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Outline: Some Lessons from Our Attempts to Improve 
Protein Structure and Function Prediction

• Our general (knowledge-based) approach: from sequence to structure to 
function using Artificial Intelligence and Machine Learning as short cuts

• The importance of intermediate attributes such as solvent accessibility: 
functional predictions in the absence of the overall 3D structure

• Some lessons from our attempts to improve solvent accessibility prediction
• Generalizations for membrane proteins: limited data to extrapolate from
• Accurate recognition of transmembrane segments using prediction of 

(aqueous) solvent accessibility: an example of a non-trivial initial 
transformation and dimensionality reduction of input data  

• Some more lessons from our attempts to learn from limited data: prediction 
of lipid accessibility in membrane proteins

• The other story (to be covered some other time) on genome-wide 
association studies: correlating genotypes and phenotypes using machine 
and statistical learning, and dealing with even bigger problems: millions of 
variables (genetic markers) with limited number of data points 
(patients/genotypes) and fuzzy phenotypes



HypoxiaHypoxia--induced stabilization of Hifinduced stabilization of Hif--1a1a
Graphics from R.K. Bruick and S.L.McKnight, Science 295
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From Sequence to Structure to Function: 
Protein Folding Problem and CI/AI/ML Short Cuts

Extended conformation Folded conformation

r(τ0)

r(τ0+Δτ)

r(τκ)

Sequence        Æ Structure        Æ Function

Machine learning to the rescue: correlating complex patterns in 
sequence with structural/functional outcomes using known examples.



Von Hippel-Lindau (VHL) Tumor Suppressor
 

α 

β 

HIF - 1α 

Elongin B

Elongin  C 

V H L 

Folding, stability and functional hot spots (interaction sites) …
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Important Example: Predicting Protein Secondary 
Structures from Amino Acid Sequence

Successful applications of machine learning techniques for 
secondary structure prediction involve:

i) multiple alignment and family profile-based representation of local 
environment and structural propensities (Rost and Sander, Jones); 

ii) the use of advanced machine learning techniques, such as Neural 
Networks (Rost and Sander, Qian and Sejnowski)

However, the latter is far less critical, and, in fact, NN, HMM or SVM-
based methods all reach comparable accuracy if trained properly.

State-of-the-art secondary structure prediction methods yield 
classification accuracies of up to 80% for three state (H, E, C)
problem.
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Predicting Secondary Structures from Sequence

PDB

Sable

PsiPred

Profsec

Tailored measures of accuracy, e.g., Segment Overlap Measure
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Another Intermediate Problem: Which Residues Are 
Accessible to Solvent and Interaction Partners?

Relative Solvent Accessibility of an amino acid residue in a protein quantifies the 
degree of exposure (surface exposed area, SEA) to solvent molecules in relative terms:

RSA = SEA / MAX_SEA ;         0<= SEA <= MAX_SEA

Thus, RSA is a real valued number in the interval [0,1], which for convenience may be 
scaled to take the values between 0% and 100%, where 0% corresponds to fully buried 
and 100% to fully exposed residues, respectively. In membrane domains, lipid replaces 
water as the solvent, and Relative Lipid Accessibility can be defined as above.

/

Folded conformation

Extended conformation
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RSA Prediction: Regression vs. Classification

Classification approaches: relative solvent accessibility prediction is cast as 
a classification problem, i.e., the real valued RSA is discretized with two 
classes of residues (buried vs. exposed) distinguished by an arbitrary 
threshold, e.g., 25% RSA, classification accuracy above 70% (PHDacc (Rost 
and Sander), ACCpro (Pollastri et al.), Jnet (Cuff and Burton)).

Classification approach to RSA prediction is not only somewhat clumsy but 
also inconsistent with the level of thermal fluctuations, conformational 
flexibility and resulting variations in observed RSA, e.g., in protein families.

Regression approaches:

PROF: B. Rost, unpublished  
RVPNet: S. Ahmad, M. M. Gromiha, and A. Sarai, Proteins 50 (2003)
SABLE: R. Adamczak, A. Porollo, and J. Meller, Proteins 56 (2004)



Ensemble of conformations in solution: 
top NMR models for the villin headpiece domain and Hif PAS dimer

PDB codes: 2a24, 1unc
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Variability in Surface Exposure for Structurally Equivalent
Residues: “Soft” Approximation Problem
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Neural Network-based Regression for RSA Prediction

 Input 
layer 

Hidden layers Output layer 

[0,1] 

Context units (Elman) 

wSSE z
i

yi yi z yi
2

R. Adamczak, A. Porollo, and J. Meller, Proteins 56 (2004)
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Support Vector Regression for RSA Prediction

min w p C 1

s.t. ai
T w yi i

w p i
wi

p
1
p

for each i

i yi

ε- insensitive SVR regression model:

Here,                                          and ai is the vector that represents 
residue i. 

