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vol. XX (XXXX) No. XSeletion of Prototypes with the EkP SystembyKarol Grudzi«skiInstitute of PhysisKazimierz Wielki UniversityBydgoszz, Poland.e-mail: grudzinski.k�gmail.omAbstrat: A ompletely new system for a seletion of refereneinstanes, whih is alled EkP (Exatly k Prototypes) has been in-trodued by us reently. In this paper we study a suitability ofthe EkP method for training data redution on seventeen datasets.As the underlying lassi�er the well known IB1 system (1-NearestNeighbor lassi�er) has been hosen. We ompare generalizationability of our method to performane of IB1 trained on the entiretraining data and performane of LVQ for whih the same numberof odebooks has been hosen as the number of prototypes whihhas been seleted by the EkP system. The results indiate, thateven with only a few prototypes whih have been hosen by the EkPmethod, on nearly all seventeen datasets statistially indistinguish-able results from these attained with IB1 have been obtained. Onmany datasets generalization ability of the EkP system has beenlarger than the one attained with LVQ.1. IntrodutionData mining is ommonly employed in many domains. A ase-based way of dataexplanation is very popular among researhers. Suh an approah to knowledgedisovery and understanding is partiularly often employed in mediine, wherea medial dotor makes a diagnosis by referring to other similar ases in adatabase of patients.Interesting instane vetors, known as referene ases, an be either seletedfrom training data or an be generated out of a training set. In the latterase instanes' features have in general di�erent values than the ones that arestored in the original training set. Both tehniques (i.e. instane seletion andprototype generation) often lead to a signi�ant training set size redution.This paper onerns the �rst above mentioned problem, i.e. `instane sele-tion', `training data ompression, redution or pruning'. The idea behind thismahine learning paradigm is that only a small fration of a usually muh larger,original training set is used for a �nal lassi�ation of unseen samples (Maloof



2 Karol Grudzi«skiM., Mihalski, R. , 2000; Martinez T., Wilson D. , 1997, 2000; Grohowski M. ,2003; Grohowski M., Jankowski N. , 2004-1,-; Duh. W., Grudzinski. K , 2000;Grudzinski K. , 2004, 2008).Prototype seletion is an extremely important problem whih has been fre-quently studied by mahine learning and pattern reognition researhers. Sele-tion of referene instanes an signi�antly speed up lassi�ation and analysisof data later and usually leads to better data understanding and may lowersensitivity to noise of some lassi�ers. Strong training set redution may some-times result in statistially signi�ant degradation of the lassi�ation aurayattained on unseen samples, however as many experiments illustrate often itis the other way around, i.e. data pruning improves generalization ability oflassi�ers. Samples seleted with the EkP system an be used for example tobuild prototype-based rules, whih had been introdued by Duh et. al. (DuhW., Grudzinski K. , 2001; Blahnik M., Duh W. , 2004) and whih are a veryinteresting alternative to lassi logial rules.The aronym EkP is short for Exatly-k-Prototypes. We want to stresshere that our new system di�ers ompletely from our earlier model, PM-M(Grudzinski K. , 2004).2. Methodologies for Referene Instanes SeletionBefore we proeed to presentation of the EkP system and the results obtainedwith this method, a very onise review of some of the known tehniques em-ployed in seletion of the referene ases is provided. This presentation drawsheavily on the exellent work of Grohowski ontained in his M.S. thesis (Gro-howski M. , 2003).2.1. Problem FormulationThe problem of seletion of the referene instanes an be de�ned as a proessof �nding the smallest set S of ases representing the same population as theoriginal training set T and leading to orret lassi�ation of the samples fromnot only T but more importantly of the unseen ases with minimal degradationof the generalization ability of the underlying lassi�er. In other words, refereneseletion is a method for seletion or generation of the most informative samplesfrom T and rejetion of the noisy ases or of these instanes that degrade thegeneralization when the original training set T is used for learning. Thus,restriting ourselves to prototype seletion by whih we understand seletionof referene ases in whih S is a subset of T , the problem is to �nd optimalsubset S of all possible 2n − 1 subsets with respet to generalization ability ofthe underlying lassi�er. By n, the number of samples of the original trainingset T is denoted.The referene vetors seletion algorithms an be divided into a few numberof tehniques that share the same strategies.



