
Problems and Solutions of Visualizing and Analysing
Multidimensional Output from MLP Networks -
Barycentric Projections.

Filip Piȩkniewski and Leszek Rybicki

Departament of Mathematics and Computer Science, Nicholaus Copernicus University,
Toruń, Poland, http://www.mat.uni.torun.pl

Abstract. Barycentric plotting, achieved by placing gaussian kernels in distant corners of the
feature space and projecting multidimensional output of neural network on a plane, provides
information about the process of training and certain features of the network. Additional
visual guides added to the plot show tendencies and irregularities in the training process.

1 Introduction

One of the important problems of modern neural network theory is to find a good
measure, or a method for determining if the network is well trained and ready to
solve “real life” problems, or if there are singularities that could render the network
useless. The backprop algorithm (and other learning algorithms) minimises a well
defined error function, usually the Mean Square Error (MSE). One might ask, since
the the value of the error function is so well defined and easy to calculate, what more
can one need? In fact, mean square error (and other error functions) provides just
a piece of statistical information about the learning process, while many important
issues are lost. Neither the MSE nor any other real-valued measure is sufficient to
tackle all relevant issues.

To get more information about the learning process, it would be necessary to
analyze the whole output data, find out which vectors are problematic, which of
them separate well and which don’t. Obviously, analyzing thousands of numbers by
hand is not a good idea. Economy, biology and physics know a common solution to
that - plotting.

2 Visualization

From now on, we will focus on MLP networks, used for classification. The problem
can be defined as follows:

• Input consists ofn vectorsE (i) ∈ R
s, each of them is assigned to one ofk

categories. VectorE(i) is assigned to categoryCat(i)
• Network consists of two layers. There ares inputs, some numberh of hidden

neurons, andk output neurons.



• If the input vectorE (i) is assigned to categoryt, then the network is trained to
activate thet-th output neuron, while others should not be activated. The desired

output vector corresponding to thei-th category will be denoted by
−−−−→
Cat(i) as

opposed to the actual network outputO (i).

Fig. 1. A plot with six categories and
214 patterns of data. It visualizes the
output of a sigmoidal MLP network
with a MSE of 0.214. The plot was
scaled byσ = 0.35.

For example, if there are two categories then
the output is two dimensional, and the cate-
gories are mapped onto vertices(1, 0) and(0, 1)
of the unit square, which coincides in this case
with the whole activation space. The activation
space in general is ak-dimensional unit hyper-

cubeIk, with
−−−−→
Cat(i) concentrated on the bisect-

ing hyperplaneHk of the main diagonal[
−→
0 ,

−→
1 ]

of Ik.

First of all, let’s review the problem, point-
ing out important issues:

• We haven vector outputs inIk which lay
inside ak-dimensional hypercube.

• We map the categories onto corresponding
vertices.

• The training process should result in most
of the data clustering around these vertices.

Therefore the most effective method of vi-
sualization seems to be some kind of a projec-
tion. Now, what interests us the most about each vectorO (i) is:

• Is it well classified (in other words, is the distance betweenO(i) and
−−−−→
Cat(i)

minimized among the categories)?
• Is it far from or close to its assigned category; does it tend to move towards

another category?
• Is it an outlier or are there any other vectors in its vicinity?

Let’s consider a mapping system, as follows. Each of the categories is a centre of a
Gaussian radial function

G(x; σ) = e−
x2

2σ2

which will be used for scaling. Categories will be mapped, one-to-one, onto the
corners of a polygon. Assume there arek categories. Inside ak-gon, each output
vectorO(i) is projected as follows:

O(i)
x =

1
δ

k∑
l=1

G(0, σ)(
∥∥∥O(i) −−−−−→

Cat(l)
∥∥∥) · −−−−→Cat(l)x

O(i)
y =

1
δ

k∑
l=1

G(0, σ)(
∥∥∥O(i) −−−−−→

Cat(l)
∥∥∥) · −−−−→Cat(l)y,

(1)



whereδ =
∑k

l=1 G(0, σ)(
∥∥∥O(i) −−−−−→

Cat(l)
∥∥∥) is a normalizing factor,(O(i)

x , O
(i)
y )

are coordinates of thei-th output’s projection,(
−−−−→
Cat(l)x,

−−−−→
Cat(l)y) are coordinates

of the l-th category projection (l-th vertex of k-gon),‖‖ is the Euclidean norm in a
k-dimensional space.
A sample plot can be seen in Fig. 1. To make the plot more useful, some extra
information coded as color has been added, defining where the sample belongs, and
how it was classified. Further in the paper there will be some other add-ons like
network dynamics, and convex hull around each data cluster.

Fig. 2. Two plots, showing exactly the same
data (sigmoidal MPL output, MSE 0.1, scaled
by a factorσ = 0.7), but with different permu-
tations of category vertices. Please notice that
category 2 and 3 don’t mix.

Since the plot mechanism de-
scribed above is just a projection, some
information is lost. Two dots displayed
as close to each other can be quite dis-
tant in the activation space. If dots from
different categories tend to mix up in
the plot, it doesn’t always mean they
mix in the activation space. These are
obvious faults of plotting multidimen-
sional data into two dimensions. One
way to compensate for these faults is to
look at different plots, and choose the
one that gives the best view. This can be
done by permuting the vertices of the
polygon (which correspond to category
centers). Unfortunately it’s rather diffi-
cult to numerically choose an optimal (most suitable for a human) permutation, so
the problem of choosing the best permutation is left to the plot reviewer (user).

Permuting categories is just one of many methods to make such plots more use-
ful. We introduced some other self-adapting optimizations, that might make the plot
just a bit better. The parameterσ, responsible for dispersion, is constant for all cat-
egories and data samples. What ifσ is made dependent upon some parameters spe-
cific for a category? Put:

σ(l) = σ0 max
i∈N,Cat(i)=l

∥∥∥O(i) −−−−−→
Cat(l)

∥∥∥ (2)

Fig. 3. Three plots created using the same
data (iris data parsed by a MLP network,
MSE=0.086) but with different scaling op-
tions. The one on the left is scaled withσ =
2.0, constant for all categories (1), the one in
the middle is scaled using the maximum for-
mula (2) withσ0 set to2.0, third one is scaled
using the average formula (3) again withσ0 =
2.0.

In this case, the dispersion of the
Gaussian kernel depends on the max-
imal distance between the centre of a
categoryl, and vectors assigned tol.
If the vectors of categoryl are spread
widely all over the activation space, the
coresponding Gaussian function will
have a big dispersion. A big disper-
sion means that the category will attract



other vectors stronger. What conse-
quences does it have for our plot? Since
a ”wide” category is a stronger attrac-
tor, this scaling will reveal the border
regions in activation space, while most
vectors from thel-th category will be
projected close to the polygon corners.
This kind of projection is good for analyzing border regions of networks that are
already trained, and is rather useless for fresh networks.

Another variant of adaptive, category dependent scaling is done by makingσ
depend on the avarage distance of vectors from their assigned category. This can be
done as follows:

σ(l) = σ0


 1

M

∑
Cat(i)=l

∥∥∥O(i) −−−−−→
Cat(l)

∥∥∥

 (3)

As opposed to the previous method, suppose that most vectors are properly classi-
fied around their common category, and a few are not. The average distance between
sample vectors and the category centre is small, and so theσ parameter is small. It’s
as if those wrongly classified vectors were treated as data errors rather than net-
work errors. This gives a slightly different projection that displays badly classified
samples.

3 Additional visual guides

Adaptive scaling methods and vertex permutations are helpful when it comes to
enhancing the informational value of the plot. We suggest several further enhance-
ments.

It’s not uncommon for a single data sample to float away from its category.
The network would keep the MSE low by keeping the remaining samples close to
their proper categories. While this might be satisfactory from a statistical point of
view, the consequences might be catastrophical in real life applications. Imagine a
patient with a very uncommon symptoms (due to genetic reasons for example) being
categorised to (and treated for) a different disease.

An outlier sample could be unnoticed as its corresponding dot could be covered
by other dots on the plot. To resolve this, as well as to provide a certain per-category
measure of data similarity, the plot can be complemented with convex hulls marking
the borders of each category. If a data sample happens to stand out, the hull will
expand to contain it, making it clear that the category does mix up with another one.

Fig. 4. The 5 categories are well separated... or
are they? Convex hulls reval the problem.

From a non-overtrained, well gen-
eralizing neural net, it is expected that
the convex hull of a given category



should remain within a vicinity of the
category’s vertex. If two convex hulls
overlap, it suggests that their categories
might have been confused by the net-
work, although not necessarily. If the
convex hull is stretched away from the
category vertex, but the samples remain
tucked tight, it means that the net has
trouble separating the category and its
architecture and/or training process has

to be reviewed.

To provide an extra information about the overlapping of categories, simple
Voronoi border capability can be added to the plot. The borders separate only the cat-
egory centers, yet they give a good view of relations between categories. One thing
has to be put straight though. The fact that a sample is not in its assigned Voronoi
cell, doesn’t mean that it is not properly classified. The position of a sample in the
plot depends on multiple factors, including relative weights of the output connec-
tions and adaptive scaling (σ parameters). Therefore the badly classified samples
have been represented by an X symbol. The X mark is coloured with the color of
the category it was (mis)assigned to. This gives extra information about misleading
data or patterns misassigned in the process of data preparation. The X mark is inde-
pendent of scaling, because its color coincides with the color of the vertex the dot
approaches whenσ approaches zero.

All the enhancements and visual guides described so far are meant to empha-
size certain qualities of trained networks or to compensate for the limitations of
dimension-reducing projection. To view the dynamic aspects of the training process,
the user has either to watch the changing plot during training, or look at multiple
plots representing the states of the network in subsequent stages of the process. Dis-
playing multiple plots requires additional space and doesn’t provide any visual clue
on how far a given dot has moved (or if it has moved at all).

The solution to that is rather simple. The movement of a dot during a cetrain
(user-defined) number of training epochs can be marked as a segment ending at this
dot. This might not say much about an individual dot, but the whole plot seems to
be enriched by another dimension: time. Extra information given by such a plot is
useful in many ways. We know that the training process is going well if the dots
are moving towards their assigned categories, but that is a pretty optimistic situation
and doesn’t really happen throughout most of the process.

Fig. 5. The dynamics of a net-
work’s output in early stages
of the training process (back-
prop algorithm with momen-
tum), MSE=0.3, scaled adap-
tively (avarage)σ0 = 0.5.

The network separates the data well if a group
of dots belonging to the same category is mov-
ing simultaneously. Any dot described as an out-
lier before, or a dot that is to become an outlier,
would most certainly move in a different direction.
In some situations one might observe that all cate-
gories move towards one that is rather stable. That



means that the network has trouble separating that
category and tends to decrease the MSE by warping
the whole output in that direction. A situation like
that suggests that maybe crossvalidation or data pre-
separation might be required. The network might
be too small or a committee of networks may be
needed to solve the problem.

4 Acknowledgements

We thank our mentor, prof. Włodzisław Duch,
who had suggested to take on this project. Great
thanks go to dr Norbert Jankowski, who provided us
with practical information about the implementation
of the visualisation module. Dr Tomasz Schreiber
gained our gratitude by helping with various theo-

retical issues and helping us to solve optimalisation problems. Last, but not least,
we want to thank Paolo Marrone, the author of the JOONE engine.

References

1. W. DuchUncertainty of data, fuzzy membership functions, and multi-layer perceptrons
(2003, subm. to IEEE Transactions on Neural Networks

2. W. DuchColoring black boxes: visualization of neural network decisions.Int. Joint Conf.
on Neural Networks, Portland, Oregon, 2003, Vol. I, pp. 1735-1740

3. Paolo MarroneJava object oriented neural enginewww.joone.org
4. Stanisław OsowskiSieci neuronowe do przetwarzania informacji. Politechnika Warsza-

wska, Warszawa 2000
5. J. Korbicz, A. Obuchowicz, D. UcińskiSztuczne sieci neuronowe, Podstawy i zastosowa-

nia. Akad. Oficyna Wyd. PLJ, Warszawa 1994
6. Robert A. KosínskiSztuczne sieci neuronowe, Dynamika nieliniowa i chaos. Wyd. Nauk-

Tech, Warszawa 2002
7. Stanisław OsowskiSieci neuronowe w uj¸eciu algorytmicznym. Wyd. Nauk-Tech,

Warszawa 1996
8. W. Duch, J. Korbicz, L. Rutkowski, R. TadeusiewiczBiocybernetyka i in˙zynieria biome-

dyczna 2000 - tom 6 Sieci neuronoweAkademicka Oficyna Wydawnicza Exit, Warszawa
2000.


