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Abstract. Most of Computational Intelligence models (e.g. neural net-
works or distance based methods) are designed to operate on continuous
data and provide no tools to adapt their parameters to data described
by symbolic values. Two new conversion methods which replace symbolic
by continuous attributes are presented and compared to two commonly
known ones. The advantages of the continuousification are illustrated
with the results obtained with a neural network, SVM and a kNN sys-
tems for the converted data.

1 Introduction

The majority of the Computational Intelligence (CI) systems are designed to
deal with continuous data. The adaptive processes of neural networks and most
of similarity based models operate in Rn space to perform their approximation
or distance calculation tasks. Building such models for data described by sym-
bolic attributes requires an embedding of the sets of symbols into some sets of
real numbers. The simplest (and most commonly used) mapping arbitrarily re-
places subsequent symbolic values with subsequent natural numbers. The order
of the symbols is random and different randomizations may lead to significantly
different results obtained with CI systems, so finding an appropriate mapping
from symbols to real numbers is mostly advisable.

A simple way to get rid of symbolic features is to replace each of them by a
number of binary features.

Distance based systems may use some similarity measures which are designed
for symbolic data like Value Difference Metric (VDM), Heterogeneous Euclidean-
Overlap Metric [13] or Minimum Risk Metric [2].

A simple observation that instead of using VDM metric, one can replace
each symbolic value with a number of probabilities and use Minkovski measure
on the converted data, leads to a conclusion that thanks to the data conversion
any system designed for continuous data may also take advantage of the VDM
measure [7].

Using another conditional probability yields very similar (but of different
behavior in applications) MDV continuousification scheme.

A conversion from symbolic to continuous data can also be done with the
usage of a separability criterion dedicated for decision tree systems.
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CI systems augmented by some continuousification methods become yet more
powerful tools, which take advantage of different methods of information ex-
traction and offer very good predictive accuracy (see section 5) which can be
significantly better (see sections 4 and 5) than arbitrary coding of symbols.

2 Continuousification methods

The arbitrary coding of symbols may lead to very different orders and distances
between attribute values. As a consequence of that the placement of the training
data in the feature space is different for each mapping and this significantly
affects the distances between the data vectors. The goal of continuousification is
to find such a representation of symbols in the set of real numbers, that makes
the classification or approximation problem easier.

NBF continuousification Some of CI systems convert symbolic features con-
sisting of n symbols with n binary features (NBF). For each i = 1, . . . , n the i’th
new feature indicates whether the value of the original feature of given vector is
the i’th symbol or not. Such data conversion results in a dataset of dimensional-
ity strongly dependent on the numbers of symbols representing the features and
does not depend on the number of classes (in opposition to the VDM and MDV
methods presented below).

VDM continuousification In the space of symbolic features X = X1×· · · , Xn,
for the set of classes C = {c1, . . . , ck} the Value Difference Metric (VDM) for
x, y ∈ X × C and a parameter q is defined as:

Dq
VDM(x, y) =

n∑
i=1

k∑
j=1

|P (cj |Xi = xi)− P (cj |Xi = yi)|q (1)

where P (cj |Xi = zi) is a shortened form of P (C(u) = cj |ui = zi ∧ u ∈ X × C).
Duch et al. [7] presented the idea of mapping each of the xi symbolic values

of a vector x with k real numbers P (c1|Xi = xi), . . . , P (ck|Xi = xi).
In two class problems the dimensionality of the space may remain unchanged,

since only one probability may be used without any change of the relative dis-
tances between data vectors (using two probabilities instead of one would just
double each distance).

MDV continuousification A natural alternative to VDM continuousification
is to use the other conditional probability binding the feature values with class
labels. Replacing P (cj |Xi = xi) by P (Xi = xi|cj) we obtain a mapping of an idea
similar to VDM (hence we call it MDV), but with several important differences.

The main dissimilarity is that in the case of VDM the feature values are
ordered according to how specific they are for given class and in the case of
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MDV according to the frequency of given value among the vectors belonging to
the class.

The nature of VDM causes that in two class tasks, only one of the probabili-
ties is necessary to preserve the whole information of two values. MDV’s nature is
different - both probabilities are not so closely related – they are different sources
of information, however assuming some similarity one can use probabilities for
one of the classes to reduce the dimensionality of the resulting data.