Seletion of Prototypes with the EkP System 32.1.1. Noise FiltersThis ategory of methods, known also as editing rules, is based on rejetingnoisy ases or outlayiers from T . The rate of data pruning is usually low andthese tehniques are usually employed as the �rst data preproessing step whihis then followed by other methods. ENN, RENN (Wilson D. , 1972), All k-NN(Tomek I. , 1976) and ENRBF (Jankowski N. , 2000) are the key examples ofthe algorithms that belong to this group.2.1.2. Data Condensation AlgorithmsThis group of methods is also known as data pruning or data ompression teh-niques. The main idea behind this approah is to ahieve the highest possibletraining data redution without or with minimum sari�ation of generalizationof the employed underlying lassi�ers. CNN (Hart P. , 1968), RNN (Gates G. ,1972), GA, RNGE (Bhattaharya B. K., Poulsen R. S., Toussaint G. T. , 1981),ICF (Brighton H., Mellish C. , 2002) and DROP 1�5 (Martinez T., Wilson D. ,2000) are the main systems that fell into this ategory.2.1.3. Prototype MethodsThe family of referene seletion algorithms that are aimed at �nding extremelylow number of highly informative super�vetors, arrying partiularly largeamount of information and apable of representing large number of ases, areknown as prototypes methods. However the di�erene between data onden-sation algorithms and prototype methods is very subtle, in our understandingprototype seletion and generation algorithms push the redution of the trainingdata to the extreme taking sometimes the risk of slightly larger degradation ofgeneralization of the underlying lassi�ers. Thus, however both groups of meth-ods try to arrive at the smallest set S, the stress in data pruning tehniquesis put on generalization, whilst in the ase of prototype algorithms it is on theextremely low amount of samples that are seleted. It should not be surprising,that some of the algorithms, partiularly these in whih one has the ontrolover the amount of the samples seleted, may be treated either as data pruningmethods or as prototype seletion models. LVQ (Kaski S., Kohonen T., Oja M., 2003), MC1 and RMHC (Skalak D. , 1994), IB3 (Aha D., Albert M., Kibler D., 1991), ELH, ELGrow and Expolore (Cameron-Jones R. , 1995) and our ownmodels PM-M (Grudzinski K. , 2004) and EkP (Grudzinski K. , 2008) an beinluded into the prototype seletion group of methods.3. The EkP SystemThe EkP system is based on a minimization of a ost funtion whih returnsthe number of errors the lassi�er makes. Despite of this, the EkP method isextremely fast beause during every evaluation of the ost funtion the redued



4 Karol Grudzi«skitraining set is onstruted out of only the preset number of k instanes. Ittakes seonds for the EkP method to perform 10-fold ross-validation on mostommon UCI datasets. In our implementation we used the well known simplexmethod (Nelder J., Mead R. , 1965) for funtion minimization whih we havetaken from the Internet (Lampton M. , 2004).The simplex must be initialized �rst before a minimization proedure isstarted. The EkP system is very sensitive to the way in whih the simplexis initialized and therefore we have deided to provide the EkP's initializationalgorithm whih is given below. We have found inlusion of this pseudoodevery important for the repliation of this method.Algorithm 1 The EkP's simplex initialization algorithmRequire: A training set trainInstanesRequire: A vetor p[℄ of optimization parameters (numProtoPerClass *numClasses * numAttributes dimensional)Require: A matrix simplex to onstrut a simplexLet numPoints denote the number of points to build simplex onfor i = 0 to numPoints - 1 dofor j = 0 to numClasses * numProtoPerClass - 1 dofor k = 0 to numAttributes - 1 do
p[k + numAttributes * j℄ := trainInstanes[i℄[k℄end forsimplex[k℄[numAttributes℄ := ostFuntion(p[])end forend forTwo variants of the ost funtion algorithm have been implemented in oursystem. The �rst variant is based on the internal ross-validation learning ontraining partitions whilst in the seond algorithm variant a lassi�er is trainedby onduting a plain test (the pruned training partitions are used for learningand the test on the entire training partition is used for estimating trainingauray). The details about both variants of the ost funtion algorithm aregiven in the pseudoode listings whih are given below.Our implementation of the EkP method is not the simplest one as our odewill beome a basis for an extended version of this algorithm. In order to give ashort desription of the algorithm in the text of the paper, it is worth mentioningthat the array of optimization parameters is (numProtoPerClass * numClasses* numAttributes) dimensional but the instanes stored in this vetor are notinvolved in any parameter modi�ation. They are simply extrated from theparameter vetor and are added to the training partition in every ost funtionevaluation. In other words the training partitions are built by extrating samplesfrom a parameter vetor whih always ontains numProtoPerClass examplesfrom every lass ourring in a problem domain. In a simpler implementationone ould store the indies of the training set instanes instead of storing the



