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Abstract
Initialization of adaptive parameters in neural networks is of crucial importance to the speed of convergence

of the learning procedure. Methods of initialization for the density networks are reviewed and two new methods,
based on decision trees and dendrograms, presented. These two methods were applied in the Feature Space Mapping
framework to artificial and real world datasets. Results show superiority of the dendrogram-based method including
rotation.

I. Introduction

LEARNING in neural networks usually requires minimization of a cost function. Find-
ing global minimum of a nonlinear function with many parameters is an NP-hard prob-

lem [1]. Good initialization of adaptive parameters may enable finding solutions to complex,
real-world problems and may significantly decrease learning time. In this paper methods of
initializationof the density estimation networks are discussed. Such networks usually employ
localized transfer functions. For example, popular radial basis function (RBF) networks are
frequently based on Gaussian functions. Architectures of density networks use almost exclu-
sively single hidden layer, although a modular structure in which several of such one-layer
networks cooperate, may also be used.

In the next section methods of initializationof density network parameters are discussed and
new methods proposed. Using these methods for initialization of the Feature Space Mapping
(FSM) network [2] we have obtained significant improvements both in the speed of conver-
gence of learning procedures, accuracy of classification, and reduction of complexity of the
network. These results are presented in the third section. Short discussion closes this paper.

II. Initialization of density network parameters
In the density networks centers of clusters and their dispersions should be determined. In

RBF networks centersCi are frequently selected randomly, with some fixed number of nodes
K and initial dispersion� = d=

p
2K determined by the largest distanced between the cen-

ters. Once centers are selected weights are easily found by pseudoinverse or SVD solution of
linear equations [1]. Unfortunately the use of such data-dependent parameters in density net-
works precludes the use of simple priors for probabilitydistributionsand thus makes Bayesian
formulation of the learning algorithm [3] difficult.

There are many possibilities to select good centers: randomly selected prototypes may be
improved using one of the learning vector quantization (LVQ) procedures [4]. Basically all
LVQ methods are based on a self-organizing algorithm:C

new
i = Cold

i +�(Xk�Cold
i ), where

the vectorXk is drawn randomly from the training dataset. Some of these methods become



quite sophisticated, with dynamical adjustment of learning rate�, update of several centers in
some (dynamically defined and weighted) neighborhood ofX (like in Self-Organized Map-
pings) and many other improvements [5]. After determination of centers initial dispersions
are calculated using distances to the closest center belonging to different class. Tarassenko
and Roberts [6] proposed probabilistic algorithm for determination of centers and dispersions
in RBF networks. All such methods are computationally rather intensive, similar to the full
learning and classification methods in their own right.

Constructive approaches to density networks, such as the Resource Allocation Network
(RAN) [7], or function estimation approach [8], initialize a single unit only. In FSM [2] a
few initial units are created using techniques based on decision trees, dendrograms and the
variable resolution scale for data filtering. Transfer functions used in FSM [9], [10] include
rectangular, biradial and Gaussian functions. Except for centers and dispersions parametriza-
tion of rotations is also desired. Rotation matrix inN dimensions theoretically needs only
N � 1 angles, but in practice it is very difficult to specify rotation parameters (we have found
an interesting solution to this problem presented in [10]). Calculation of activation with full
rotation matrix requiresN 2 operations for matrix multiplication. Unconstrained transforma-
tion matrices are even worse since the number of adaptive parameters is of the order ofN2

per node, which for a largeN is quite impractical.
We have followed another approach, which we also recommend for RBF and other den-

sity networks. Initialization procedure provides us with clusters at fixed angles. For skewed
distribution of data, adaptation of positions and dispersions of such clusters allows for high
accuracy with much smaller number of nodes. The total complexity of the model (measured
by the number of network nodes) is restricted in the initialization step by assuming the maxi-
mum number of clusters allowed. First the data vectors are standardized to obtain zero mean
and standard deviations:
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Data resolution: If the number of data vectors is large the data is first filtered decreasing
its resolution. Calculations are frequently done with 4 byte representation of floating numbers
giving data resolution ofr = 10�7 for data renormalized to the[0; 1] interval. For the reso-
lution r all data in an interval[a; a + r) are equivalent to one value. All data valuesXi are
converted first to the maximum range of[0; 232] using the formula:

Xr = C(X �Xmin); C =
232

(Xmax �Xmin)
(3)

To obtain the resolution ofr = 1=2k we have to leavek significant bits inXr . This is done
by shifting the bits, for example converting back to original representation:

X(k) = Xmin +
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Fork = 1 all dataX are mapped to two clusters and fork = 32 original data is recreated.
The highest cluster corresponds toXr = 11 : : :1 (in the binary representation) and the lowest
to Xr = 00 : : :0, setting the scale for the largest distance. The smallest distance is defined
by the resolution of the data. The number of significant bits is increased until the number of
clusters reaches the maximum allowed. Since this is done at a relatively small-grain scale,
just to find reduced set of vectors for clusterization, it is a good approximation, requiring very
simple processing of data.

Decision trees: At a resolution ofk bins the number of data vectors in each bin is counted.
All adjacent bins with non-zero vectors in them form a cluster in one dimension, defining po-
sitions and initial cluster sizes. The resolution is increased up to the noise level (defined in a
global way for the input data by the user) or until the total number of initial clusters reaches
allowed value. Suppose that the cluster starting from bini takesl units of sizes. Then position
and size for thex-component in the original scale is:

Cx = Xmin + s(i +
l

2
); �x =

1

2
ls; s = jXmax �Xminj=k (5)
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Fig. 1. Illustration of the decision tree method of initial clusterization.

Each of these one-dimensional clusters may be a projectionof many separateN -dimensional
clusters. In the initialization phase vectors are read and a loop over all dimensions started. In
the first dimension the vector will belong to some clusterC i

1, in the second dimension toCj
2

(this already defines a two-dimensional cluster) and in theN -th dimension toCk
N . EachN -

dimensional cluster is characterized by a chain of lower-dimensional clusters,Ci
1 ! C

j
2 !

: : :Ck
N !, therefore this initialization procedure creates a decision tree. In the leafs of this

tree the number of vectors belonging to theN -dimensional cluster are counted (for some clas-
sifiers this information is used to set the “mass” of clusters). If the number of clusters at any



level exceeds the maximum allowed the search is terminated and results from more coarse-
grained initialization are taken. Finally, once all clusters are found distances between them
are computed and those clusters that are closer than a specified threshold are merged into one.
This step allows to take into account skewed distributions that are not recognized as single
clusters by the search algorithm that effectively divides the input space into cuboids. Posi-
tions and sizes of cuboids belonging to these clusters are memorized as numerical values.

This algorithm improves FSM classification in comparison with purely constructive ap-
proach [11]. In highly dimensional spaces even a small increase in the number of data bins
in each dimension creates many clusters. To avoid it one should increase resolution in se-
lected dimensions first, using histograms to determine which dimensions (features) allow for
the best discrimination. For some datasets this may be difficult, especially if the input space
has high dimension and many input features are dominated by noise. Skewed distribution of
data clusters in the input space create problems in finding good division of features. Decision-
tree based initialization method is computationally inexpensive but in some cases difficult to
apply.
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, Illustration of the decision tree method of
initial clusterization and dendrogram method of clusterization.

Dendrograms: In decision-tree algorithm data resolution is progressively increased. Bet-
ter results are sometimes obtained using algorithm in which data resolution is progressively
decreased, using a modified dendrogram-type method. Initially each training vector is a sepa-
rate cluster. To determine which vectorsXi;Xj should be merged distance matrixd(Xi;Xj)

is computed. Minimal distance is found in the distance matrix and the closest clusters replaced
by an averaged cluster. This procedure is repeated until the number of clusters becomes suffi-
ciently small or the distances between remaining clusters become larger than assumed thresh-
old. To avoid large matrices and high computational costs for large datasets again filtering of
data vectors is used to create groups of vectors replaced by averaged cluster positions.

