4]

achieving 76.2% accuracy in reclassification of the data. More
complex set of 3 rules obtained using SSV gives 77.6% accu-
racy and in the 10-fold crossvalidation tests an average of 73.5%
(worst result -0.8%, best +1.0%), i.e. only a few percent above
the default value, indicating that rules are already too complex
and overfit the data. Several machine learning methods give re-
sults below the default, as shown in Table X.

It would be hard to improve upon result of these simple rules,
which are easily understood by anyone. We doubt that there is
any more information in this dataset. Most methods give signif-
icantly lower accuracy using more complex models. For exam-
ple, FSM with 33 fuzzy rules gives results that are only insignif-
icantly better than the default accuracy. LERS [78], a machine
learning technique based on rough sets, gave after optimization
almost 100 “certain” rules and about the same “possible” rules,
achieving accuracy that is below the majority rate. Although it
may not be the limit of accuracy for rough set systems the num-
ber of rules produced by such systems is usually quite large, and
thus the insight into the knowledge hidden in the data is lost.
FSM generates 33 rules with Gaussian membership functions,
achieving 71.4% accuracy on the test part and 85.4% accuracy
on the training part. CART decision tree gave the best results,
77.1% in the crossvalidation tests. Since CART reclassification
results are not much better little difference between reclassifi-
cation and crossvalidation accuracy of the MLP2LN and SSV
rules should be expected.
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TABLE X

10-FOLD CROSSVALIDATION AND RECLASSIFCATION ACCURACY IN % FOR

THE LJUBLIANA CANCER DATASET.

Method 10-fold CV Remarks

C-MLP2LN, 1 rule 77.1 our result
CART, PVM 77.1 Ref. [75]
Naive Bayes rule 75.9 Ref. [75]
SSV, 3 rules 73.5±0.9 our result
FSM, 33 fuzzy rules 71.4 our result
MLP + BP 71.5 Ref. [75]
Default 70.3
AQ15 66-72 Ref. [86]
Weighted network 68-73.5 Ref. [87]
LERS (rough rules) 69.4 Ref. [78]
k-NN 65.3 Ref. [75]

Reclassification
Assistant-86 78.0 Ref. [85]
C-MLP2LN, 2 rules 78.0 our result
SSV, 3 rules 77.6 our result
SSV, 1 rule 76.2 our result

F. The Cleveland heart disease data.

The Cleveland heart disease dataset [7] (collected at V.A.
Medical Center, Long Beach and Cleveland Clinic Foundation
by R. Detrano) contains 303 instances, with 164 healthy (54.1%)
instances, the rest are heart disease instances of various severity.
While the database has 76 raw attributes, only 13 of them are
actually used in machine learning tests, including 6 continuous
features and 4 nominal values. There are many missing values
of the attributes. Results obtained with various methods for this
data set are collected in Table XI.

After some simplifications rules derived by the C-MLP2LN
approach are:

R 1: (thal=0 ∨ thal=1) ∧ ca=0.0 (88.5%)
R 2: (thal=0 ∨ ca=0.0) ∧ cp�= 2 (85.2%)

These rules give 85.5% correct answers on the whole set and
compare favorable with the accuracy of other classifiers. Three
rules describing the Cleveland heart data obtained using SSV
method are 85.8% accurate (the first rule containing alternative
is counted as two rules):

R 1: ca = 0.0 ∧ (thal = 0 ∨ exang = 0)
R 2: cp �= 2 ∧ slope �= 2

These rules are quite similar to rules generated by C-
MLP2LN. 10-fold crossvalidation using SSV method gives an
average of 81.8±1.6% accuracy and the leave one out results
are about 1% better. 27 fuzzy rules were generated by FSM,
achieving 93.4% on the training and 81.8±1.6% on the test part.
These results are lower than those discriminant analysis, perhaps
indicating the need to provide rotated sharp decision borders.

TABLE XI

RESULTS FROM THE 10-FOLD CROSSVALIDATION FOR THE CLEVELAND

HEART DISEASE DATASET.

