
Initialization and optimization of
multilayered perceptrons

Włodzisław Duch, Rafał Adamczak, and Norbert Jankowski
Department of Computer Methods, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Toru´n, Poland.
E-mail:duch,raad,norbert@phys.uni.torun.pl

Abstract
Despite all the progress in neural networks field the technology is brittle and sometimes difficult to apply. Good

initialization of adaptive parameters in neural networks and optimization of architecture are the key factor to create
robust neural networks. Methods of initialization of MLPs are reviewed and new methods based on clusterization
techniques are suggested. Penalty term added to the error function leads to optimized, small and accurate networks.

I. Introduction

FINDING global minimum of a nonlinear function with many parameters is an NP-hard
problem [1]. Learning in neural networks is most frequently based on minimization of

a cost function. Good initialization of adaptive parameters may enable finding solutions in
complex, real-world problems and may significantly decrease learning time. Subsequent op-
timization should lead to compact networks capable of good generalization.

In this paper methods of initializationand optimizationof the multi-layerperceptrons (MLPs)
used for classification problems are investigated. In MLP networks sigmoidal transfer func-
tions provide hyperplanes, dividing the input space into classification regions. Coefficients
of these hyperplanes – called activation weights – are usually the only adaptive parameters
of such networks. Initialization procedures should propose architecture (the number of nodes
and connections), weights (biases are also counted as weights), and in some cases also the
slopes of sigmoidal functions. Initial structure of MLP networks is frequently optimized dur-
ing learning, either using genetic or other global minimization methods, or enforcing skele-
tonization of networks using penalty terms in the cost functions.

In the next section methods of initializationof MLPs are discussed and new methods, allow-
ing to solve some classification problems without tedious optimization, proposed. In the third
section optimization of MLP architecture based on new form of error function is described
and results compared with other methods. Short discussion closes this paper.

II. Initialization of MLP weights
Although MLP networks have important advantages they are less robust and require much

longer training than RBF (Radial Basis Functions) networks [1]. The main reason for long
training times is the lack of proper initialization methods. In a long series of computer experi-
ments Schmidhuber and Hochreiter [2] observed that repeating random initialization(“guess-
ing” the weights) many times is the fastest way to convergence. Wrong initialization may
create network of sigmoidal functions dividing the input space into areas where the network

Submitted to the Third Conference on Neural Networks and Their Applications, Kule, Poland 14-18.10.1997

2

function gives constant inputs for all training data, making gradient learning procedures use-
less. If some weights overlap too much (scalar productW �W0=jWjjW0j is close to 1) the
number of effective hyperplanes is reduced.

Random weight initialization is still the most popular method. Bottou [3] recommended
values in the�a=pninp range, whereninp is the number of inputs the neuron receives and
a is determined by the maximum curvature of the sigmoid (a = 2:38 for unipolar sigmoid).
Several random initialization schemes have recently been compared by Thimm and Fiesler
[3] using a very large number of computer experiments. The best initial weight variance is
determined by the dataset, but differences for small deviations are not significant and weights
in the range�0:77 give the best mean performance. A few authors proposed initialization
methods which are not based on random weights. In classification problems clusterization
techniques are better suited to determine initial weights. Initialization of MLPs by prototypes
has been developed by Denoeux and Lengelle´ [4] and Weymaere and Martens [5] but is still
used quite rarely.

For a center of an input data clusterC laying on the unit sphere the activation isW � C.
The largest activation is obtained when the weightsW point in the same direction asC. The
sigmoidal function�(C �X � �) = (1 + exp(s(�C �X + �)))�1, wheres determines the
slope, has the largest gradient in the direction ofW = C. Its value is equal to�(0) = 0:5
at a� distance from the origin of the coordinate system. Since theC vector is normalized
� = 1 places the contours for0:5 value tangentially to the unit hypersphere. Contours for
lower values�(C �X � �) < 0:5 cut segments of the hypersphere in which the value of
�(C �X��) is constant. Activation of the sigmoid for normalized inputs�(Imax�d(C;X)

depends on the distance betweenC andX. This suggests the following prescription for the
initialization of the first layer:
1. Pre-process all input data:k = 1::n vectors, withi = 1::N components,X(k) is the vector
numberk,Xi is the vector ofi-th components of all data vectors.
(a) Find minimum, maximum and middle values:Xmin

i = minkX
(k)
i ;Xmax

i = maxkX
(k)
i ;

�Xi = (Xmax
i �Xmin

i)=2
(b) Shift vectors to the middle values of each component:X X �Xmin � �X.
(c) Rescale components of vectors to�1 sector:Xi Xi= �X.
(d) Find the biggest normjjXjjmax and renormalize all vectorsX

p
2X=jjXjjmax.

