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A new determinant-specific, effective change (‘dressing’) of the norm of the multireference
configuration interaction (MRCI) wavefunction is proposed in order to achieve the size-
consistency of the MRCI method. The new approach provides a unifying framework for
analysis of size-consistent extensions of the MRCI method that are based on the coupled pair
functional (CPF) strategy and lead to simplified computations of the analytical gradients.
Using the new framework, a generalized multireference full coupled pair functional
(MR-FCPF) method is introduced. The MR-FCPF method may be viewed as a functional
counterpart of the recently proposed generalized (‘full’) coupled electron pair approximation
(CEPA), referred to as the size-consistent self-consistent CI ((SC)2CI) method. A
straightforward extension of the MR-FCPF method leads to a pseudo-functional form of
the coupled cluster (CC) type formalisms. Therefore, the new approach may be used to
introduce a simple alternative to existing CC-type gradient techniques. The new procedure is
formally derived and compared with similar methods from the literature. Model systems
calculations (H2O, LiF, CHþ

2 ) are further used to demonstrate the effect of various
approximations and to elucidate the hierarchy of functional MR-CEPA schemes.

1. Introduction

The non-dynamical (or valence) correlation effects,
manifesting in large contributions of a number of
configurations to the electronic wavefunctions, have to
be first taken into account when dealing with the
chemical reactivity, dissociation processes, excited
states, some open shell systems etc. The above observa-
tion has led to an impressive development of multi-
configurational ab initio approaches to the electron
correlation problem, most notably the multireference
configuration interaction (MRCI) approaches.

The MRCI method had been the most popular tool in
molecular spectroscopy for a long time, owing to its
conceptual simplicity and robustness guaranteed by the
variational principle [1]. On the other hand, however,
the configuration interaction (CI) method is slowly
convergent in terms of the length of its linear expansion.
Truncation of the full CI expansion leads, in turn, to
physically incorrect scaling with the number of particles
in the system. Throughout this paper we shall adopt

Pople’s definition of size-consistency in terms of proper
separability [2], leaving the term size-extensivity as
denoting the lack of unlinked diagrams in many body
perturbation theories. Truncated CI is neither size-
extensive nor size-consistent, which makes it inadequate
for the description of extended systems.

The alternative coupled cluster (CC) approach is in
principle superior to CI. The exponential form of the
CC wavefunction ensures that, although the method is
not variational, it is highly accurate and extensive when
truncated at a given level of excitations [3]. However, the
MRCC generalizations are rather complex and numeri-
cally expensive [4, 5].

Bearing this in mind, various simplified schemes
of the multireference coupled electron pair approxi-
mation (CEPA) type, which are less expensive com-
putationally and effectively extensive, may be regarded
as a pragmatic choice [6]. Reliability of such procedures
for the description of conformational changes and
excited states has been demonstrated in a number of
studies (for a recent review [7]). When formulated
in terms of the configuration space rather than in the
many body, integral-based language, they may be
seen as size-extensive modifications of the MRCI
method.
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However, many such developments aim primarily at
the computation of the wavefunctions and the corre-
sponding energies. Owing to additional complexity, the
corresponding energy gradient methods lag somewhat
behind, although their significance can hardly be over-
estimated. Many important molecular properties are
related to the derivatives (changes) of the energy with
respect to some external perturbation, for example
external electric field in the case of polarizabilities or
the change of the nuclei geometry in the case of the
geometry optimization. With the growing demand for
reliable structural predictions, the latter case is of special
importance.

The analytical energy gradients may be expressed and
evaluated in a relatively simple form when the wave-
function is obtained as a result of energy functional
minimization. In such a case, the derivatives with respect
to the wavefunction parameters to be optimized are, by
definition, equal to zero. The importance of a functional
form was raised in the pioneering work of Pulay [8].

The analytical gradients are routinely available for
MRCI [9, 10] and for single reference CC methods
[11, 12]. Recently, analytical CC gradient methods have
also become available for the excited states, within the
closely related equation of motion (EOM) CC and
symmetry-adapted cluster (SAC) CI schemes [13]. To
the best of our knowledge, there are no other practical
examples of analytical gradient procedures for non-
functional multireference schemes.

In the CI method, the energy functional is usually
optimized only with respect to the configuration
coefficients, but not with respect to the linear combina-
tion of atomic orbitals (LCAO) coefficients. Therefore,
the coupled perturbed Hartree–Fock (CPHF) equations
have to be solved in order to evaluate the changes in
molecular orbitals caused by the perturbation (e.g.
change in the nuclei position) [10]. Fortunately, the so-
called Z-matrix technique due to Handy and Schaefer
[14] allows one to avoid the repeated solving of CPHF
equations and significantly reduces the numerical cost.