Seletion of Prototypes with the EkP System 5Algorithm 2 The EkP-1 ost funtion algorithm (learning via internal ross-validation)Require: A training set trainInstanesRequire: A vetor p[℄ of optimization parameters (numProtoPerClass *numClasses * numAttributes dimensional)for k = 1 to numCrossValidationLearningFolds doCreate the empty training set vTrainBuild the k-th test partition vTestfor i = 0 to numClasses * numProtoPerClass - 1 dofor j = 0 to numAttributes - 1 doAdd the prototype stored in p[℄ starting from p[j + numAttributes* i℄ and ending in p[numAttributes - 1 + numAttributes * i℄ tovTrainend forend forBuild (train) the lassi�er on vTrain and test it on vTestend forRemember the optimal p[℄ value and the assoiated with it lowest value ofnumClassi�ationErrorsreturn numClassi�ationErrorsAlgorithm 3 The EkP-2 ost funtion algorithm (learning via test on theentire training partition taking pruned training partition for building (training)a lassi�er)Require: A training set trainInstanesRequire: A vetor p[℄ of optimization parameters (numProtoPerClass *numClasses * numAttributes dimensional)Create the empty training set tmpTrainfor i = 0 to numClasses * numProtoPerClass - 1 dofor j = 0 to numAttributes - 1 doAdd the prototype stored in p[℄ starting from p[j + numAttributes* i℄ and ending in p[numAttributes - 1 + numAttributes * i℄ totmpTrainend forend forBuild (train) the lassi�er on tmpTrain and test it on trainInstanesRemember the optimal p[℄ value and the assoiated with it lowest value ofnumClassi�ationErrorsreturn numClassi�ationErrors



6 Karol Grudzi«skiTable 1. Datasets used in our experiments

numProtoPerClass * numClasses vetors themselves in the parameter array.Note that numAttributes denotes the total number of attributes in a datasetinluding the lass attribute.4. Numerial ExperimentsIn order to verify suitability of the EkP system for data analysis the lassi�-ation experiments on seventeen real-world problems (mainly taken from thewell-known UCI repository of mahine-learning databases (Mertz C., MurphyP.)) have been performed. The information about the datasets used an befound in Table 1. The EkP system an be based on an arbitrary lassi�er, i.e.it an be a neural-network, support-vetor mahine or a deision-tree method,et. In our experiments the IB1 (Aha D., Albert M., Kibler D. , 1991) systemhas been used both as the underlying lassi�er for the EkP system and as thereferene method. The reason for seleting the IB1 system is that this methodrequires very small training datasets whih may onsist of just a few samplesin order to make lassi�ation possible. Other lassi�ers, inluding IBk (AhaD., Albert M., Kibler D. , 1991) require slightly larger training sets in order tooperate. Our aim when we were onduting the experiments for this paper wasto show that even the alulations with the extremely low number of prototypesseleted may lead to attaining exellent results on unseen samples. The wellknown LVQ method (Hyninen, Kangas, Kohonen, Laaksonnen, Torkolla , 1996;Kohonen T. , 2001; Kaski S., Kohonen T., Oja M. , 2003), whih is however aprototype-generation system, has also been taken as the referene model in ourexperiments. The seond reason for hoosing the IB1 lassi�er as the underlyingmethod for the EkP system is the fat that the LVQ method uses the k-NearestNeighbor lassi�er as its lassi�ation engine.



Seletion of Prototypes with the EkP System 7Generalization ability of the EkP system with only one, two and three in-stanes per lass seleted from a training set has been ompared to the lassi�-ation performane of LVQ for whih the same number of odebooks has beenused. Additionally, the results obtained with the IB1 (1-Nearest Neighbor) sys-tem whih has been trained on the entire ross-validation training partitions(i.e. all training samples from every learning fold have been used) are provided.Ten-fold strati�ed ross-validation test has been performed for all seven-teen domains. In the experiments onduted with the EkP system, in eahross-validation fold, the training partition has been pruned so that only theprototype ases remained, the EkP's underlying lassi�er has been trained andit's generalization ability has been estimated on the ross-validation test parti-tion. After the ompletion of the alulation on all ten folds the test has beenrepeated ten times and the average lassi�ation auray and its standard de-viation whih were taken over the all available hundred partial results have beenreported.The single orreted re-sampled T-Test (Frank E. Witten I., , 2000; DoboszK. , 2006) has been used to alulate statistial signi�ane of the results (withthe fator of 0.05) in order to help making the deision whether the EkP systemperformed better, the same or worse than the referene models.The LVQWeka implementation of the LVQ method that has been employedin our alulations was written by Jason Brownlee (Brownlee J. , 2004). Finally,what remains to be mentioned is, that the EkP system has been written by theauthor in the Java programming language as a plugin to the well known Wekamahine learning workbenh (Frank E. Witten I., , 2000).4.1. Experiment 1: Generalization Ability � EkP vs. IB1In the �rst experiment our system under study has been ompared to the per-formane of IB1 on all seventeen domains. The results of the statistial testsagainst the majority lassi�er, both of IB1 and EkP, have not been ontainedin our paper. The base rate results however, whih are the values obtained bythe majority lassi�er1 on all tested datasets are listed in Table 1. It is worthmentioning that IB1 appeared to outperform the majority lassi�er on thirteendomains. On appendiits, breast-aner, german-redit and hepatitis datasetsthe results have been statistially insigni�ant.The EkP system has been used mainly with the same default settings forall seventeen problems beause the alulations have been performed in a bathmode whih made performing numerial experiments and olleting the resultsfor the paper muh easier. The simplex ost funtion tolerane has been set to1E-16 and the maximum number of ost funtion evaluations has been restritedto 300 alls exluding a ertain number of target funtion evaluations requiredto initialize the simplex. This latter value is the parameter whih is alled the1The majority lassi�er in the Weka system whih had been used in our experiments isalled ZeroR



8 Karol Grudzi«skinumber of simplex points on whih a simplex is spanned. Thus, the maximumnumber of the ost funtion evaluations value has to be inreased by the numberof simplex points in order to attain the total number of target funtion alls. Forall experiments that have been onduted in our paper we have set the numberof simplex points to �fty. The upper limitation on the value of this parameteris the number of samples in the training partition. Therefore, beause thesmallest problem out of the studied seventeen domains onsists of hardly sixtysamples, the seleted by us value for this parameter seems to be a good hoie.The maximum number of ost alls setting of 300 was taken as the default forthe datasets of the size of a ouple of hundred ases and this hoie is basedon our earlier experiene with similar minimization-based learning systems wehad been working on. What onerns the EkP's form of learning used for theExperiment 1, both the �rst variant of the ost funtion algorithm involvingleave-one-out ross-validation learning as well as the seond variant has beenemployed. The IB1 lassi�er has been hosen as the EkP's lassi�ation engine.Tables 2 and 3 summarize the results of the Experiment 1. It is easy to notiethat generalization ability of the EkP system trained with the �rst algorithmvariant depends strongly on the number of prototypes seleted. Choosing oneprototype per lass to be seleted by EkP-1 statistially degraded the resultswith respet to ones obtained with the IB1 system only on three out of the allseventeen domains. This is the exellent result. When two prototypes per lasshave been seleted, the number of times training data redution degraded theresults dropped to only two. With three prototypes per lass hosen the resultshave been statistially insigni�ant from these attained with IB1 on sixteenproblems. The �rst variant of the EkP algorithm that has been taken for ourexperiments was trained with leave�one�out ross�validation. The in�uene ofthe value of the ross�validation learning fold on the generalization has not beenyet fully investigated. Leave�one-out ross�validation seems to lead to obtainingvery stable models and the best generalization at the expense of signi�antlylenghtenning the alulation time. In ase of the seond algorithm version (EkP-2) statistially signi�ant degradation of the generalization results with respetto ones attained with the IB1 system ould have been noted on three datasetsindependently on the number of prototypes per lass hosen.4.2. Experiment 2: Generalization Ability � LVQ vs. IB1 and LVQvs. EkPFor this experiment, LVQ version 1 with 'random training data proportional'as well as 'simple k-means' initialization, learning rate of 0.3, total trainingiterations of 1000, linear deay learning funtion and disabled voting has beenused. Generalization ability of LVQ against IB1 has been tested �rst. Beausethe method of initialization of the positions of odebooks seemed not to makeany statistially signi�ant in�uene on generalization of the LVQ system, onlyone table (Table 4) is provided in whih the LVQ system has been used with