(e) Normalize vectors adding an extra dimensionX (X; Xr), where:
Xr = sign(1� jjXjj2)

√
j1� jjXjj2j) 2 [�1;+1].

2. Cluster analysis: find means of the normalized data clusters (using dendrograms or other
clusterization methods).
3. Choose weights (in N+1 dimensional space) equal to the center of clustersC and the biases
equal to+1.

Now test the network on all training data. Increasing the norm of the weights or changing
biases shifts the area where the sigmoid function has large values towards the outside of the
hypersphere, thus reducing the slice where the value of the transfer function is large. The range
of the sigmoid should extend to the vectors on the border of a cluster. For a vectorB laying at
the border a good estimation for the bias is given by the scalar productC�B. Since the front of
the sigmoid is perpendicular to the vectorC and should be in the planeX�B perpendicular
toC, thereforeC � (X �B) = C �X �C �B = 0, hence the estimation. To avoid strong
overlaps between classes one should start with relatively small biases and optimize the slope

3

(this is one-parameter optimization since other parameters are kept fixed) to obtain smooth
initial approximation. Increasing the slopes of overlapping nodes also helps to reduce the
area on the hypersphere where sigmoids are active.

In the XOR case the input vectors for class = T are(0; 1); (1; 0) and for the class = F are
(0; 0); (1; 1). The mean for each feature is0:5 and after shifting and renormalizing the vectors
areC1 = (�1;+1)=

p
2, C2 = (+1;�1)=

p
2 for class T and(�1;�1)=

p
2, (+1;+1)=

p
2

for class F. Selecting one of the classes for output, for example class T, initial weights for the
first neuron are given byC1 and for the second neuron byC2, while the hidden to output layer
weights are all+1. This is the correct and the simplest solution for the XOR problem found
without any optimization of the network! The case of 3 vectors representing clusters in two
dimensions is presented in Fig. 1. Initial placements of sigmoids generated by our algorithm
in the original (here one-dimensional) input space is presented in the lower part of Fig. 1. Note
that the middle sigmoid is localized (due to the normalization in the extended space), and that
the values of different sigmoids cross in optimal boundary points between the prototypes.

−1.5 −1 −0.5 0 0.5 1 1.5

−2
−1

0
1

2
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Initialization of 3 neurons for 3 clusters in one-dimensional case. Top: values of sigmoidal functions in the
two-dimensional space after renormalization of input vectors; bottom – sigmoids after transformation back to the
original space; right – contours of sigmoidal functions, positions of prototypes are marked with asterisks.

The output layer weights and biases are initialized to unit values. If vectors of different
classes are close to each other or the topology of clusters is rather complex a second hidden
layer may be helpful. This layer serves primarily to create more localized areas of high output
values of the network. Combination of two sigmoids�(W �X� �)��(W �X� � 0) defines
a “window" of non-zero output. If the data is normalized on a sphere the difference defines a
complex bent shape of non-zero output and in the space of unnormalized components it rep-
resents the difference of two localized shapes. The structure of the network is thus following:
in the first layer pairs of neurons with weights initialized to+C;�� and�C;+� are defined,
i.e. realizing sigmoidal functions of the form:�+(C �X � �) and��(�C �X + �). Sec-
ond layer has half the number of neurons of the first layer, each connected to two neurons of
the pair with weights+1 and�1 and biases+1, while the output connections have+1 value.
Full description of data clusters by window-type units may also be attempted. A combination

4

of two sigmoids per one dimension, or2N sigmoids, is needed to describe cuboidal clusters.
They can be represented either in the original input space or in the (N+1)-dimensional space,
where cylindrical coordinate system is recommended. In the input space in the simplest case
(no rotations) the clusterC should be contained within the cuboid:

N∏

i=1

[
�(Xi � Ci + �i=2)� �(Xi � Ci � �i=2)

