
Problems and Solutions of Visualizing and Analyzing
Multidimensional Output from MLP Networks -
Barycentric Projections.

Filip Piȩkniewski and Leszek Rybicki

Departament of Mathematics and Computer Science, Nicholaus Copernicus University,
Toruń, Poland, http://www.mat.uni.torun.pl

Abstract. Barycentric plotting, achieved by placing gaussian kernels in distant corners of the
feature space and projecting multidimensional output of neural network on a plane, provides
information about the process of training and certain features of the network. Additional
visual guides added to the plot show tendencies and irregularities in the training process.

1 Introduction

One of the important problems of modern neural network theory is to find a good
measure, or a method for determining if the network is well trained and ready to
solve “real life” problems, or if there are singularities that could render the network
useless. The backprop algorithm (and other learning algorithms) minimizes a well
defined error function, usually the Mean Square Error (MSE). One might ask, since
the the value of the error function is so well defined and easy to calculate, what more
can one need? In fact, mean square error (and other error functions) provides just
a piece of statistical information about the learning process, while many important
issues are lost. Neither the MSE nor any other real-valued measure is sufficient to
tackle all relevant issues.

To get more information about the learning process, it would be necessary to
analyze the whole output data, find out which vectors are problematic, which of
them separate well and which don’t. Obviously, analyzing thousands of numbers by
hand is not a good idea. Economy, biology and physics know a common solution to
that - plotting.

2 Visualization

From now on, we will focus on MLP networks, used for classification. The problem
can be defined as follows:

� Input consists of� vectors� ��� � �
� , each of them is assigned to one of�

categories. Vector���� is assigned to category������
� Network consists of two layers. There are� inputs, some number� of hidden

neurons, and� output neurons.



� If the input vector� ��� is assigned to category�, then the network is trained to
activate the�-th output neuron, while others should not be activated. The desired

output vector corresponding to the�-th category will be denoted by
�����
������ as

opposed to the actual network output	 ���.

Fig. 1. A plot with six categories and
214 patterns of data. It visualizes the
output of a sigmoidal MLP network
with a MSE of 0.214. The plot was
scaled by� � ����.

For example, if there are two categories then
the output is two dimensional, and the cate-
gories are mapped onto vertices��
 �� and��
 ��
of the unit square, which coincides in this case
with the whole activation space. The activation
space in general is a�-dimensional unit hyper-

cube��, with
�����
������ concentrated on the bisect-

ing hyperplane�� of the main diagonal�
��
� 

��
� �

of ��.

First of all, let’s review the problem, point-
ing out important issues:

� We have� vector outputs in�� which lay
inside a�-dimensional hypercube.

� We map the categories onto corresponding
vertices.

� The training process should result in most
of the data clustering around these vertices.

Therefore the most effective method of vi-
sualization seems to be some kind of a projec-
tion. Now, what interests us the most about each vector	 ��� is:

� Is it well classified (in other words, is the distance between	 ��� and
�����
������

minimized among the categories)?
� Is it far from or close to its assigned category; does it tend to move towards

another category?
� Is it an outlier or are there any other vectors in its vicinity?

Let’s consider a mapping system, as follows. Each of the categories is a center of a
Gaussian radial function

��� �
 �� � ��
������

���

which will be used for scaling. Categories will be mapped, one-to-one, onto the
corners of a polygon. Assume there are� categories. Inside a�-gon, each output
vector	��� is projected as follows:

	���
� �

�

Æ

��
���


�����	��� �

�����
������

���
�
� �
 �

�
�
�����
�������

	���
� �

�

Æ

��
���


�����	��� �

�����
������

���
�
� �
 �

�
�
�����
�������


(1)



whereÆ �
��

���
�����	��� �

�����
������

���
�
� �
 �

�
is a normalizing factor,�	���

� 
 	
���
� �

are coordinates of the�-th output’s projection,�
�����
�������


�����
�������� are coordinates

of the �-th category projection (�-th vertex of k-gon),�� is the Euclidean norm in a
k-dimensional space.
A sample plot can be seen in Fig. 1. To make the plot more useful, some extra infor-
mation coded as color has been added, defining where the sample belongs, and how
it was classified. Further in the paper there will be some other add-ons like network
dynamics, and convex hull around each data cluster.