The situation is more complicated in the case of non-
variational methods that do not have a functional form,
such as the CC method, because the number of non-
variational parameters dramatically increases. Although
using the Z-matrix technique again proves a powerful
tool, the functional methods are nevertheless more
efficient in this regard [10]. An interesting formal
solution, which enables one to reformulate various
types of the CC method in a functional form, has been
proposed by Szalay [15]. Unfortunately, this procedure
seems to be quite expensive numerically.

Functional generalization of simplified single-
reference CEPA methods has been considered already
by Pulay [16]. They were based on an effective change of

the norm of the wavefunction in the CI functional,
cancelling to a large extent its unlinked terms. The
coupled pair functional (CPF) of Ahlrichs et al. [17] and
its multi-reference generalization—the averaged coupled
pair functional (ACPF) of Gdanitz and Ahlrichs [18]—
followed the same strategy. The more recent average
quadratic coupled cluster (AQCC) functional of Szalay
and Bartlett [19] attempts to remove some drawbacks of
its predecessors. In the present work we present the hier-
archy of approximate MR-CEPA-type functionals using
the new framework of the CI overlap matrix dressing.

As demonstrated recently, one may reformulate
various CEPA-type approximations and the CC method
itself in terms of a modified (‘dressed’) CI problem [20].
In this approach, the nonlinear terms are taken into
account through an iterative dressing of the correspond-
ing CI matrix. The new perspective proved to be very
fruitful, giving rise to a number of promising new
alternatives to the existing MR-CEPA and MRCC
methods. The (SC)2CI method, which in the single
reference case may be regarded as an exact (or full)
CEPA method [21], new state-specific and state-universal
MRCC [22] procedures have been proposed.

The above algorithms are based on an effective
change of the CI Hamiltonian matrix. Equivalently,
the norm of the determinants, that is the CI overlap
matrix can be modified. If the actual form of the
dressing contains the unlinked nonlinear terms only, it
leads to a size-consistent modification of the CI method.
The advantage of the new approach is that, in analogy
with CPF-like computational schemes, one may define
an approximate, functional form of the method in order
to facilitate computation of the analytical gradients and
properties. In particular, the present paper introduces
functional counterparts of the (SC)2CI method and its
multireference generalization MR(SC)2CI [23], which
will be referred to as the multireference full coupled pair
functional (MR-FCPF).

The paper is organized as follows. In the next section
the new method is formally introduced. Then its content
is discussed and compared to other functional size-
consistent methods. The CPF, ACPF and AQCC
functionals are shown to be approximations with respect
to the new MR-FCPF method. It is also suggested that
through a dressing of the norms one can achieve an
approximate functional form for the CC method,
provided that the linked effects are also included in
the dressing procedure. This enables one to formulate
a simple alternative to existing CC gradient schemes,
applicable to multireference, ground and excited state
approaches. In the last section, numerical results for
well-understood model systems are used to gain fur-
ther insights into the relationships between different
MR-CEPA-type functionals.
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2. Theory

In the following we shall consider a MRCI expansion
defined in the configuration space chosen as the union
S � s (with the associated projector P̂PS�s), where S
stands for a reference space spanned by reference
determinants I and s for a space of excited determinants
i, for example single and double substitutions with
respect to reference determinants.

2.1. Size-consistent dressing of the CI overlap matrix
We shall first briefly recall the concept of the self-

consistent state-specific intermediate Hamiltonian, which
has been recently used to introduce the (SC)2CI method
(and similar dressed CI schemes). The reader is referred
to [24] for a more detailed presentation.

The Schrödinger equation reads:

ĤHjCmi ¼ EmjCmi; ð1Þ

where jCmi and Em are the exact eigenstates and
eigenvalues. Using decomposition of the full space into
orthogonal subspaces, we may write for a given state
jCmi (ground or excited state) its exact expansion in
terms of the orthonormalized N-electron basis
fjIi; jii; j�igI2S; i2s; � 62S�s:

jCmi ¼ jCS�s
m i þ jC�

mi: ð2Þ

The projections onto the MRCI space and outer space
are defined as follows:

jCS�s
m i ¼ P̂PS�sjCmi ¼

X
I2S

Cm
I jIi þ

X
i2s

cmi jii; ð3Þ

jC�
mi ¼ ð1� P̂PS�sÞjCmi ¼

X
�62S�s

cm� j�i: ð4Þ

Now, identifying the MRCI configuration space with
the model space in the sense of effective Hamiltonian
theory, we would like to define an intermediate effective
Hamiltonian P̂PS�sðĤH þ �̂�mÞP̂PS�s, where �̂�m is a dressing
operator, such that

P̂PS�sðĤH þ �̂�mÞP̂PS�sjCmi ¼ EmP̂PS�sjCmi: ð5Þ

As usual for effective Hamiltonians, we require the exact
energy when acting on the projection of the exact
eigenvector onto the model space. However, contrary to
the effective Hamiltonians that are required to repro-
duce all the roots in the model space, the state-specific
intermediate Hamiltonians are only required to give one
exact root (one-dimensional main model space) [24].