SSV criterion and SSV based continuousification The SSV criterion is
one of the most efficient among criteria used for decision tree construction [8,9].
It’s basic advantage is that it can be applied to both continuous and discrete
features. The split value (or cut-off point) is defined differently for continuous
and symbolic features. For continuous features it is a real number and for sym-
bolic ones it is a subset of the set of alternative values of the feature. The left
side (LS) and right side (RS) of a split value s of feature f for a given dataset
D is defined as:

LS(s, f, D) =
{
{x ∈ D : f(x) < s} if f is continuous
{x ∈ D : f(x) 	∈ s} otherwise

RS(s, f, D) = D − LS(s, f, D)

(2)

where f(x) is the f ’s feature value for the data vector x. The definition of the
separability of a split value s is:

SSV(s) = 2 ∗
∑

c∈C |LS(s, f, D) ∩ Dc| ∗ |RS(s, f, D) ∩ (D − Dc)|

−
∑

c∈C min(|LS(s, f, D) ∩ Dc|, |RS(s, f, D) ∩ Dc|)
(3)

where C is the set of classes and Dc is the set of data vectors from D which
belong to class c ∈ C. A similar criterion has been used for design of neural
networks by Bobrowski et al. [3].

Decision trees are constructed recursively by searching for best splits (with
the largest SSV value) among all the splits for all the features. At each stage
when the best split is found and the subsets of data resulting from the split
are not completely pure (i.e. contain data belonging to more than one class)
each of the subsets is being analyzed in the same way as the whole data. The
decision tree built this way gives maximal possible accuracy (100% if there are
no contradictory examples in the data) which usually means that the created
model overfits the data. To remedy this a cross validation training is performed
to find the optimal parameters for pruning the tree. Optimal pruning produces a
tree capable of good generalization of the patterns used in the tree construction
process.

SSV based continuousification The SSV criterion can also be a successful tool
for symbolic to real-valued feature mapping. The following algorithm presents
the method:
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Algorithm 1 (SSV based continuousification)
Input: The classification space X, set of classes C, training set T ⊆ X ×C,

symbolic feature F (of space X).
Output: Mapping F → R.

1. Build a decision tree D using T ′ = {(xF , c) ∈ F × C : (x, c) ∈ T } where xF

is the value of the feature F for vector x.
2. For each node W of the tree D, such that W is not the root or a direct subnode

of the root, calculate SSVW as the SSV criterion value for the split between
W and the sibling of it’s parent (the split of the set of vectors belonging to
the two nodes, to the two sets determined by the nodes).

3. For each node W of the tree D, such that W is not the root or a leave (starting
with the root’s direct subnodes, through their subnodes to the parents of the
leaves) order the children Wi of W :
– with decreasing (from left to right) values of SSVWi if W is the left child

of it’s parent.
– with increasing (from left to right) values of SSVWi if W is the right

child of it’s parent.
4. Create the list L1, . . . , Ln of all the leaves of the tree D with the order of

visiting them with the depth first search (where the left child is visited before
the right one).

5. Calculate the criterion values SSVi,i+1 for i = 1, . . . , n − 1 for the pairs of
leaves that are neighbors in the list.

6. For each i = 1, . . . , n assign to the Li leave the real value∑i−1
j=1 SSVj,j+1∑n−1
j=1 SSVj,j+1

. (4)

7. The output is the mapping which maps each possible value f of the F feature
to the real number calculated in the preceding step for the leave which contains
the vectors with f value of the F feature.

The algorithm takes advantage of the fact, that SSV tree usually puts each
symbolic value of the feature into a separate leave. Two different values may end
up in a single leave only if all the vectors with any of that values belong to the
same class – in such a case the two values (from the classification point of view)
need not be distinguished and the above algorithm maps them to the same real
value.

3 Adaptive models tested

We have tested the algorithms with three different kinds of adaptive models: a
neural network (FSM), an SVM and a minimal distance system (kNN).

FSM neural network. Feature Space Mapping (FSM) is a neural network sys-
tem based on modelling probability distribution of the input/output data vec-
tors [6,1]. The learning algorithm facilitates growing and shrinking of the net-
work structure, which makes the method flexible and applicable to classification
problems of miscellaneous domains.
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SVM method. The SVM algorithm we have used is the Platt’s Sequential Min-
imal Optimization (SMO) [12] augmented by the ideas presented in [10]. Such
version yields very fast and accurate solutions.

kNN method. The k Nearest Neighbours (kNN) algorithm we used is a method
with automated selection of the k parameter. For given training dataset the k is
determined by means of cross validation training performed inside the training
set (the winner k is the one that gives the smallest average validation error).

