Problems and Solutions of Visualizing and Analysing
Multidimensional Output from MLP Networks -
Barycentric Projections.

Filip Piekniewski and Leszek Rybicki

Departament of Mathematics and Computer Science, Nicholaus Copernicus University,
Torun, Poland, http://www.mat.uni.torun.pl

Abstract. Barycentric plotting, achieved by placing gaussian kernels in distant corners of the
feature space and projecting multidimensional output of neural network on a plane, provides
information about the process of training and certain features of the network. Additional
visual guides added to the plot show tendencies and irregularities in the training process.

1 Introduction

One of the important problems of modern neural network theory is to find a good
measure, or a method for determining if the network is well trained and ready to
solve “real life” problems, or if there are singularities that could render the network
useless. The backprop algorithm (and other learning algorithms) minimises a well
defined error function, usually the Mean Square Error (MSE). One might ask, since
the the value of the error function is so well defined and easy to calculate, what more
can one need? In fact, mean square error (and other error functions) provides just
a piece of statistical information about the learning process, while many important
issues are lost. Neither the MSE nor any other real-valued measure is sufficient to
tackle all relevant issues.

To get more information about the learning process, it would be necessary to
analyze the whole output data, find out which vectors are problematic, which of
them separate well and which don’t. Obviously, analyzing thousands of numbers by
hand is not a good idea. Economy, biology and physics know a common solution to
that - plotting.

2 Visualization

From now on, we will focus on MLP networks, used for classification. The problem
can be defined as follows:

e Input consists of: vectorsE(?) € R#, each of them is assigned to onelof
categories. VectoE () is assigned to categotyat (i)

e Network consists of two layers. There arénputs, some numbeér of hidden
neurons, ané output neurons.

e If the input vectorE () is assigned to categotythen the network is trained to
activate the-th output neuron, while others should not be activated. The desired
output vector corresponding to thi¢h category will be denoted b¢'at(i) as
opposed to the actual network outgit?) .

For example, if there are two categories then
the output is two dimensional, and the cate-
gories are mapped onto vertidgs0) and(0, 1)

of the unit square, which coincides in this case o
with the whole activation space. The activation Pt “‘-HH
space in general is fadimensional unit hyper- s il .,-’_"'f' " T
= e
cubel}, with Cat () concentrated on the bisect- s
. . . — — in "
ing hyperplanéd, of the main diagondl0, 1] F ’-‘, LY
of Ik. ; ',_H_h f .-..___l i
First of all, let's review the problem, point- "-HH_ o
ing out important issues: "
e We haven vector outputs in/;, which lay
inside ak-dimensional hypercube. Fig. 1. A plot with six categories and
e We map the categories onto correspondir&i4 patterns of data. It visualizes the
vertices. output of a sigmoidal MLP network

e The training process should result in mogtith a MSE of 0.214. The plot was
of the data clustering around these verticegc@led by = 0.35.

Therefore the most effective method of vi-
sualization seems to be some kind of a projec-
tion. Now, what interests us the most about each ve@{éris:

e Is it well classified (in other words, is the distance betw€ER and Cat (i)
minimized among the categories)?
e Is it far from or close to its assigned category; does it tend to move towards

another category?
¢ |s it an outlier or are there any other vectors in its vicinity?

Let’s consider a mapping system, as follows. Each of the categories is a centre of a
Gaussian radial function)

Glx;0) = e 202
which will be used for scaling. Categories will be mapped, one-to-one, onto the
corners of a polygon. Assume there @reategories. Inside &-gon, each output
vectorO® is projected as follows:

ol = % zk: el o)(Ho@ . Cat(l)H) Cat(l),

! (1)
ol — % zk: el o)(Ho@ - Cat(l)H) - Cat(l),,

=1

_ k (i) N i (1) (i)
whered = >, G(0,0)(||O") — Cat(l)||) is a normalizing factor(O.’, Oy”)

are coordinates of theth output’s projection(Cat(l),, Cat(l),) are coordinates

of thel-th category projectioni{th vertex of k-gon)|||| is the Euclidean norm in a
k-dimensional space.

A sample plot can be seen in Fig. 1. To make the plot more useful, some extra
information coded as color has been added, defining where the sample belongs, and
how it was classified. Further in the paper there will be some other add-ons like
network dynamics, and convex hull around each data cluster.

Since the plot mechanism de-
scribed above is just a projection, some
information is lost. Two dots displayed " i
as close to each other can be quite dis-
tant in the activation space. If dots from
different categories tend to mix up in= -
the plot, it doesn't always mean they \ :
mix in the activation space. These are
obvious faults of plotting multidimen- 0
sional data into two dimensions. OneFig.2. Two plots, showing exactly the same
way to compensate for these faults is tdata (sigmoidal MPL output, MSE 0.1, scaled
look at different plots, and choose théy a factoro = 0.7), but with different permu-
one that gives the best view. This can bigtions of category vertices. Please notice that
done by permuting the vertices of theategory 2 and 3 don’t mix.
polygon (which correspond to category
centers). Unfortunately it's rather diffi-
cult to numerically choose an optimal (most suitable for a human) permutation, so
the problem of choosing the best permutation is left to the plot reviewer (user).

Permuting categories is just one of many methods to make such plots more use-
ful. We introduced some other self-adapting optimizations, that might make the plot
just a bit better. The parametey responsible for dispersion, is constant for all cat-
egories and data samples. What ifs made dependent upon some parameters spe-
cific for a category? Put:

- O~ Catd] ?
0 =00, e, 00 el @

In this case, the dispersion of the
Gaussian kernel depends on the max-
imal distance between the centre of a Y A
categoryl, and vectors assigned fo /% i& A

If the vectors of category are spread / #

widely all over the activation space, the—‘- *‘—*-'L'- -"-'—-——"'"*
coresponding Gaussian function willrig 3. Three plots created using the same
have a big dispersion. A big disperdata (iris data parsed by a MLP network,
sion means that the category will attracMSE=0.086) but with different scaling op-
tions. The one on the left is scaled with=
2.0, constant for all categories (1), the one in
the middle is scaled using the maximum fO
mula (2) withoy set t02.0, third one is scalgd
using the average formula (3) again with
2.0.

other vectors stronger. What conse-
guences does it have for our plot? Since
a "wide” category is a stronger attrac-
tor, this scaling will reveal the border
regions in activation space, while most
vectors from the-th category will be
projected close to the polygon corners.
This kind of projection is good for analyzing border regions of networks that are
already trained, and is rather useless for fresh networks.
Another variant of adaptive, category dependent scaling is done by making
depend on the avarage distance of vectors from their assigned category. This can be
done as follows:

. —_—

ow=o|qp X [0 - Catll ©)
Cat(i)=l

As opposed to the previous method, suppose that most vectors are properly classi-

fied around their common category, and a few are not. The average distance between

sample vectors and the category centre is small, and sopheameter is small. It's

as if those wrongly classified vectors were treated as data errors rather than net-

work errors. This gives a slightly different projection that displays badly classified

samples.

3 Additional visual guides

Adaptive scaling methods and vertex permutations are helpful when it comes to
enhancing the informational value of the plot. We suggest several further enhance-
ments.

It's not uncommon for a single data sample to float away from its category.
The network would keep the MSE low by keeping the remaining samples close to
their proper categories. While this might be satisfactory from a statistical point of
view, the consequences might be catastrophical in real life applications. Imagine a
patient with a very uncommon symptoms (due to genetic reasons for example) being
categorised to (and treated for) a different disease.

An outlier sample could be unnoticed as its corresponding dot could be covered
by other dots on the plot. To resolve this, as well as to provide a certain per-category
measure of data similarity, the plot can be complemented with convex hulls marking
the borders of each category. If a data sample happens to stand out, the hull will
expand to contain it, making it clear that the category does mix up with another one.

From a non-overtrained, well gen-
eralizing neural net, it is expected that
o P the convex hull of a given category

Fig.4. The 5 categories are well separated... or
are they? Convex hulls reval the problem.

should remain within a vicinity of the
category's vertex. If two convex hulls
overlap, it suggests that their categories
might have been confused by the net-
work, although not necessarily. If the
convex hull is stretched away from the
category vertex, but the samples remain
tucked tight, it means that the net has
trouble separating the category and its
architecture and/or training process has
to be reviewed.