In order to satisfy equation (5) the outer space
summation has to be transformed into a proper matrix

element of a dressing operator in the model space. This
may be easily verified by writing down explicitly the
algebraic form of the exact equation (21) for the cmi
amplitude. A diagonal dressing [24]:

�m
ij ¼

� X
�62S�s

Hi�c
m
�

�
ðcmi Þ

�1�ij ð6Þ

is one of the possible forms of introducing an effective
Hamiltonian that satisfies equation (5) exactly. The
concept of such a defined dressing scheme opens the way
for systematic modifications of the original CI problem
[24], as described in the next paragraph.

The MRCI configuration space is S � s. We do not
know the outer space determinant coefficient cm� and we
approximate them using a cluster theorem, as products
of the lower excitation coefficients (see for example
equation (14)), following the CC strategy. This leads to
an iterative, self-consistent scheme of solving pseudo-
eigenvalue problems. In the first iteration, properly
decomposed CI coefficients provide the starting guess
of the CC amplitudes, from which one may calculate
the nonlinear contributions (dressing) to be added to
the CI matrix. Next diagonalization (or iteration of
a diagonalization algorithm) provides new estimates
and the iterations are continued until self-consistency
is achieved. As a result one may restore the size-
consistency of CI (when dressing by unlinked effects
only) or reproduce CC solutions (when the linked terms
are also included).

We have been assuming so far that the dressing
concerns the Hamiltonian matrix. Introducing a gen-
eralized eigenvalue problem one may, however, redefine
the problem in terms of a dressing of the overlap matrix.
While the idea of a dressing procedure as an actual
realization of the intermediate Hamiltonian theory [25]
may no longer apply, the general strategy of taking into
account some outer space contributions remains the
same. As discussed in the remaining parts of the paper,
adding the nonlinear terms to the overlap matrix, which
is equivalent to an effective change of the norm of the
MRCI wavefunctions, opens new possibilities from both
formal and practical points of view.

Let us consider a generalized pseudo-eigenvalue
problem:

Hc¼ ESeff
m c; ð7Þ

where Seff
m is an effective state-specific, diagonal overlap

matrix:

Seff
m;ii ¼ 1�

� X
�62S�s

Hi�c
m
�

�.�
Emc

m
i

�
: ð8Þ
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One may easily verify that the above definition repro-
duces the mth exact (full CI) solution. Indeed, the
explicit equation for the cmi coefficient (i th row in
equation (7)) reads:X

I2S

HiIC
m
I þ

X
j2s
j 6¼i

Hijc
m
j þ ðHii �EmS

eff
m;iiÞc

m
i ¼ 0: ð9Þ

Since the outer space summation is completely taken
into account via Seff

m , the above equation is equivalent
to that of the exact eigenproblem (1). Certainly, in
analogy to the state-specific intermediate Hamiltonians,
all the other roots of equation (7) are formally incorrect,
though they may still be useful (see discussion in the
next section).

Notice that using the definition of the diagonal
dressing �m

ii , one is led to the following energy and
outer space determinant coefficient dependent form of a
determinant-specific dressing of the wavefunction norm:

Seff
m;ii ¼ 1��m

ii =Em: ð10Þ

So far the dressing �m
ii remains unspecified and may take

different forms, for example, single or multireference,
CEPA or CC type. The iterative character of a proce-
dure based on the above expression is clear again.
However, a ratio of two quantities changing with the
iterations in a correlated way appears in equation (10),
as opposed to equation (6).

It is also worth remarking that one may reformulate
the general eigenvalue problem of equation (7) in the
form of an expectation value expression. In order to
establish a link with functional methods considered in
the subsequent sections of the paper we define a state-
specific operator:

ĜGm ¼
X
I2S

gm
I jIihI j þ

X
i2s

gm
i jiihij: ð11Þ

Acting on the left-hand side of the exact eigenequation
(1) with hCS�s

m j one gets, after trivial manipulation, that:

Em ¼
hCS�s

m jĤHjCS�s
m i

hCS�s
m jCS�s

m i � ð1=EmÞhCS�s
m jĤHjC�

mi
: ð12Þ

The contributions owing to a given determinant i in
the denominator of the equation are ðcmi Þ

2 and
�cmi

P
� c

m
�Hi�=Em. Defining the gm

i quantities of ĜGm as
gm
i ