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Abstract
One of the problems in evaluating the usefulness of various classification techniques for real-world applications

is the lack of information about their scaling properties: how will the complexity of a given method depend on the
number of attributes, classes and cases? In this paper a simple classification task is presented as a challenge for dif-
ferent methods, allowing to determine their scaling properties as well as to evaluate the complexity of the solutions
obtained by various methods.

I. Introduction

DESPITE of the great number of conferences and papers on machine learning, statistics,
pattern recognition and neural networks the relative advantages and disadvantages of

various classification methods are still not known. Experts in one field rather seldom talk to
experts in other fields and as a result it is hard to recommend an optimal classification method
for a complex, real life problem. Several papers have addressed some aspects of this problem
in the past. First, there is a large mathematical literature on computational learning – cf. three
volumes on computational learning theory edited by Hansonet.al [1], or some recent books
on neural networks [2]. This theory tries to elucidate such issues like the size of the training
set needed for reliable classification, find approximate error bounds and compare performance
of different classifiers.

Second, several empirical comparisons have been performed between different classifica-
tion systems on various data sets. Weiss and Kapouleas [3] were among the first to perform
such empirical comparisons of statistical, machine learning and neural classification meth-
ods on several medical datasets. Recently Rhower and Morciniec [4] have made an extensive
comparison of 24 classification methods on eleven datasets. Even such large scale study was
not helpful in determining the relative merits of classification methods: differences between
many methods are within a few percent, which is not significant [2]. In case of methods that
use many adjustable parameters (such as neural networks) an additional hard problem is to
find a real optimal solution, so one cannot claim with confidence that the results obtained are
the best that an MLP network may give. Results of all this theoretical and empirical investi-
gations have led so far to even greater confusion. It is not clear that from the fact that a given
method performed better for the dataset X one can draw more conclusions than ... well, that
it performs better for the dataset X.

In this paper another question related to performance is addressed: what are the scaling
properties of the classification methods, their complexity when applied to classification prob-
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lems withN attributes,M classes andn samples. A benchmark example, using a prototype
of real world data, is needed to show the dependence of the total time needed for classification
on these three parameters. The evaluation of the quality of solutions should be done not only
from the point of view of the number of classification errors, but also the complexity of the
classificators (networks, trees) measured by the number of adaptive parameters that are nec-
essary to accomplish the task. In some cases it may also be possible to derive simple logical
rules and compare their number and quality.

The scaling problem in MLPs has been directly addressed by Tesauro and Janssens [5], who
made some experiments for the parity problem and concluded, that the time scales exponen-
tially with the size of the problemN (length of the binary string). There is a simple way to
solve the parity problem inlog

2
N time using a hierarchical multilayered structure, where at

each level the nodes are designed to solve the two-input parity (i.e. XOR) problem. There are
actually two issues at stake here. First, how hard is it to find a network structure performing
tasks of increasing complexity, assuming that one starts with large network and uses some op-
timization procedure to search for the best solution. Simple heuristics, like “divide and con-
quer”, may help to solve the problem using hierarchical multilayered network structure, al-
though brute force error minimization approach is NP-hard. Second, what is the limit of the
method, i.e. providing that we can somehow find an optimal solution, how will it scale with
the data? Methods that scale with high power of the number of attributes (or classes) have
little chance to perform well in the real world tasks when the number of attributes (or classes)
is high. For such methods minimal number of parameters that should be determined is large
and an optimal solution is much harder to find than for the methods scaling with lower powers
of N orM .

In the next section I have presented a challenging classification task suitable to determine
scaling properties of classifiers. In the third section simple neural network solutions to this
task are presented from the theoretical point of view. More detailed description of this classi-
fication problem and solutions found so far is available [6].