4 Statistical significance test

When comparing the performances of different classification systems it is impor-
tant not only to see the average accuracies, but to answer the question of the
probability, that the average accuracy of a number of tests for one system will
be higher than the average for the other. Assuming normal distribution of the
accuracies, we estimate the probability with Student’s t test [4,5].

In our experiments we repeated a cross validation (CV) test 10 times. Each
competing system was run for the same data sample, so we are justified to
estimate the statistical significance with paired t test with 10 degrees of freedom.
The estimation of the variance of the CV mean is done on the basis of the 10
results.

5 Results

There is no point in continuousification of binary features, so the datasets con-
taining continuous and binary features only are not eligible for the test. Also the
results obtained for a dataset containing just one or two symbolic features do
not allow for any conclusions.

We have tested the continuousification algorithms on three datasets from
the UCI repository [11], defined in spaces consisting of symbolic features only:
Promoters, Soybean and DNA. The tables 1 and 2 present the results of the
10 repetitions of 10 fold CV for each of the tested models, and table 3 shows
average results for 10 training and test runs (the data is divided into training
and test parts). The first row of each table shows the result obtained on raw
data (arbitrary coding of symbols) while the other rows show the results with
continuousification noted in the first column. A “k” before the method’s name
means that one-against-rest technique was used, i.e. the data was classified by a
committee of k experts (where k is the number of classes) – each specializing in
the recognition of one of the classes against all the others. For each continuousifier
the columns P1, P2, . . . show the probabilities (calculated with the t test) that
it’s averaged test accuracy is higher then that of method 1, 2, etc.
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FSM Acc. Std.dev. P1 P2 P3 P4 P5

1: None 0.673 0.034 — 0.000 0.000 0.000 0.000
2: SSV 0.878 0.029 1.000 — 0.175 0.308 0.540
3: NBF 0.912 0.013 1.000 0.825 — 0.734 0.968
4: VDM 0.893 0.024 1.000 0.692 0.266 — 0.706
5: MDV 0.874 0.017 1.000 0.460 0.032 0.294 —

SVM Acc. Std.dev. P1 P2 P3 P4 P5

1: None 0.478 0.014 — 0.000 0.000 0.000 0.000
2: SSV 0.903 0.015 1.000 — 1.000 0.091 0.045
3: NBF 0.695 0.040 1.000 0.000 — 0.000 0.000
4: VDM 0.930 0.016 1.000 0.909 1.000 — 0.376
5: MDV 0.936 0.006 1.000 0.955 1.000 0.624 —

kNN Acc. Std.dev. P1 P2 P3 P4 P5

1: None 0.725 0.026 — 0.001 0.069 0.000 0.000
2: SSV 0.860 0.020 0.999 — 0.992 0.008 0.014
3: NBF 0.771 0.022 0.931 0.008 — 0.000 0.000
4: VDM 0.929 0.019 1.000 0.992 1.000 — 0.587
5: MDV 0.924 0.011 1.000 0.986 1.000 0.413 —

Table 1. Results for Promoters (106 instances, 57 attributes, 2 classes).

FSM Acc. Std.dev. P1 P2 P3 P4 P5

1: None 0.868 0.010 — 0.539 0.012 0.434 0.261
2: SSV 0.867 0.007 0.461 — 0.000 0.407 0.198
3: NBF 0.894 0.006 0.988 1.000 — 0.987 0.926
4: VDM 0.870 0.010 0.566 0.593 0.013 — 0.320
5: MDV 0.877 0.013 0.739 0.802 0.074 0.680 —

SVM Acc. Std.dev. P1 P2 P3 P4 P5 P6 P7

1: None 0.664 0.007 — 0.000 0.000 0.000 0.845 1.000 0.000
2: SSV 0.762 0.007 1.000 — 0.001 0.999 1.000 1.000 0.001
3: NBF 0.787 0.007 1.000 0.999 — 1.000 1.000 1.000 0.134
4: VDM 0.729 0.007 1.000 0.001 0.000 — 1.000 1.000 0.000
5: MDV 0.656 0.005 0.155 0.000 0.000 0.000 — 1.000 0.000
6: k VDM 0.487 0.007 0.000 0.000 0.000 0.000 0.000 — 0.000
7: k MDV 0.796 0.005 1.000 0.999 0.866 1.000 1.000 1.000 —

kNN Acc. Std.dev. P1 P2 P3 P4 P5 P6 P7

1: None 0.831 0.006 — 0.000 0.000 0.000 0.000 0.000 0.000
2: SSV 0.894 0.005 1.000 — 0.039 0.003 0.011 0.953 0.517
3: NBF 0.909 0.005 1.000 0.961 — 0.059 0.415 0.992 0.942
4: VDM 0.923 0.007 1.000 0.997 0.941 — 0.938 0.999 0.999
5: MDV 0.910 0.004 1.000 0.989 0.585 0.062 — 0.991 0.958
6: k VDM 0.878 0.008 1.000 0.047 0.008 0.001 0.009 — 0.086
7: k MDV 0.894 0.008 1.000 0.483 0.058 0.001 0.042 0.914 —