Fig. 2. Two plots, showing exactly the same
data (sigmoidal MPL output, MSE 0.1, scaled
by a factor� � ���), but with different permu-
tations of category vertices. Please notice that
category 2 and 3 don’t mix.

Since the plot mechanism de-
scribed above is just a projection, some
information is lost. Two dots displayed
as close to each other can be quite dis-
tant in the activation space. If dots from
different categories tend to mix up in
the plot, it doesn’t always mean they
mix in the activation space. These are
obvious faults of plotting multidimen-
sional data into two dimensions. One
way to compensate for these faults is to
look at different plots, and choose the
one that gives the best view. This can be
done by permuting the vertices of the
polygon (which correspond to category
centers). Unfortunately it’s rather diffi-
cult to numerically choose an optimal (most suitable for a human) permutation, so
the problem of choosing the best permutation is left to the plot reviewer (user).

Fig. 3. Three plots created using the same
data (iris data parsed by a MLP network,
MSE=0.086) but with different scaling op-
tions. The one on the left is scaled with� �

���, constant for all categories (1), the one in
the middle is scaled using the maximum for-
mula (2) with�� set to���, third one is scaled
using the average formula (3) again with�� �

���.

Permuting categories is just one
of many methods to make such plots
more useful. We introduced some other
self-adapting optimizations, that might
make the plot just a bit better. The pa-
rameter�, responsible for dispersion,
is constant for all categories and data
samples. What if� is made dependent
upon some parameters specific for a
category? Put:

���� � �� �	

������	�����

���	��� �
�����
������

���
(2)

In this case, the dispersion of the
Gaussian kernel depends on the maxi-
mal distance between the center of a category�, and vectors assigned to�. If the



vectors of category� are spread widely all over the activation space, the correspond-
ing Gaussian function will have a big dispersion. A big dispersion means that the
category will attract other vectors stronger. What consequences does it have for our
plot? Since a ”wide” category is a stronger attractor, this scaling will reveal the bor-
der regions in activation space, while most vectors from the�-th category will be
projected close to the polygon corners. This kind of projection is good for analyzing
border regions of networks that are already trained, and is rather useless for fresh
networks.

Another variant of adaptive, category dependent scaling is done by making�

depend on the average distance of vectors from their assigned category. This can be
done as follows:

���� � ��

�
� �

�

�
��	�����

���	��� �
�����
������

���
�
� (3)

As opposed to the previous method, suppose that most vectors are properly classi-
fied around their common category, and a few are not. The average distance between
sample vectors and the category center is small, and so the� parameter is small. It’s
as if those wrongly classified vectors were treated as data errors rather than net-
work errors. This gives a slightly different projection that displays badly classified
samples.

3 Additional visual guides

Adaptive scaling methods and vertex permutations are helpful when it comes to
enhancing the informational value of the plot. We suggest several further enhance-
ments.

Fig. 4. The 5 categories are well separated... or
are they? Convex hulls reval the problem.

It’s not uncommon for a single data
sample to float away from its cate-
gory. The network would keep the MSE
low by keeping the remaining samples
close to their proper categories. While
this might be satisfactory from a sta-
tistical point of view, the consequences
might be catastrophical in real life ap-
plications. Imagine a patient with a
very uncommon symptoms (due to ge-
netic reasons for example) being cate-
gorized to (and treated for) a different
disease.

An outlier sample could be unnoticed as its corresponding dot could be covered
by other dots on the plot. To resolve this, as well as to provide a certain per-category
measure of data similarity, the plot can be complemented with convex hulls marking



the borders of each category. If a data sample happens to stand out, the hull will
expand to contain it, making it clear that the category does mix up with another one.

From a non-overtrained, well generalizing neural net, it is expected that the con-
vex hull of a given category should remain within a vicinity of the category’s vertex.
If two convex hulls overlap, it suggests that their categories might have been con-
fused by the network, although not necessarily. If the convex hull is stretched away
from the category vertex, but the samples remain tucked tight, it means that the net
has trouble separating the category and its architecture and/or training process has
to be reviewed.