Make the error bars dependent on the observed RSA, yi :

M. Wagner, R. Adamczak, A. Porollo and J. Meller; Journal of Computational Biology, Vol. 12 (2005)
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Training Sets and Protocols

z To build training set we used 860 protein families 
derived from the PFAM database 

z Input (sliding) window of length 11
z Multiple alignment (PSSM columns) plus additional 

features used to represent each residue
z Training set consisting of almost 200,000 vectors
z All features were standardized (mean=0, standard 

deviation=1)
z All networks/SVRs have been trained on different 

subsets of 90% randomly chosen vectors
z Control sets derived from new submissions to PDB
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Multiple alignment and Psi-BLAST

Iteratively redefining similarity measure (scoring matrix): PSSMs
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Multiple Alignment and PSSM-based Representation

QUERY:  VDVRKVDISEISSALHVDVPFYVSATALCKLGNPLE

Class: BBBBEBEBEEEEEEEBBBEBEBBBEEEEBBBEBEBE

Multiple alignments and PSSMs obtained using the PsiBLAST program 
by S. Altschul et. al.: 3 iterations without pre-filtering (following in the 
footsteps of Rost, Jones and others).

A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V 
K     -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2
V      0 -3 -3 -3 -1 -2 -3 -3 -3  3  1 -3  1 -1 -3 -2  0 -3 -1  4 
D     -2 -2  1  6 -4  0  1 -2 -1 -3 -4 -1 -3 -4 -2  0 -1 -5 -3 -3
I     -2 -3 -4 -3 -1 -3 -4 -4 -4  5  1 -3  1  0 -3 -3 -1 -3 -1  3 
S      1 -1  1  0 -1  0  0  0 -1 -3 -3 0 -2 -3 -1  4  1 -3 -2 -2 
E -4  2  0 -5 -3  1  2 -2 -1 -6 -2  1 -1 -3 -1  0 -1  2 -4 -2
I      2 -3  1  0 -1  1  1  0 -1  4 -3  0 -3 -2 -3 -1  1 -3 -2 -2 
S      1 -2  1  1 -3 -2  0  1  1 -2 -3  0 -2 -3 -1  4  1 -3 -1  5 
S      3  4 -2  2 -5  1  3 -1 -1 -3  4  3  2  1 –2  4  1  1 -2 -2 
A      4 -1 -2 -1  1  3  4  2  5  3 -3 -4 -2 -3 -1 -1 -2 -2  0  0 

L      1 -1  0  1  0 -1  3  0  1 -1  2  0  2 -5  0  1  1 -3 -2 -2

Training

vectors
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Overall Accuracy of Different Regression Models for RSA 
Prediction on Independent Control Sets

S163
cc / MAE / RMSE

S156
cc / MAE / RMSE

S135
cc / MAE / RMSE

S149
cc / MAE / RMSE

SABLE-a 0.65 / 15.6 / 20.8 0.64 / 15.9 / 21.0 0.66 / 15.3 / 20.5 0.64 / 16.0 / 21.0

SABLE-wa 0.66 / 15.5 / 21.2 0.64 / 15.7 / 21.3 0.67 / 15.3 / 20.9 0.65 / 15.8 / 21.4

LS 0.63 / 16.3 / 21.0 0.62 / 16.5 / 21.1 0.65 / 15.9 / 20.5 0.62 / 16.5 / 21.2

SVR1 0.62 / 15.9 / 21.3 0.61 / 16.1 / 21.4 0.64 / 15.6 / 20.8 0.62 / 16.2 / 21.5

SVR2 0.62 / 16.6 / 22.8 0.61 / 16.7 / 22.7 0.64 / 16.4 / 22.5 0.61 / 16.9 / 23.0

A total of 163+156+135+149=603 non-redundant chains without homology to our 
training set of 860 representative protein chains derived from PDB, Adamczak et al., Proteins
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SABLE is a state-of-the-art RSA predictor