II. The challenge
Consider a classification problem withM classes andN independent attributes. The values

of attributesX = (x1; x2:::xN) are obtained from measurements and renormalized to0 �

Xi � M , i.e. within a hypercube of a sideM . Each vector in this hypercube has a class
labelCk = 1; 2; ::M assigned in the following way: the data range[0;M ] is divided into
M sectors[k � 1; k); k = 1::M , defining a series of hypercubes contained in progressively
larger ones. The smallest of these hypercubes,H1 has the side of lengthl = 1; it is contained
in the second hypercube,H2, with the sidel = 2, and so on, up to the biggestHM hypercube
with sidel = M . Vectors belonging to classCk are in the setfHk � Hk�1g, whereH0 is
an empty set andHM is the largest hypercube (Fig. 1). This artificial example with simple
logical structure is a model for some real-life problems. The challenge is: givenn labeled
training samples(Xi; Ci); i = 1::n assign test vectors to one ofM classes and determine
scaling properties of the classification method used, i.e. determine its complexityT (N;M; n).
Test the ability to make maximal generalizations consistent with the data. The density of the
input vectors per unit input volume in high dimensional case is very small, therefore only the
methods that are able to generalize (extrapolate) in agreement with constraints given by the
input training vectors have a chance to perform well. A simple decision rule assigns a class
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labelC to a vectorX = fxig. It is enough to check to which sector the maximal component
of X belongs:

IF (k � 1 � max
i

Xi < k) THEN C = Ck (1)

Logical rules of this form have the lowest algorithmic complexity and should be preferred.
The goal of the data modeling should not be just classification but rather an attempt to find
the simplest model generating the data. There are several variants of this problem that one
may investigate, but only the simplest case is discussed here since this seems to be sufficient
to determine the scaling behavior [6].
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Fig. 1. Shapes of classes in 2D, 5-class, and 3D, 4-class problem.

A very rough estimation of the behavior of generalization error in MLPs [7] shows that it
should be proportional to the ratio of the number of model parameters to data samples. How
many data points should be used? Samples should include all “interesting” points near the
vertices of the hypercubes. The class boundary hypersurfaces are alwaysN �1 dimensional.
To select points near the vertices inside the hypercube, a small number�, for example 0.1, is
added or subtracted from the coordinates of the vertices; to assure that all points are inside
of the cubebi � � is changed tojbi � �j. Thus2N inner cube points are defined byjb1 �
�j; jb2 � �j; :::jbN � �j, and2N � 1 outer points byb1 + �; b2 + �; :::bN + �. ForM classes
2M (2N � 1) + 1 points are defined in this way. This amounts to 1261 points forN = 6
dimensions andM = 10 classes, 5101 points forN = 8 dimensions andM = 10 classes, and
20461 points forN = 10, M = 10. Investigation of the scaling properties of classification
methods in such range, fromN = 1 toN = 10 dimensions and fromM = 2 toM = 10
classes is realistic. Of course some real-world classification problems require much more than
ten attributes or ten classes, but it should be possible to draw some conclusions about scaling
properties of methods from the behavior on the problems presented here.

A large number of test points may be used. For one and two-dimensional cases graphical
representation of class borders is advocated, formed by testing each point on a 0.1 grid – for
the ten class case this is 10.000 points for testing. For higher number of dimensions the same
algorithm as used for the training points, with� = 0:2 and� = 0:3 generates4M (2N �1)+1
test points.
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III. Classification by MLP, L-R and RBF networks
MLPs are capable of making good classifications, especially if a global minimum error so-

lution is found and the error function includes some regularization terms to select the mini-
mum complexity network structure. The same is true for RBF networks, therefore these two
methods are applied here to the hypercube classification task. In addition performance of new
L-R networks [8] is analyzed. It is very hard to prove formally that the architectures presented
here are really the simplest solutions of the classification problem using MLPs, so they may
be properly treated as an upper bounds on the complexity and scaling of the MLP. In one-
dimensional case the simplest MLP solution consists of a single layer ofM hidden nodes and
one output node, with all weights equal to+1 and biases from 0 toM � 1. The network re-
alizes a multistep function usingM neurons,M weights andM biases.

Σ
. . . . .

x
  2

W=1

x
  1

x
  N

.....

0

.....

1

M-1

.....

.....

0.9

W=1

W=1
0

0

1

1

M-1

M-1

0.9

0.9

Fig. 2. Final structure of the MLP network for theN -dimensionalM -class case.