Method Accuracy Ref.
k-NN, k=28, 7 features 85.1±0.5 our result
Linear Discriminant Analysis 84.5 [88]
Fisher LDA 84.2 [88]
Naive Bayes 83.4 [88]
Bayes (pairwise dependent) 83.1 [88]
LVQ 82.9 [88]
k-NN, k=27, Manhattan 82.8±0.6 our result
MLP+backprop 81.3 [88]
CART (decision tree) 80.8 [88]
Quadratic Discriminants 75.4 [88]
LFC, ASI, ASR decision trees 74.4-78.4 [88]
FSM, 27 fuzzy rules 82.0 our result
SSV, 3 rules 81.8±1.6 our result

G. Wisconsin breast cancer data.

The Wisconsin cancer dataset [68] contains 699 instances,
with 458 benign (65.5%) and 241 (34.5%) malignant cases.
Each instance is described by the case number, 9 attributes with
integer value in the range 1-10 (for example, feature f 2 is “clump
thickness” and f8 is “bland chromatin” ) and a binary class label.
For 16 instances one attribute is missing. This data has been
analyzed in a number of papers (Table XII).

The simplest rules obtained for the malignant class using C-
MLP2LN are:

f2 ≥ 7∨ f7 ≥ 6 (95.6%)

These rules cover 215 malignant cases and 10 benign cases,
achieving overall accuracy (including the ELSE condition) of
94.9%. More complex network gave 5 disjunctive rules for the
malignant cases, with benign cases covered by the ELSE condi-
tion:

R 1: f2 < 6∧ f4 < 4∧ f7 < 2∧ f8 < 5 (100)%
R 2: f2 < 6∧ f5 < 4∧ f7 < 2∧ f8 < 5 (100)%
R 3: f2 < 6∧ f4 < 4∧ f5 < 4∧ f7 < 2 (100)%
R 4: f2 ∈ [6,8]∧ f4 < 4∧ f5 < 4∧ f7 < 2∧ f8 < 5 (100)%
R 5: f2 < 6∧ f4 < 4∧ f5 < 4∧ f7 ∈ [2,7]∧ f8 < 5 (92.3)%

The first 4 rules achieve 100% accuracy (i.e. they cover
cases of malignant class only), the last rule covers only 39
cases, 36 malignant and 3 benign. The confusion matrix is:

P =
(

238 3
25 433

)
, i.e. there are 3 benign cases wrongly clas-

sified as malignant and 25 malignant cases wrongly classified as
benign, giving overall accuracy of 96%. Optimization of this set
of rules (Eq. 18) gives:

R 1: f2 < 6∧ f4 < 3∧ f8 < 8 (99.8)%
R 2: f2 < 9∧ f5 < 4∧ f7 < 2∧ f8 < 5 (100)%
R 3: f2 < 10∧ f4 < 4∧ f5 < 4∧ f7 < 3 (100)%
R 4: f2 < 7∧ f4 < 9∧ f5 < 3∧ f7 ∈ [4,9]∧ f8 < 4

(100)%
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R 5: f2 ∈ [3,4]∧ f4 < 9∧ f5 < 10∧ f7 < 6∧ f8 < 8
(99.8)%

These rules classify only 1 benign vector as malignant (R 1

and R 5, the same vector), and the ELSE condition for the be-
nign class makes 6 errors, giving 99.0% overall accuracy. In all
cases features f3 and f6 (both related to the cell size) were not
important and f2 with f7 were the most important.

TABLE XII

RESULTS FROM THE 10-FOLD CROSSVALIDATION AND RECLASSIFICATION

FOR THE WISCONSIN BREAST CANCER DATASET.

Method Accuracy Ref.

IncNet 97.1 [69]
k-NN 97.0±0.12 our result
Fisher LDA 96.8 [88]
MLP+backprop 96.7 [88]
LVQ 96.6 [88]
Bayes (pairwise dependent) 96.6 [88]
Naive Bayes 96.4 [88]
DB-CART 96.2 [79]
LDA 96.0 [88]
LFC, ASI, ASR dec. trees 94.4-95.6 [88]
CART (dec. tree) 93.5 [79]
Quadratic DA 34.5 [88]
FSM, 12 fuzzy rules 96.5 our result
SSV, 3 crisp rules 96.3±0.2 our result
Results from reclassification Rules/type
C-MLP2LN 99.0 5, C, our result
C-MLP2LN 97.7 4, C, our result
SSV 97.4 3, C, our result
NEFCLASS 96.5 4, F [70]
C-MLP2LN 94.9 2, C, our result
NEFCLASS 92.7 3, F [70]

Using L-units 4 more accurate rules for the malignant class
are created (their reliability is in parenthesis):

R 1: f4 < 3∧ f5 < 4∧ f7 < 6∧ f 10 = 1 (99.5)%
R 2: f2 < 7∧ f5 < 4∧ f7 < 6∧ f 10 = 1 (99.8)%
R 3: f2 < 7∧ f4 < 3∧ f7 < 6∧ f 10 = 1 (99.4)%
R 4: f2 < 7∧ f4 < 3∧ f5 < 4∧ f7 < 6 (99.4)%

Including the ELSE condition they give 97.7% overall
accuracy. The confusion matrix (benign, malignant) is(

447 5
11 236

)
. Only 5 malignant cases are misclassified as

benign. Fuzzified rules predict with almost 100% confidence
that these vectors belong to the wrong class, indicating that the
data is slightly noisy.