MCC Q2

Adamczak et al., 
Proteins 2004

0.52-0.54 76.5-77.3%

Chen & Zhou, 
Proteins 2005

0.54 77.2%

Garg et al., 
Proteins 2005

0.56 78.3%

Liu et al., 
Proteins 2007

0.53-0.55 74.3-77.9%

“The two-state accuracy by SABLE is 77.3% in the ProSup benchmark, 77.9% in the 
SALIGN benchmark, 74.3% in the Lindahl benchmark and, 75.3% in the LiveBench 8 
benchmark. This accuracy is consistent with the published performance of this and 
other state-of-the-art predictors.” Liu, Zhang, Liang and Zhou, Proteins 68 (2007)

47 CASP6 proteins; Garg, Kaur and Raghava, Proteins 61 (2005)
16 FR/NF CASP6 proteins; Chen and Zhou, Nucl. Acids Res. 33 (2005)
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Some take home messages …

z Importance of domain knowledge and finding the right model for the 
problem (representation, learning approach etc.)

z In particular, RSA as “fuzzy” (variable) quantity implies specific error 
models and tailored regression approaches (understanding limits of what 
can be achieved)

z Importance of non-redundant and representative training and validation 
sets (identify and control potential biases)

z Importance of using different accuracy measures, including those that 
are important from the point of view of future applications (some of them 
somewhat qualitative)

z Importance of confidence measures: an additional meta-classifier trained 
to provide error estimates

z Cross-validation useful, but final validation on independent control sets 
necessary to obtain more realistic accuracy estimates (however painful)

z Room for meta-learning, although human brain hard to replace at this 
point …
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Structural and Functional Predictions for Membrane Proteins

M

Limited data available (~100 unique structures solved),
different nature …
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Cats vs. Membrane Proteins
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A bit of irony …

“While it's true that most cats find the bathing experience less than 
savory, professional cat breeders acclimate their pets to the 
process through regular repetition.”

Courtesy of the Society for the Prevention of Cruelty to Animals (www.spca.com), 
as well as www.geckoandfly.com and http://courses.umass.edu/phys120/images/cat-
and-mouse.jpg

http://www.spca.com/
http://www.geckoandfly.com/
http://courses.umass.edu/phys120/images/cat-and-mouse.jpg
http://courses.umass.edu/phys120/images/cat-and-mouse.jpg
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Learning from Limited Data: 
Recognition of Transmembrane Domains
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Recognition of TM Domains with Predicted RSA: 
Compact Representation of an Amino Acid and Its Environment 

without Explicit Use of Multiple Alignments
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Transformation of Evolutionary Profiles (MAs) into a 
Compact Representation by Using the RSA Prediction

{ 0, 1 }

fTM

fRSA
fTM

Rn

Rk ; k<n
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Recognition of TM Domains Using RSA Prediction

RSA predictions are used in order to indicate residues unlikely to be
exposed to aqueous environment, i.e., residues that are either buried in the
hydrophobic core of a protein, or alternatively, “buried” in a membrane …

Cross-validated classification accuracy for transmembrane helices 
prediction with different feature spaces and a set of 72 TM chains. 

Alpha-helical Beta-barrel

Features Q2 % MCC Q2 % MCC

RSA+SS (11) 87.9±0.8 0.74±0.02 77.9±3.3 0.50±0.09

RSA+SS (21) 88.0±0.6 0.73±0.02 78.7±3.3 0.53±0.08

RSA+SS (31) 87.4±0.7 0.73±0.020 77.9±3.6 0.53±0.08

MSA (11) 85.0±1.3 0.67±0.03 71.6±2.9 0.37±0.07

MSA (21) 86.0±1.4 0.69±0.03 73.3±3.4 0.41±0.08

MSA (31) 86.5±1.4 0.70±0.03 73.6±3.6 0.42±0.09
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Results in the TMH Benchmark Server (Chen and Rost, 
2003): Reassessing the Overall Expectations

Method Q2 QOK cGP cSP

MINNOU 89 80 1 8

PHDhtm 80 84 2 23

HMMTOP2 80 83 6 48

TMHMM1 80 71 1 34

DAS 72 79 16 97

TopPred2 77 75 10 82

SOSUI 75 71 1 61

B. Cao, A. Porollo, R. Adamczak, M. Jarrell and J. Meller; Enhanced Recognition of 
Protein Transmembrane Domains with Prediction-based Structural Profiles, 
Bioinformatics, vol. 22 (3): 303-309 (2006)
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Some take home messages …

z Early and optimistic estimates of accuracy of TMH prediction 
methods suggested that this problem had essentially been solved 
(claims of over 95% accuracy etc.)

z These estimates, however, were based on cross-validation studies 
using small and biased samples of TM proteins

z Recent reassessment from Rost group and others – still ways to go
z Importance of compact representations, low complexity models –

risk of overfitting and overestimating the accuracy still significant
z New TM proteins being resolved structurally (e.g. ion channels) 

reveal novel, more complex architectures/folds
z New RSA-based representation provides a unique transformation of 

multiple alignment input data, using a predictor trained exclusively 
on soluble proteins, and thus minimizing the risk of biasing and
overfitting
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Support Vector Regression for RLA prediction

min w p C 1

s.t. ai
T w yi i

w p i
wi

p
1
p

for each i

i yi

ε- insensitive SVR regression model:

Here,                                          and ai is the vector that represents 
residue i. 