There are several simple structures of MLPs capable of perfect representation of our clas-
sification task forN > 1. The simplest one found so far (Fig. 2) is a generalization of one
dimensional case and consists of two hidden layers. The first layer hasM � N neurons and
the secondM neurons. All weights are equal to+1. Each neuron of the first hidden layer is
connected to one input unit. For the first group onN hidden neurons all biases are equal to
0, for the second to1, and for the last group toM � 1. Outputs of neurons from each group
are connected to one neuron in the second hidden layer. Neurons of the second hidden layer,
called here “class neurons”, have biases� = 0:9 (values� = 1 lead to an undesired symme-
try). The output neuron computes weighted sum giving linear output. This network computes
the following function:

F (X;W ;B) =

M�1∑
j=0

�

(
N∑
i=1

�(Xi + j) � �

)
(2)
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The total number of neurons is the same as the total number of biases and is equal toMN+
M + 1, while the number of weights (all equal to one) isM (2N + 1). The total number of
adjustable parameters isM (3N + 2) + 1, scaling linearly with the number of classes and the
number of attributes.M + 1 nodes for theC1 class may actually be removed if a nonlinear
output neuron is used, with flat characteristics and a bias plus the output weight set to give an
output 1 for activation 0, 2 for activation 1, andM for activationM � 1. The total number
of parameters in this case becomes3MN +2(M �N ) plus one variable output slope. In the
harder case of rotated hypercubes an additional layer withN neurons is needed to perform the
rotation, contributingN 2 weights andN biases. Thus the scaling is quadratic with the num-
ber of attributes and linear with the number of classes. Finding network structures presented
here using architecture optimization techniques of MLPs may be quite hard, but it should be
very interesting to see what kind of simplified network structures can be obtained by various
methods that enforce penalty on the complexity of the network.

L-R networks networks are variants of MLP with specific “linguistic” or L-nodes in the
first hidden layer, designed to discover one-dimensional features in the data [8]. Features may
be local as well as unbounded. The second hidden layer tries to combine these features into
logical rules. The network structure is presented in Fig. 3. The L-neurons in the first hidden
layer have two biases, the first bias is always zero and the second takes values from1 toM . All
weights are equal to+1 and the network gives perfect classification in theM + 1 class case,
i.e. it gives zero output outside the hypercube. The output neuron performs linear summation
and has no adaptive parameters. The number of neurons isMN +M +1, weights and biases
2MN +M , so the total number of adaptive parameters is4MN + 2M .
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Fig. 3. Final structure of the MLP network for theN -dimensionalM + 1 class case.

Radial basis function networks are frequently based on Gaussian functions. Such networks
may have difficulties with representing the class boundaries in our classification problem –
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in the worst case the number of nodes is ot the order of the number of training pointsM2N .
Distances between the points grow with the number of classes. Although RBF networks with
Gaussians transfer function seem to be difficult to construct other radial basis functions should
work better. For the multiquadratic functions

√
�2 + �r2 similar network structures as for

MLPs should solve the problem using the same number of parameters.

IV. Discussion and summary
Benchmarks play an important role in testing neural systems (cf. the popularity of the par-

ity or the two spiral problems). I have introduced here a challenging benchmark problem that
may be used to determine scaling properties of classificators. Neural methods analyzed above
scale likeO(MN ). On the other hand memory-based methods, such as the nearest neighbor
method, or RBF with Gaussian functions, should scale like the number of points for training,
i.e. O(M2N ). It should be very interesting to see how other methods of classification, devel-
oped by statistical, neural, pattern recognition and machine learning scale when applied to the
classification problem presented here.

Two very simple MLP solutions to the hypercube classification have been found and their
complexity determined. Although this does not tell us directly how hard it is to find such net-
work structures through architecture optimization, knowing that these solutions exists, and
knowing their complexity, is very useful for benchmarking neural network optimization meth-
ods. Average times reported for finding good solutions should give an indication how hard it
is to find them, although they can also be misleading, depend on many factors, such as random
initialization procedures.
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21.12.1996, pp. 163-170