]
(1)

where�i represents dispersion of the cluster ini-th dimension. This cuboid is approximated
by a sum of2N sigmoids per cluster, with biases�Ci + �i=2 and�Ci � �i=2. The first
hidden layer is therefore composed of2N neurons per cluster, with half of the input-hidden
layer weights equal to+1 and the other half�1 Without rotation only one input per neurons
is left – the rotated cuboid case has been solved in Duch, Adamczak, Jankowski (this volume)
and requires allN inputs to each node. The number of units in the second layer is equal to the
number of clusters, all hidden-hidden layer weights are+1, and biases are equal toN . Finally
the output layer weights and biases are all+1. A single sigmoid separating two clusters may
lead to the same classification error as4N sigmoids describing two clusters. Therefore after
initial network structure is created it is systematically pruned checking the influence of each
connection on the classification error. Large networks are created only during the intermediate
steps of initialization procedure but final networks may be rather small.

Increasing the dimension is equivalent to addition of one circular unit to the MLP. In the
one-dimensional case there are two weights,(Wx;Wr), and if theWr weight is zero than
�(Wxx) is monotonic as normal sigmoidal function, while ifWx is zero�(Wr

p
1� x2) has

maximum aroundx = 0. Ridella et.al. [6] used circular units in their Circular Backpropa-
gation Networks. Projection of data on a sphere has been used previously in the projection
network by Wilensky and Manaukian [7] and by Jaeger and Wilamowski [8], where a trans-
formation fromN -dimensional to2N -dimensional input space is recommended as simpler to
realize in hardware. In this case eachXi component is complemented with

√
r2 �X2

i and
this function is approximated with a sigmoidal functionr tanh[�(1�X=r)].

III. Optimization of network architecture
Initialization methods described in previous section lead to specific network structures that

may be further optimized. In particular most networks are too complex, use too many fea-
tures and therefore are not capable of good generalization. The simplest approach to network
optimization is based on penalty terms added to the standard error function. Penalty terms
allow for pruning the network. Two most common terms are the quadratic penalty and ratio-
nal penalty terms [1]. Recently these terms were analyzed in details and used in combination
[9]. Many other penalty terms and weight pruning techniques were developed, some of them
quite sophisticated [10]. All these approaches encourage decay of weights. However, optimal
solution may require a few large weights. If these weights are distributed arounda > 0 and
b < 0 than it should be more appropriate to add the following penalty term:

E(W) = E0(W) +
�1
2

∑

i;j

W 2
ij +

�2
2

∑

i;j

W 2
ij(Wij � a)2(Wij + b)2 (2)

5

E0(W) is the standard quadratic error measure, the second term with�1 leads to large num-
ber of zero weights, i.e. elimination of irrelevant features, and the third term vanishes for
weights equal 0,a or�b. Similarly as in the weight pruning technique case in the backprop-
agation algorithm these extra terms lead to the additional change of weights:

�Wij = �1Wij + �2Wij(Wij � a)(Wij + b)(3W 2
ij + 2Wij(b� a)� ab) (3)

where�1 and�2 scale the relative importance of auxiliary conditions. This form of er-
ror function has two advantages: independent parameters control enforcing of the 0 anda, b
weights, and an interpretationof this function from the Bayesian point of view [11] is straight-
forward. It defines our prior knowledge about the probability distributionP (W jM) of the
weights in our modelM . Optimal value ofa; b parameters are found iteratively, starting from
a = b = 1 values:

a = +
∑

ij

W 3
ij(Wij + b)2=

∑

ij

W 2
ij(Wij + b)2 (4)

b = �
∑

ij

W 3
ij(Wij � a)2=

∑

ij

W 2
ij(Wij � a)2

We have noticed that the accuracy of logical rules [12] extracted from networks using the
penalty function witha = b = 1 significantly exceeded accuracies obtained from other MLP
networks, even after careful optimization has been performed. A good comparison may be
done for the hypothyroid dataset [13]. Two types of the disease, primary hypothyroid and
compensated hypothyroid, are diagnosed and differentiated from normal (no hypothyroid)
cases using the results of 22 medical tests. Thus the problem has 3 classes and 22 attributes,
3772 cases for training and 3428 cases for testing, with about 10% of values missing (typical
for medical data). This data was used by Schiffman et.al. [14] in optimization of about 15
MLPs trained with different variants of backpropagation and cascade correlation algorithms.
In addition tedious genetic optimization has been performed on many network architectures.
The best results of this study [14] are reported in the Table I. Our results are far from being
optimal since they were obtained from standard MLP network randomly initialized, with the
penalty term containing unoptimizeda = b = 1 values. Nevertheless they are superior even
in comparison with the networks optimized by genetic algorithms.