Seletion of Prototypes with the EkP System 9
Table 2. A omparison of generalization results attained with the EkP system withone, two and three prototypes per lass seleted vs. the generalization obtained withthe IB1 lassi�er. EkP has been trained with the �rst version of the ost funtionalgorithm whih is denoted as EkP-1. Fifty simplex points have been used to train theEkP system. The statistial degradation of the results with respet to the refereneones (i.e. these of IB1) is marked with a bold font.

Table 3. A omparison of the generalization results attained with the EkP systemwith one, two and three prototypes per lass seleted vs. the generalization obtainedwith the IB1 lassi�er. EkP has been trained with the seond version of the ostfuntion algorithm whih is denoted as EkP-2. Fifty simplex points have been used totrain the EkP system. The statistial degradation of the results with respet to thereferene ones (i.e. these of IB1) is marked with a bold font.



10 Karol Grudzi«skiTable 4. A omparison of the generalization results attained with the LVQ-1 system(with the linear deay learning and the training data proportional initialization set-tings) with 2, 4 and 6 odebooks set vs. the generalization results obtained with theIB1 lassi�er. The statistial degradation of the results with respet to the refereneones (i.e. these of IB1) is marked by using a bold font.

the 'random training data proportional' initialization.As it an be seen from Table 4, the LVQ system performed rather poorlyand on seventeen problems with two odebooks set twelve times statistiallysigni�ant degradation of the results with respet to these attained with theIB1 lassi�er has been noted. Inreasing the number of odebooks to four hasled to a minor improvement of the generalization of the LVQ system and on tendomains the results have been still worse than these obtained with IB1. Seletionof six odebooks has led to statistially signi�ant degradation of the results withrespet to the referene ones on nine problems out of seventeen studied. In thisexperiment also no improvement over IB1's generalization ability ould havebeen observed.In the seond experiment in this setion the test estimating generalizationability of LVQ against EkP has been performed. This test is made only ontwo-lass problems to assure that the number of LVQ odebooks as well as theprototypes seleted by the EkP system is the same. Reall that EkP takes thenumber of prototypes per lass as its adaptive parameter whilst the LVQ systemrequires a total number of odebooks to be spei�ed. Sine all the alulationshave been performed in a bath mode with the same settings for all lassi�ationdomains, the list of datasets had to be restrited to two lass problems. Whatan be noted by taking a loser look at Table 5 is, that the results of LVQ morestrongly depend on the number of odebooks seleted than it is in ase of EkP�1. The average lassi�ation auray of EkP�1 taken over all twelve domainsosillates around 79% whilst in the ase of LVQ, for two odebooks, it equals
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Table 5. A omparison of the generalization results attained with the LVQ-1 systemwith two, four and six odebooks vs. the generalization obtained with the EkP lassi-�er. EkP has been trained with the �rst version of the ost funtion algorithm whih isdenoted as EkP-1. Fifty simplex points have been used to train the EkP system. Thestatistial degradation of the results of the LVQ system with respet to the refereneones is marked with a bold font.

Table 6. A omparison of the generalization results attained with the LVQ-1 systemwith two, four and six odebooks vs. the generalization obtained with the EkP las-si�er. EkP has been trained with the seond version of the ost funtion algorithmwhih is denoted as EkP-2. Fifty simplex points have been used to train the EkPsystem. The statistial degradation of the results of the LVQ system with respet tothe referene ones is marked with a bold font.



12 Karol Grudzi«skionly 64%. Going with the number of odebooks to four and six, inreases theaverage LVQ's generalization ability to about 70% and 72% respetively. Similartrends an be observed when LVQ is put against the EkP�2 (see Table 6).4.3. Experiment 3: Time RequirementsThe training times of the EkP system, whih are however all statistially worsethan these of IB1 (it is not a surprise), are quite short and in average are equalto about 1s (EkP�1) and 0.2s (EkP-2) for learning on a single partition of atypial UCI dataset of a size of a ouple of hundred ases (see Table 7 and 8).2The training times of LVQ are even shorter than these obtained with our system.As an be seen from Table 9, LVQ has beaten up ompletely both variants ofthe EkP method on all seventeen lassi�ation problems. It turned out that theLVQ system an be trained in time whih is of three orders of magnitude shorterthan the one obtained by measuring the EkP's learning time. Fortunately theEkP testing times are shorter than these of IB1 by three orders of magnitude.Table 10 ontains the summary of the results of the measurements of the testingtime. It is not hard to see that it takes muh less than a minute for the entire10-fold ross-validation test that is onduted with our system to omplete onmost ommon UCI datasets. This is aeptable result. It should be noted thattraining the EkP method with lower-fold ross-validation than leave�one�outleads to a signi�ant redution of the time requirements for this algorithm.5. ConlusionsWe are luky that we have managed to reate quite a fast prototype seletionsystem despite of employing the simplex minimization routine whih is usuallyexpensive. The initial experiments indiate that the method may turn out tobe ompetitive to other data pruning systems. In the preliminary alulationsthe method disussed in this paper have shown statistial insigni�ane of thegeneralization ability with respet to IB1 almost on all lassi�ation problemsand sometimes turned out to be superior to the LVQ system ver. 1. Howeverthe EkP training times are longer that these of IB1 and of LVQ but the testingtimes are shorter than the ones obtained by timing IB1. After all, one shouldremember about the general idea laying behind the seletion of prototypes:one the instanes are initially found (training sets are pruned), the tests onunseen samples whih are usually frequently performed an be onduted muhfaster. Before the EkP system is not onfronted with many other prototypeseletion algorithms and before further experiments with our method are notperformed it will be hard to estimate a real value of our ontribution to thepattern reognition �eld.2The alulations have been performed on a laptop equipped with a 2.4GHz Intel Core 2Duo proessor running 64�bit Ubuntu Linux Operating System under 64�bit OpenJVM Java1.6.



Seletion of Prototypes with the EkP System 13Table 7. The training times of the EkP method attained on one ross�validation foldin seonds. EkP has been trained with the �rst version of the ost funtion algorithmwhih is denoted as EkP-1. Fifty simplex points have been used to train the EkPsystem. The statistial degradation of the results of the EkP system with two andthree prototypes per lass seleted with respet to the referene ones (i.e. these ofEkP�1 with one referene instane per lass hosen) is marked with a bold font.

Table 8. The training times of the EkP method attained on one ross�validationfold in seonds. EkP has been trained with the seond version of the ost funtionalgorithm whih is denoted as EkP-2. Fifty simplex points have been used to train theEkP system. The statistial degradation of the results of the EkP system with twoand three prototypes per lass seleted with respet to the referene ones (i.e. theseof EkP�2 with one referene instane per lass hosen) is marked with a bold font.



14 Karol Grudzi«skiTable 9. The training times of the EkP method attained on one ross�validation foldin seonds. EkP has been trained with the �rst and the seond version of the ostfuntion algorithm whih is denoted as EkP�1 and EkP-2 respetively. Two odebooks/prototypes have been hosen. Fifty simplex points have been used to train the EkPsystem. The statistial degradation of the results of the EkP system with respet tothe referene ones (i.e. these of LVQ) is marked with a bold font.

Table 10. The testing times of the EkP method attained on one ross�validation testfold in seonds. EkP has been trained with the seond version of the ost funtionalgorithm whih is denoted as EkP-2. Fifty simplex points have been used to trainthe EkP system. The statistial improvement of the results of the EkP system withrespet to the referene ones (i.e. these of IB1) is marked with a bold, itali font.
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