Make the error bars dependent on the observed RSA, yi :
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Using Flexible SVRs for Lipid Accessibility Prediction
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RLA Prediction: Need for Low Complexity Models

Representation NN SVR

RSA 0.34±0.02 0.36±0.04
MSA 0.32±0.02 0.45±0.02

MSA+WW 0.33±0.02 0.45±0.02
MSA+TMLIP2H 0.32±0.02 0.46±0.02
MSA+SABLE 0.35±0.02 0.47±0.02

MSA+SABLE+WW 0.33±0.03 0.47±0.02
MSA+SABLE+TMLIP2H 0.36±0.02 0.47±0.02

Cross-validated accuracies in terms of correlation coefficients on a non-
redundant set of 72 alpha-helical TM proteins (about 7 thousand TM residues).
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Performance of our new RLA predictor on an independent 
control set: robust predictions with good generalization ☺

PDB Chain ID CC RMSE [%] MAE [%]

1xfh_C 0.50 21.5 16.4

1vry_A 0.35 34.4 31.1

1xqf_A 0.62 15.6 12.7

1yq3_D 0.57 17.5 13.8

1s5l_z 0.53 18.5 14.7

1s5l_x 0.40 14.4 10.9

1w5c_F 0.56 23.7 20.6

2axt_h 0.56 19.7 17.6

1yew_K 0.59 16.7 14.4

1yew_J 0.33 25.6 22.1

1yew_A 0.80 19.2 17.1

1q90_M 0.60 20.8 16.3

2bbj_E 0.51 13.9 12.3

1zcd_A 0.64 16.3 13.6

1c17_M 0.40 24.2 18.8

2a65_A 0.51 18.9 16.0

Average 0.53±0.03 19.9±1.3 16.6±1.2
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Summary

z Improved, regression-based real-valued RSA prediction (correlation 
coefficients between observed and predicted RSA ~ 0.67)

z Enhanced trans-membrane domain prediction with a compact 
representation obtained using RSA predictions

z RLA prediction using compact SVR models: good generalization, 
correlation coefficients between observed and predicted RSA ~ 0.5

z Applications in both de novo simulations and fold recognition (filtering 
out incorrect models)

z Enhanced recognition of protein-protein interaction sites based on the 
difference between predicted and experimentally observed RSA (RLA)

z Other applications of RSA/RLA predictions: post-translational 
modifications sites, recognition of pore interfaces in ion channels, 
recognition of binding sites for ligands, analysis of functional 
consequences of point mutations etc.

• The other story (to be covered some other time) on genome-wide 
association studies: correlating genotypes and phenotypes using 
machine and statistical learning, and dealing with even bigger 
problems: millions of variables (genetic markers) with limited number 
of data points (patients/genotypes) and fuzzy phenotypes
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Biases in RSA Predictions for Residues within Interaction Interfaces

Predictions obtained using SABLE; picture generated using the POLYVIEW server (A. Porollo) 
– also used to generate most animations and other pictures used in this presentation.

Prediction “errors” at interaction interfaces: differences between predicted and 
actual (observed in an unbound structure) RSA values.
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A Novel Fingerprint of Interaction Sites Obtained by 
Contrasting Predicted and Observed Solvent Accessibilities

Distributions of prediction “errors” (dSA) for interacting vs. non-interacting sites

A. Porollo and J. Meller; Prediction-based Fingerprints of Protein Interactions, 
Proteins: Structure, Function and Bioinformatics, 66 (2007)
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You are welcome to visit our zoo:

Our servers:

http://sable.cchmc.org

http://sppider.cchmc.org

http://minnou.cchmc.org

http://sift.cchmc.org

Visualization:

http://polyview.chmcc.org

http://sable.cchmc.org/
http://sppider.cchmc.org/
http://minnou.cchmc.org/
http://sift.cchmc.org/
http://polyview.chmcc.org/
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