To provide an extra information about the overlapping of categories, simple
Voronoi border capability can be added to the plot. The borders separate only the cat-
egory centers, yet they give a good view of relations between categories. One thing
has to be put straight though. The fact that a sample is not in its assigned Voronoi
cell, doesn’t mean that it is not properly classified. The position of a sample in the
plot depends on multiple factors, including relative weights of the output connec-
tions and adaptive scaling (parameters). Therefore the badly classified samples
have been represented by an X symbol. The X mark is coloured with the color of
the category it was (mis)assigned to. This gives extra information about misleading
data or patterns misassigned in the process of data preparation. The X mark is inde-
pendent of scaling, because its color coincides with the color of the vertex the dot
approaches when approaches zero.

All the enhancements and visual guides described so far are meant to empha-
size certain qualities of trained networks or to compensate for the limitations of
dimension-reducing projection. To view the dynamic aspects of the training process,
the user has either to watch the changing plot during training, or look at multiple
plots representing the states of the network in subsequent stages of the process. Dis-
playing multiple plots requires additional space and doesn’t provide any visual clue
on how far a given dot has moved (or if it has moved at all).

The solution to that is rather simple. The movement of a dot during a cetrain
(user-defined) number of training epochs can be marked as a segment ending at this
dot. This might not say much about an individual dot, but the whole plot seems to
be enriched by another dimension: time. Extra information given by such a plot is
useful in many ways. We know that the training process is going well if the dots
are moving towards their assigned categories, but that is a pretty optimistic situation
and doesn’t really happen throughout most of the process.

The network separates the data well if a group
of dots belonging to the same category is mov-
ing simultaneously. Any dot described as an out-
lier before, or a dot that is to become an outlier,
would most certainly move in a different direction.
In some situations one might observe that all cate-
gories move towards one that is rather stable. That

Fig.5. The dynamics of a net-
work’s output in early stages
of the training process (back-
prop algorithm with momen-
tum), MSE=0.3, scaled adap-
tively (avarageyo = 0.5.

means that the network has trouble separating that
category and tends to decrease the MSE by warping
the whole output in that direction. A situation like
that suggests that maybe crossvalidation or data pre-
separation might be required. The network might
be too small or a committee of networks may be
needed to solve the problem.

4 Acknowledgements

We thank our mentor, prof. Wiodzistaw Duch,
who had suggested to take on this project. Great
thanks go to dr Norbert Jankowski, who provided us
with practical information about the implementation
of the visualisation module. Dr Tomasz Schreiber
gained our gratitude by helping with various theo-

retical issues and helping us to solve optimalisation problems. Last, but not least,
we want to thank Paolo Marrone, the author of the JOONE engine.

References

1.

2.

W. DuchUncertainty of data, fuzzy membership functions, and multi-layer perceptrons
(2003, subm. to IEEE Transactions on Neural Networks

W. DuchColoring black boxes: visualization of neural network decisidnis Joint Conf.

on Neural Networks, Portland, Oregon, 2003, Vol. |, pp. 1735-1740

. Paolo Marrondava object oriented neural engimevw.joone.org
. Stanistaw OsowskKsieci neuronowe do przetwarzania informaéjolitechnika Warsza-

wska, Warszawa 2000

. J. Korbicz, A. Obuchowicz, D. Uaski Sztuczne sieci neuronowe, Podstawy i zastosowa-

nia. Akad. Oficyna Wyd. PLJ, Warszawa 1994

. Robert A. Kosiski Sztuczne sieci neuronowe, Dynamika nieliniowa i chegsl. Nauk-

Tech, Warszawa 2002

. Stanistaw OsowskiSieci neuronowe w afiu algorytmicznym Wyd. Nauk-Tech,

Warszawa 1996

. W. Duch, J. Korbicz, L. Rutkowski, R. TadeusiewBcybernetyka i imynieria biome-

dyczna 2000 - tom 6 Sieci neuronoMeademicka Oficyna Wydawnicza Exit, Warszawa
2000.