To provide an extra information about the overlapping of categories, simple
Voronoi border capability can be added to the plot. The borders separate only the cat-
egory centers, yet they give a good view of relations between categories. One thing
has to be put straight though. The fact that a sample is not in its assigned Voronoi
cell, doesn’t mean that it is not properly classified. The position of a sample in the
plot depends on multiple factors, including relative weights of the output connec-
tions and adaptive scaling (� parameters). Therefore the badly classified samples
have been represented by an X symbol. The X mark is coloured with the color of
the category it was (mis)assigned to. This gives extra information about misleading
data or patterns misassigned in the process of data preparation. The X mark is inde-
pendent of scaling, because its color coincides with the color of the vertex the dot
approaches when� approaches zero.

Fig. 5. The dynamics of a net-
work’s output in early stages
of the training process (back-
prop algorithm with momen-
tum), MSE=0.3, scaled adap-
tively (average)�� � ���.

All the enhancements and visual guides de-
scribed so far are meant to emphasize certain qual-
ities of trained networks or to compensate for the
limitations of dimension-reducing projection. To
view the dynamic aspects of the training process,
the user has either to watch the changing plot dur-
ing training, or look at multiple plots representing
the states of the network in subsequent stages of
the process. Displaying multiple plots requires addi-
tional space and doesn’t provide any visual clue on
how far a given dot has moved (or if it has moved at
all).

The solution to that is rather simple. The move-
ment of a dot during a certain (user-defined) number
of training epochs can be marked as a segment end-
ing at this dot. This might not say much about an
individual dot, but the whole plot seems to be en-
riched by another dimension: time. Extra informa-
tion given by such a plot is useful in many ways. We
know that the training process is going well if the
dots are moving towards their assigned categories,



but that is a pretty optimistic situation and doesn’t really happen throughout most of
the process.

The network separates the data well if a group of dots belonging to the same
category is moving simultaneously. Any dot described as an outlier before, or a dot
that is to become an outlier, would most certainly move in a different direction. In
some situations one might observe that all categories move towards one that is rather
stable. That means that the network has trouble separating that category and tends
to decrease the MSE by warping the whole output in that direction. A situation like
that suggests that maybe crossvalidation or data pre-separation might be required.
The network might be too small or a committee of networks may be needed to solve
the problem.

4 Acknowledgements

We thank our mentor, prof. Włodzisław Duch, who had suggested to take on this
project. Great thanks go to dr Norbert Jankowski, who provided us with practi-
cal information about the implementation of the visualization module. Dr Tomasz
Schreiber gained our gratitude by helping with various theoretical issues and help-
ing us to solve optimalization problems. Last, but not least, we want to thank Paolo
Marrone, the author of the JOONE engine.

References

1. W. DuchUncertainty of data, fuzzy membership functions, and multi-layer perceptrons
(2003, subm. to IEEE Transactions on Neural Networks

2. W. DuchColoring black boxes: visualization of neural network decisions.Int. Joint Conf.
on Neural Networks, Portland, Oregon, 2003, Vol. I, pp. 1735-1740

3. Paolo MarroneJava object oriented neural enginewww.joone.org
4. Stanisław OsowskiSieci neuronowe do przetwarzania informacji. Politechnika Warsza-

wska, Warszawa 2000
5. J. Korbicz, A. Obuchowicz, D. UcińskiSztuczne sieci neuronowe, Podstawy i zastosowa-

nia. Akad. Oficyna Wyd. PLJ, Warszawa 1994
6. Robert A. KosínskiSztuczne sieci neuronowe, Dynamika nieliniowa i chaos. Wyd. Nauk-

Tech, Warszawa 2002
7. Stanisław OsowskiSieci neuronowe w uj¸eciu algorytmicznym. Wyd. Nauk-Tech,

Warszawa 1996
8. W. Duch, J. Korbicz, L. Rutkowski, R. TadeusiewiczBiocybernetyka i in˙zynieria biome-

dyczna 2000 - tom 6 Sieci neuronoweAkademicka Oficyna Wydawnicza Exit, Warszawa
2000.