Rotations: Once all vectors are assigned to clusters one can build a covariance matrix for
each cluster, diagonalize it and use its eigenvectors to set up the initial rotation and dispersion
parameters. To find the rotation angles of the main axis of the cluster a straight lineXi = aiX1

is fitted using all vectorsX(k) belonging to the clusterC:
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These coefficients are equal to tangens of angle between the main cluster axis andX1 axis.
To find dispersions vectors belonging to the cluster are rotated in the(X1; X2), (X1; X3), ..
(X1; XN ) plane using2� 2 transformations:
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This transformation requires only4(N � 1) multiplications. Maximum and minimum val-
ues ofXk

i define dispersions in each dimension. We have used the dendrogram approach with
rotations for initialization of FSM obtaining very good results.

III. Results of computer simulations
Consider an artificial two-dimensional data containing two skewed clusters (Fig.2). Us-

ing rectangular basis functions with decision tree initialization69.5% of points were correctly
classified – this is a difficult case for decision tree method (histograms are almost uniform).
After initialization using dendrogram method without rotations the percentage of correctly
classified points increased to 88%. Adding rotations and determination of cluster sizes all
data points were correctly classified. In all cases two clusters were created.
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, Artificial data with two skewed clusters
used in the preliminary experiments.
Results of initial clusterization for 5 datasets are presented in Table I. Classification errors re-
ported here are of course reduced further by optimization of FSM network parameters, but it
is interesting to note that these results are frequently already of rather high quality. Except
for galaxies all other data was obtained from the UCI repository [13]. Iris dataset contains
150 cases in 3 classes. After initialization with Gaussian functions including rotations only 4
classification errors are made (97.3% accuracy), which is a better results than many classifiers
give on this dataset. For vowel 990 samples of 10-dimensional vectors should be divided into
11 classes. 3 clusters give already 77% accuracy on the training and 50% accuracy on the test
data, while the best classification results (k-NN) give only 56% on the test data. Using rota-
tions and Gaussian functions accuracy on the training set is increased to 84.4 %. The StatLog



version of thesatellite image data generated from Landsat Multi-Spectral Scanner [13] has
a total of 6435 vectors with 36 attributes each (0 to 255 range) divided into 6 classes. Initial-
ization with rotated clusters gave 80% accuracy, while best RBF or MLP solutions give 89%.
The DNA database, with 3186 vectors, has 180 attributes and 3 classes. In this case k-NN
gives 85% accuracy while our initialization gave 83%. The data for galaxies were obtained
from the ESO-LV catalog (all details of this dataset are described in [14]) and contains 5217
cases, 13 features and two classes. MLP gives 90% accuracy here while our best initialization
gives 86%.

TABLE I

Classification results (% of errors) after initialization of FSM network using decision tree method (DT),

dendrograms without cluster rotation (D) and with rotation (DR). Results were obtained using rectangular functions

(+R) and Gaussian functions (+G). Number of created clusters is given in parenthesis.

Dataset DT+R D+R DR+R DT+G D+G DR+G
Iris 65 (4) 80 (4) 87 65 95 97.3
Vovel 9 (31) 53 (22) 73 1 68 84.4
Satimage 45 (14) 23 (6) 24 14 77 80.0
DNA 0 (3) 9 (3) 19 0 83 76.1
Galaxies 36 (4) 14 (2) 12 36 86 84.4

IV. Summary and discussion
Two new methods of initialization of density networks have been proposed, one based on

decision trees and the other on dendrograms. These methods are used for initialization of
FSM network with rectangular, biradial and Gaussian functions in applications to classifica-
tion problems and to logical rule extraction [12]. FSM constructive algorithm starts from a
number of prototype clusters adding more networks nodes as and where required, but net-
works created from scratch are not so efficient as networks developed from initial structures
found by clusterization. Introduction of rotations for some datasets (but not for all) signifi-
cantly reduces the classification error. For many classification problems FSM network after
initialization required little extra tuning. Final network structures became more compact than
those obtained with the straightforward constructive algorithm and the classification accuracy
was higher. Initialization methods presented in this paper may also be used in other type of
density networks, such as RBF or RAN networks [1].
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