Table 2. Results for Soybean (290 instances, 35 attributes, 15 classes).
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FSM Acc. Std.dev. P1 P2 P3 P4 P5 P6 P7

1: None 0.906 0.007 — 0.001 0.000 0.000 0.000 0.000 0.000
2: SSV 0.936 0.004 0.999 — 0.058 0.007 0.060 0.005 0.099
3: NBF 0.948 0.005 1.000 0.942 — 0.620 0.715 0.238 0.500
4: VDM 0.946 0.002 1.000 0.993 0.380 — 0.699 0.052 0.405
5: MDV 0.944 0.003 1.000 0.940 0.285 0.301 — 0.032 0.282
6: k VDM 0.953 0.003 1.000 0.995 0.762 0.948 0.968 — 0.721
7: k MDV 0.948 0.007 1.000 0.901 0.500 0.595 0.718 0.279 —

SVM Acc. Std.dev. P1 P2 P3 P4 P5 P6 P7

1: None 0.611 0.000 — 0.000 0.000 0.000 0.000 0.000 0.000
2: SSV 0.927 0.000 1.000 — 1.000 0.000 0.000 0.000 1.000
3: NBF 0.633 0.000 1.000 0.000 — 0.000 0.000 0.000 0.000
4: VDM 0.948 0.000 1.000 1.000 1.000 — 1.000 1.000 1.000
5: MDV 0.947 0.000 1.000 1.000 1.000 0.000 — 1.000 1.000
6: k VDM 0.935 0.000 1.000 1.000 1.000 0.000 0.000 — 1.000
7: k MDV 0.895 0.000 1.000 0.000 1.000 0.000 0.000 0.000 —

kNN Acc. Std.dev. P1 P2 P3 P4 P5 P6 P7

1: None 0.676 0.001 — 0.000 0.000 0.000 0.000 0.000 0.000
2: SSV 0.876 0.003 1.000 — 1.000 0.000 0.000 0.000 0.000
3: NBF 0.827 0.004 1.000 0.000 — 0.000 0.000 0.000 0.000
4: VDM 0.949 0.001 1.000 1.000 1.000 — 0.883 0.000 0.889
5: MDV 0.947 0.003 1.000 1.000 1.000 0.117 — 0.001 0.822
6: k VDM 0.958 0.001 1.000 1.000 1.000 1.000 0.999 — 0.991
7: k MDV 0.941 0.006 1.000 1.000 1.000 0.111 0.178 0.009 —

Table 3. Results for DNA (2000 instances for training, 1186 for test, 60 at-
tributes, 3 classes).

6 Conclusions

The presented results clearly show that commonly used continuousification meth-
ods do not perform very well. Whether the results are good is the matter of luck.
The VDM method as well as the new MDV and SSV methods are significantly
more reliable. The need for appropriate data preparation confirms, that combi-
nations of different kinds of information retrieval (hybrid methods) are necessary
to obtain good results.

All the presented algorithms are fast, however NBF, VDM and MDV may
produce high dimensional data, which may significantly slower the learning of the
final models. In the case of Soybean data consisting of 35 features NBF produced
97 new features and each of VDM and MDV 525 features. For DNA data (60
features) NBF gave 240 features and each of VDM and MDV 180 features.

Instead of producing large spaces with VDM or MDV, sometimes it is rea-
sonable to use the one-against-rest technique - although it requires the final
classifier to be trained several times, it may be faster than training a single final
model – it depends on how efficient the model is in high dimensional spaces.
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The SSV method does not enlarge the dataset by features multiplication,
regardless the number of classes and feature values. Hence it is very efficient
for complex data. Although some other continuousification methods may give
higher accuracies, the difference is usually small in comparison to the difference
between SSV and an arbitrary symbols coding.

It must be pointed out, that the VDM, MDV and SSV methods use the
information about the classes of the vectors, so in the case of the tests like cross
validation it should not be used at the stage of data preprocessing. It must be
run separately for each fold of the test. Used at the preprocessing stage they
yield overoptimistic results.
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