IV. Summary and discussion
Various methods of initializationof adaptive parameters in MLP networks have been briefly

discussed. Initialization of MLPs is still done more often by randomizing weights [3], but
initialization by prototypes based on initial clusterization should give much better results en-
abling solutions to complex, real life problems. Introduction of such methods of parameter
initialization should allow for creation of neural systems requiring little optimization in fur-
ther training stages.

Our optimization is done by adding penalty term to the error function, biasing the network
weights towards 0,a and�b values, wherea, �b parameters are optimized iteratively. Re-
cently Refenes and Connor [15] proposed to use integer weights for regression networks. Their
work has been motivated by the desire to recreate integer parameters in the time series models

6

TABLE I

Classification results for a number of well-optimized MLP networks applied to the thyroid dataset.

Only the best results are shown here.

Method Training set accuracy % Test set accuracy %
BP+conjugate gradient 94.6 93.8
Best Backpropagation 99.1 97.6
RPROP 99.6 98.0
Quickprop 99.6 98.3
BP+ genetic optimization 99.4 98.4
Local adaptation rates 99.6 98.5
Cascade correlation 100.0 98.5
Our penalty term 99.5 99.1

producing the sample data. They define a prior probability as a product of exponential decay
term and a sum of Gaussian terms centered at integers�N;�N + 1; : : :N � 1; N . There is
no particular reason why in general applications weights should assume integer values – our
a; b parameters are not integer. Initialization and optimization described in this paper can be
done in a completely automatic way, contributing towards the goal of creation of robust neural
systems.

Acknowledgments: Support by the Polish Committee for Scientific Research, grant 8T11F
00308, is gratefully acknowledged.

References
[1] C. Bishop, Neural networks for pattern recognition (Clarendon Press, Oxford 1995)
[2] J. Schmidhuber, S. Hochreiter, Guessing can outperform many long time lag algorithms. Technical Note,

IDSIA-19-96
[3] G. Thimm, E. Fiesler, Higher order and multilayer perceptron initialization,Trans. Neural Net. 8 (1997) 349–

359
[4] J. Denoeux. R. Lengelle, Initializing backpropagationnetworks with prototypes,Neural Net. 6 (1993) 351-363
[5] N. Weymaere, J.P. Martens, On the initialization and optimization of multilayer perceptrons,Trans. Neural Net.

5 (1994) 738-751
[6] S. Ridella, S. Rovetta, R. Zunino, Circular Backpropagation Networks for Classification,Trans. Neural Net. 8

(1997) 84–97
[7] G. Wilensky and N. Manaukian, The Projection Neural Network,IJCNN’92, Baltimore, 7-11.06.92, Vol. II,

p.358-367
[8] B.M. Wilamowski, R.C. Jaeger, Implementation of RBF type netowrks by MLP networks,ICNN’96, Washing-

ton, DC, June 3-6, 1996, pp. 1670-1675.
[9] R. Setiono, A Penalty-Function Approach to Pruning Feedforward Neural Networks,Neural Comp. 9 (1997)

185-204
[10] S. Hochreiter, J. Schmidhuber, Flat minima,Neural Comp. 9 (1997) 1-42
[11] D.J. MacKay, A practical Bayesian framework for backpropagationnetworks,Neural Comp. 4 (1992) 448-472
[12] W. Duch, R. Adamczak, K. Gra¸bczewski, Extraction of crisp logical rules using constrained backpropagation

networks.ICANN’97, Houston, 9-12.6.1997 (in print); Logical rules for classification of medical data using
ontogenic neural algorithm,EANN’97, Stockholm, 16-18.06.1997 (in print)

[13] C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases, http://www.ics.uci.edu/pub/machine-
learning-databases.

[14] W. Schiffmann, M. Joost, R. Werner, Comparison of optimized backpropagationalgorithms,ESANN ’93, Brus-
sels 1993, pp. 97-104; Synthesis and Performance Analysis of Multilayer Neural Network Architectures, Tech.
Rep. 15/1992, available inneuroprose as schiff.gann.ps.Z

[15] A-P. Refenes, J.T. Connor, Biasing towards integer solutions,ICONIP’96, Hong Kong 1996, Vol.II, pp. 681-
688