Minimization of Eq. (18) allows to enforce 100% reliability
of all rules. 8 rules were obtained, rejecting 51 cases (7.3% of
all vectors). For malignant class these rules are:

R 1) f2 < 9∧ f4 < 4∧ f7 < 3∧ f8 < 6
R 2) f2 < 5∧ f5 < 8∧ f7 < 5∧ f8 < 10
R 3) f2 < 4∧ f4 < 2∧ f5 < 3∧ f7 < 7
R 4) f2 < 10∧ f5 < 10∧ f7 ∈ [1,5]∧ f8 < 2

For the benign cases initial rules are obtained by nega-
tion of the above rules; after optimization the rule becomes:
¬(R 5∨R 6∨R 7∨R 8), where:

R 5) f2 < 8∧ f4 < 5∧ f8 < 4
R 6) f2 < 9∧ f5 < 6∧ f7 < 9∧ f8 < 5
R 7) f2 < 9∧ f4 < 6∧ f5 < 8∧ f7 < 9
R 8) f2 = 6∧ f4 < 10∧ f5 < 10∧ f7 < 2∧ f8 < 9

For the Wisconsin breast cancer data SSV generates a very
simple set of 3 rules for the second class, achieving 97.4% of re-
classification accuracy. In the 10-fold crossvalidation test SSV
rules give on average 96.3% (worst −0.2%, best +0.2%) accu-
racy.

R 1: f4 > 2.5∧ f7 > 2.5
R 2: f4 > 2.5∧ f6 > 3.5∧ f7 < 2.5
R 3: f2 > 5.5∧ f4 < 2.5∧ f7 > 1.6

The NEFCLASS neurofuzzy system has also been applied to
this data [70], removing 16 cases with missing values. The
system was initialized with fuzzy clustering method and used
three trapezoidal membership functions per input feature. Re-
classification error using 3 rules (8 conditions each, since one
feature has been deleted) gave 92.7% correct answers. Using
four rules and the “best per class” rule learning results gave
only 80.4% correct answers, showing the usefulness of prior
knowledge from initial clusterization. If only two membership
functions per feature are used better reclassification accuracy of
96.5% is obtained using 4 fuzzy rules. FSM generated 12 rules
with Gaussian membership functions, providing 97.8% on the
training and 96.5% on the test part in 10-fold crossvalidation
tests. Thus crisp rules seem to offer simpler and more accurate
description of this dataset.

H. Diabetes.

The “Pima Indian diabetes” dataset is stored in the UCI repos-
itory [7] and is frequently used as benchmark data. All patients
were females at least 21 years old, of Pima Indian heritage. The
data contains 2 classes, 8 attributes, 768 instances, 500 (65.1%)
healthy and 268 (34.9%) diabetes cases. Our first attempts at
extracting rules for this dataset were not successful because his-
tograms do not provide a useful starting point here. L-units and
separability criterion provided good linguistic variables. This
dataset was used in the Statlog project [8], with the best 10-
fold crossvalidation accuracy around 77.7% obtained by logis-
tic discriminant analysis. One simple rule for the healthy cases
achieving 75% accuracy is:

f2 ≤ 151∧ f6 ≤ 47 (31)

where f2 is the “plasma glucose concentration” and f6 the
body mass index (weight in kg/(height in m) 2). The confusion

matrix (healthy, diabetes) is:

(
467 159
33 109

)
. FSM neurofuzzy

system with Gaussian functions generates 50 rules and achieves
in the 10-fold crossvalidation 85.3% accuracy on the training
part and only 73.8% on the test part. Since better results are
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achieved using linear discrimination sharp and rotated decision
borders may be needed for optimal classification of this data.

TABLE XIII

RESULTS FROM THE 10-FOLD CROSSVALIDATION AND RECLASSIFICATION

FOR THE DIABETES DATASET, ACCURACY IN %.

Method Accuracy Reference

Logdisc 77.7 Ref. [88]
IncNet 77.6 Ref. [69]
DIPOL92 77.6 Ref. [88]
LDA 77.5 Ref. [88]
SMART 76.8 Ref. [88]
ASI 76.6 Ref. [88]
FDA 76.5 Ref. [88]
BP 76.4 Ref. [88]
LVQ 75.8 Ref. [88]
RBF 75.7 Ref. [88]
LFC 75.8 Ref. [88]
NB 75.3 Ref. [88]
SNB 75.4 Ref. [88]
DB-CART, 33 nodes 74.4 Ref. [79]
ASR 74.3 Ref. [88]
FSM, 50 fuzzy rules 73.8 our result
CART, 11 nodes 73.7 Ref. [79]
C4.5 73.0 Ref. [88]
CART 72.8 Ref. [88]
Kohonen SOM 72.2 Ref. [88]
kNN 71.9 Ref. [88]
Reclasssification
C-MLP2LN, 2 rules 77.7 our result
C-MLP2LN, 1 rule 75.0 our result

I. Hepatobiliary disorders

This data, used previously in [91], contains medical records
of 536 patients admitted to a university affiliated Tokyo-based
hospital, with four types of hepatobiliary disorders: alcoholic
liver damage, primary hepatoma, liver cirrhosis and cholelithia-
sis. The records included results of 9 biochemical tests and sex
of the patient. The same 163 cases as in [91] were used as the
test data. In the previous work three fuzzy sets per each input
were assigned using recommendation of the medical experts. A
fuzzy neural network was constructed and trained until 100%
correct answers were obtained on the training set. The accuracy
on the test set varied from less than 60% to a peak of 75.5%.
Although we quote this result in the Table XIV below it seems
impossible to find good criteria that will predict when the train-
ing on the test set should be stopped. Fuzzy rules equivalent to
the fuzzy network were derived but their accuracy on the test set
was not given. This data has also been analyzed by Mitra et al.
[92] using a knowledge-based fuzzy MLP system with results
on the test set in the range from 33% to 66.3%, depending on
the actual fuzzy model used.

For this dataset crisp rules were not too successful. The initial
49 rules obtained by C-MLP2LN procedure gave 83.5% on the

training and 63.2% on the test set. Optimization did not improve
these results significantly. On the other hand fuzzy rules derived
using the FSM network, with Gaussian as well as with triangu-
lar functions, gave similar accuracy of 75.6-75.8%. Fuzzy neu-
ral network used over 100 neurons to achieve 75.5% accuracy,
indicating that good decision borders in this case are quite com-
plex and many logical rules will be required. Various results for
this dataset are summarized in Table XIV.

TABLE XIV

RESULTS FOR THE HEPATOBILIARY DISORDERS. ACCURACY ON THE

TRAINING AND TEST SETS, IN %, ALL CALCULATIONS ARE OURS.

Method Training set Test set
1-NN, weighted (ASA) 83.4 82.8
1-NN, 4 features 76.9 80.4
K* method – 78.5
kNN, k=1, Manhattan 79.1 77.9
FSM, Gaussian functions 93 75.6
FSM, 60 triangular functions 93 75.8
IB1c (instance-based) – 76.7
FSM, Gaussian functions 93 75.6
C4.5 decision tree 94.4 75.5
Fuzzy neural network 100 75.5
Cascade Correlation – 71.0
MLP with RPROP – 68.0
Best fuzzy MLP model 75.5 66.3
C4.5 decision rules 64.5 66.3
DLVQ (38 nodes) 100 66.0
LDA (statistical) 68.4 65.0
49 crisp logical rules 83.5 63.2
FOIL (inductive logic) 99 60.1
T2 (rules from decision tree) 67.5 53.3
1R (rules) 58.4 50.3
Naive Bayes – 46.6
IB2-IB4 81.2-85.5 43.6-44.6

FSM gives about 60 Gaussian or triangular membership func-
tions achieving accuracy of 75.5-75.8%. Rotation of these func-
tions (i.e. introducing linear combination of inputs to the rules)
does not improve this accuracy. We have also made 10-fold
crossvalidation tests on the mixed data (training plus test data),
achieving similar results. Many methods give rather poor results
on this dataset, including various variants of the instance-based
learning (IB2-IB4, except for the IB1c, which is specifically de-
signed to work with continuous input data), statistical methods
(Bayes, LDA) and pattern recognition methods (LVQ). The best
results were obtained with the K* method based on algorith-
mic complexity optimization, giving 78.5% on the test set, and
kNN with Manhattan distance function, k=1 with selection of
features, giving 80.4% accuracy (for details see [6]).

J. The hypothyroid data.

This is a somewhat larger dataset [7], with 3772 cases for
training, 3428 cases for testing, 22 attributes (15 binary, 6 con-
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tinuous), and 3 classes: primary hypothyroid, compensated hy-
pothyroid and normal (no hypothyroid). The class distribution
in the training set is 93, 191, 3488 vectors and in the test set 73,
177, 3178. Initially 4 rules were found, with 99.68% accuracy
on the training set and 99.07% accuracy on the test set. For the
first class two rules are sufficient (all values of continuous fea-
tures are multiplied here by 1000):

R 11: FTI < 63∧ TSH ≥ 29
R 12: FTI < 63∧ TSH ∈ [6.1,29)∧ T3< 20

For the second class one rule is created:

R 2: FTI ∈ [63,180]∧ TSH ≥ 6.1∧on thyroxine=no
∧ surgery=no

and the third class is covered by the ELSE condition. With these
rules we get 99.68% accuracy on the training set and 99.07%
error on the test set. Optimization of these rules leads to slightly
more accurate set of rules:

R 11: TSH ≥ 30.48∧ FTI < 64.27 (97.06%)
R 12: TSH ∈ [6.02,29.53]∧ FTI < 64.27∧ T3< 23.22 (100%)
R 2: TSH ≥ 6.02∧ FTI ∈ [64.27,186.71]∧ TT4∈ [50,150.5)
∧ on thyroxine=no∧ surgery=no (98.96%)

The ELSE condition has 100% reliability on the training set.
These rules make only 4 errors on the training set (99.89%) and
22 errors on the test set (99.36%). They are similar to those
found using heuristic version of PVM method by Weiss and
Kapouleas [80]. The differences among PVM, CART and C-
MLP2LN are for this dataset rather small (Table XV), but other
methods, such as well-optimized MLP (including genetic op-
timization of network architecture [89]) or cascade correlation
classifiers, give results that are significantly worse. Poor re-
sults of k-NN are especially worth noting, showing that in this
case, despite large amount of reference vectors, similarity-based
methods are not competitive. 10 fuzzy rules obtained using FSM
with Gaussian membership functions are also less accurate than
the 3 crisp rules.

TABLE XV

RESULTS FOR THE HYPOTHYROID DATASET.

Method % train % test Ref.

C-MLP2LN 99.89 99.36 our result
CART 99.79 99.36 [80]
PVM 99.79 99.33 [80]
SSV rules 99.79 99.33 our result
FSM 10 rules 99.60 98.90 our result
Cascade correl. 100.00 98.5 [89]
MLP+backprop 99.60 98.5 [89]
3-NN, 3 features used 98.7 97.9 our result
Bayes 97.0 96.1 [80]
k-NN – 95.3 [80]

The C-MLP2LN solution seems to be close to optimal [77]).
Similar rules were obtained from the SSV separability criterion:

R 1: TSH > 6.05∧ FTI < 64.72∧ thyroid-surgery=no
R 2: TSH > 6.05∧ FTI > 64.72∧ TT4 < 150.5
∧ thyroid-surgery =no ∧ on-thyroxine=no

These rules match our best results and have been found with
fully automatic rule extraction approach. Results are summa-
rized in Table XV. It is worth noting that the error of the best
neural network classifiers is still twice as large (1.5%) as the er-
ror made by these simple rules. Excellent results of rule-based
classifiers for this dataset show the need to provide sharp deci-
sion borders instead of soft borders provided by the fuzzy and
neural systems. This may be an artefact of providing sharp divi-
sion into 3 output classes.

K. NASA Shuttle

The Shuttle dataset from NASA contains 9 continuous numer-
ical attributes related to the positions of radiators in the Space
Shuttle. There are 43500 training vectors and 14500 test vec-
tors, divided into 7 classes in a very uneven way: about 80%
from class 1 and only 6 examples from class 6 in the training
set. This data has been used in the Stalog project [8], therefore
accuracy of our rules may be compared with many other classi-
fication systems (Table XVI).

We have used the FSM network with rectangular member-
ship functions and SSV criterion here. Initialization of the net-
work gives 7 nodes achieving already 88% accuracy. Increasing
accuracy (using constructive learning algorithm) on the train-
ing set to 94%, 96% and 98% leads to a total of 15, 18 and 25
nodes and accuracies on the test set of 95.5%, 97.8% and 98.5%.
Backpropagation network reached an accuracy of 95.5% on the
training set. k-NN is very slow in this case, requiring all 43500
training vectors as reference for computing distances, reaching
on the test set 99.56% but with feature selection improving to
99.95%. Optimization of the FSM rules generated 15 logical
rules. For example, for the third class rules are:

F2 ∈ [−188.43,−27.50]∧F9 ∈ [ 1,74]
F2 ∈ [−129.49,−21.11]∧F9 ∈ [17,76]

The set of 17 rules makes only 3 errors on the training set
(99.99% accuracy), leaving 8 vectors unclassified, and no errors
on the test set but leaving 9 vectors unclassified (99.94%). After
Gaussian fuzzification of inputs (very small, 0.05%) only 3 er-
rors and 5 unclassified vectors are obtained for the training and
3 vectors are unclassified and 1 error is made (with the proba-
bility of correct class for this case close to 50%) for the test set.
Rules from SSV gave even better results: 100% correct on the
training and only 1 error on the test set.

These results are much better than those obtained from the
MLP or RBF networks (as reported in the Stalog project [8])
and comparable with the results of the best decision trees which
work very well for this problem. It is interesting to note that in
the Stalog project the NewID tree (descendant of the ID3 tree),
which gave the best results here, has not been among the first
3 best methods for any other of the 22 datasets analyzed. Re-
sults of the C4.5 decision tree are already significantly worse.
Our rule extraction approach has consistently been giving top
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TABLE XVI

SUMMARY OF RESULTS FOR THE NASA SHUTTLE DATASET.

Method Train Test Ref.

SSV, 32 rules 100.00 99.99 our result
NewID dec. tree 100.00 99.99 [8]
FSM, 17 rules 99.98 99.97 our result
k-NN + feature sel. – 99.95 our result
C4.5 dec. tree 99.96 99.90 [8]
k-NN – 99.56 [8]
RBF 98.40 98.60 [8]
MLP+BP 95.50 96.57 [8]
Logistic discrimination 96.07 96.17 [8]
Linear discrimination 95.02 95.17 [8]

results. Logical rules provide highly accurate and quite simple
description of Shuttle dataset.

L. Psychometric data

Our methodology of extraction and optimization of logical
rules has been used by us in several real-life projects. One of
these projects concerns the psychometric data collected in the
Academic Psychological Clinic of our University. Minnesota
Multiphasic Personality Inventory (MMPI) test was used, con-
sisting of 550 questions with 3 possible answers (yes, no, don’ t
know) each. MMPI evaluates psychological characteristics re-
flecting social and personal maladjustment, including psycho-
logical dysfunction. Hundreds of books and papers were written
on the interpretation of this test (cf. review [93]). Many com-
puterized versions of the MMPI test exist to assist in information
acquisition, but evaluation of results is still done by an experi-
enced clinical psychologist. Our goal is to provide automatic
psychological diagnosis.

The raw MMPI data is used to compute 14 real-valued coef-
ficients (this corresponds to manual aggregation of input data),
called “psychometric scales” . These coefficients are often dis-
played as a histogram (called “a psychogram” ) allowing skilled
psychologists to diagnose specific problems, such as neuro-
sis, drug addiction or criminal tendencies. First four coeffi-
cients are just the control scales (measuring consistency of an-
swers, allowing to find malingerers etc.), with the rest forming
clinical scales. These scales were developed to measure ten-
dencies towards hypochondria, depression, hysteria, psychopa-
thy, paranoia, schizophrenia etc. A large number of simplifi-
cation schemes has been developed to make the interpretation
of psychograms easier. They may range from rule-based sys-
tems derived from observations of characteristic shapes of psy-
chograms, Fisher discrimination functions, or systems using a
small number of coefficients, such as the 3 Goldberg coeffi-
cients. Unfortunately there is no comparison of these different
schemes and their relative merits have not been tested statisti-
cally. Our goal was to provide an automatic psychological diag-
nosis.

Rule based system is most desirable because a detailed in-

terpretation, including description of personality type, may be
assigned to each diagnosis. We have worked with two datasets,
one for woman, with 1027 cases belonging to 27 classes (nor-
mal, neurotic, drug addicts, schizophrenic, psychopaths, organic
problems, malingerers etc.) determined by expert psychologists,
and the second for man, with 1167 cases and 28 classes. Rules
were generated using C4.5 classification tree [83] and the FSM
system. For the first dataset C4.5 created 55 rules, achieving
93.0% of correct responses. Assuming about 1% inaccuracy of
measurements improves results to 93.7%. FSM (with rectangu-
lar membership functions) generated 69 rules agreeing in 95.4%
with diagnosis by human experts. Gaussian fuzzification at the
level of 1.1-1.5% increases accuracy to 97.6%. For the second
dataset C4.5 created 61 rules giving 92.5% accuracy (93.1% af-
ter fuzzification), while FSM generated 98 rules giving 95.9%
accuracy and after fuzzification 96.9%. Some rules cover only
few cases from the database, therefore further pruning and re-
optimization is desirable.

Rules involve between 2 to 9 attributes. For most classes
there were only a few errors and it is quite probable that they are
due to the psychologists interpreting the psychogram data. Two
classes, organic problems and schizophrenia, are difficult since
their symptoms are easily confused with symptoms belonging
to other classes. Each rule has detailed interpretation associ-
ated with it by psychologists. Fuzzification leads to additional
adjectives in verbal interpretation, like “strong tendencies” , or
“ typical” . An expert system using these rules should be evalu-
ated by clinical psychologist in the near future. A typical rule
has the form:

If f7 ∈ [55,68]∧ f12 ∈ [81,93]∧ f14 ∈ [49,56] Then Paranoia

where f7 is the hysteria scale etc. An example of a psychogram
with rule conditions shown as vertical bars is shown in Fig. 10.
The rule has 5 conditions and the actual case is accepted by
that rule with 71.8% probability, calculated with assumption of
Gaussian uncertainties shown on the vertical bars for each con-
ditions. The rule condition for the Ps (psychostenia) scale fits
with only 72.2% to the measured value, which means that the
value is close to the interval boundary. An expert system based
on our logical rules is under evaluation by clinical psychologists.

Fig. 10. Psychogram with rule conditions and fuzzified input displayed.
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XI. SUMMARY AND CONCLUSIONS

Methodology of extraction of crisp and fuzzy logical rules
from data and black box classifiers (such as neural networks)
has been described. This methodology includes:
1) determination and optimization of linguistic variables;
2) initial generation of rules of different complexity using con-
strained MLP networks, search-based MLPs, FSM networks or
separability criterion;
3) optimization of rules and exploration of the rejec-
tion/accuracy tradeoff;
4) calculation of probabilities, enabling also estimation of reli-
ability of classification, gradient optimization of large sets of
rules, creating more robust logical rules and providing addi-
tional adaptive parameters.

Extraction of crisp logical rules is advantageous indepen-
dently of the final classifier used. First, in our tests logical rules
proved to be highly accurate; second, they are easily understand-
able by experts in a given domain; third, they may expose prob-
lems with the data itself. This became evident in the analysis of a
real-world medical datasets we were involved in. Some research
groups reported very good results using this data, but after ex-
traction of logical rules it became clear that missing features in
the data were replaced by their averages for a given class. Cross-
validation tests on such data are quite accurate but in a real ap-
plication averages for a given class can be added only after, not
before the diagnosis.

From geometrical point of view crisp logic rules correspond
to a division of the feature space with hyperplanes perpendic-
ular to the axes, into areas with symbolic names (correspond-
ing to class and rule numbers). If the classes in the input space
are correctly separated with such hyperplanes accurate logical
description of the data is possible and worthwhile. Otherwise
accuracy of logical description of the data may increase slowly
with the number of linguistic variables and generalization ability
of a rule-based system (measured by crossvalidation tests) may
even decrease. If the number of logical rules is too high or the
accuracy of classification is too low, other classification meth-
ods should be attempted. Fuzzy logic may offer better approx-
imation with smaller number of rules, including simple piece-
wise linear approximation rules and more complex membership
functions. However, fuzzy rules based on triangular or Gaus-
sian membership functions provide oval decision borders that
do not approximate correctly sharp decision boundaries neces-
sary for description of data with inherent logical structure. Com-
plex membership functions are provided by neurofuzzy systems,
such as the FSM network [42]. As long as separable transfer
functions are used network nodes are equivalent to fuzzy rules.
Although fuzzy rules are symbolic their comprehensibility is
lower than crisp rules. Finding a global optimum of the error
function for sophisticated classification systems is usually more
difficult than for sets of crisp rules. Therefore a good strategy
is to start with extraction of crisp rules first and use fuzzy rules
only if the results are not satisfactory.

The problem of determination of linguistic variables is not
separable from the rule extraction itself. An iterative algorithm

has been proposed, improving in turns linguistic variables and
then rules based on these variables. We have stressed the im-
portance of context-dependent linguistic variables since an un-
warranted assumption that the whole range of attribute values
should be partitioned into intervals corresponding to linguistic
variables is frequently used. Histograms are helpful to deter-
mine initial linguistic variables only in simple cases. Good lin-
guistic variables are found using probability density networks,
special neural linguistic units or separability criterion.

Four groups of methods for extraction of logical rules have
been introduced in this paper. MLP2LN method of convert-
ing the MLP into a network performing logical operations has
been quite successful. The constructive C-MLP2LN version,
with L-R structure of the MLP network, composed of linguistic
units and rule units (with possible addition of aggregation units)
is quite fast. A search-based MLP algorithm as an alternative
to backpropagation training is particularly easy to implement
and analyze, giving a single logical rule per neuron. MLP2LN
methods in complex cases require an additional rule extraction
step, with search for combination of inputs that lead to activa-
tions exceeding the thresholds. Feature Space Mapping (FSM)
probability density networks are used for fuzzy rule extraction,
creating also crisp rules if a transition to rectangular member-
ship function is made. SSV separability criterion combined with
the beam search techniques finds optimal separation values for
interacting features, creating decision trees that are easily con-
verted to sets of logical rules. The last two methods allow to
extract rules by inspection of network or tree nodes.

After extraction of rules modified predictive power cost func-
tion for additional optimization of linguistic variables is used,
creating hierarchical sets of logical rules with different reliabil-
ity - rejection rate. A great advantage of fuzzy logic is the soft
evaluation of probabilities of different classes, instead of binary
yes or no crisp logic answers. Gaussian fuzzification of the in-
put values may give the same probabilities as the Monte Carlo
procedure performed for input vectors distributed around mea-
sured values. Thus simple interpretation of crisp logical rules
is preserved, accuracy is improved by using additional param-
eters for estimation of measurement uncertainties, and gradient
procedures instead of costly global minimization may be used.
Gaussian uncertainties are equivalent to “soft trapezoid” fuzzi-
fication of the rectangular crisp membership functions. Sets of
crisp logical rules may then be used to calculate probabilities.
Novel vectors that would either be rejected or assigned to the
default class are assigned to the most probable class. Applica-
tion to psychometric data analysis combines comprehensibility
of data description, allowing for verbal interpretation, with high
accuracy and soft probabilities of different diagnoses.

Using this methodology we have analyzed many medical and
technical datasets obtaining simple and accurate logical rules.
For several benchmark problems simplest logical description
known so far was obtained. For some problems, such as the
hypothyroid or NASA Shuttle, logical rules are more accurate
than any other classification method [6], including neural net-
works. Possible explanations of this empirical observation are:
1) The inability of soft transfer functions (sigmoidal or Gaus-
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sian) to represent sharp, rectangular edges that may be neces-
sary to separate two classes defined by a crisp logical rule.
2) The problem of finding globally optimal solution of the non-
linear optimization problem for neural classifiers – in some
cases we have used a global optimization method to improve
our rules, in other optimization of linguistic variables and opti-
mization of rules has been separated, leading to better solutions
than gradient-based neural classifiers were able to find.
3) The problem of finding an optimal balance between the flex-
ibility of adaptive models and the danger of overfitting the data.
Bayesian regularization based on priors leading to weight decay
[58] helps in case of some neural and statistical classification
models, but it has an adverse effect if sharp decision borders
are needed. Sharp decision borders require large weights and
thresholds while regularization terms decrease all weights. Log-
ical rules give much better control over the complexity of the
data representation and elimination of outliers - rules that cover
only a few new data vectors are easily identified and removed.
4) For medical data labeling the cases “sick” or “healthy” in-
troduces implicitly crisp logical rules. Forced to make yes-no
diagnosis human experts may fit the results of tests to specific
intervals.

Although we are pleased with the results obtained so far sev-
eral challenges still remain: aggregation of large number of in-
put features (some data mining problems we work on have more
than 1000 features and less than 1000 cases), construction of
hierarchical systems when a large number of features contain
missing data, automatization of the whole process of logical data
description and creation of expert systems, going beyond prepo-
sitional logic and simple linguistic variables. We are sure that
neural networks will play an important role in this field.

Please note that many papers of our group are available at:
http://www.phys.uni.torun.pl/kmk/publications.html
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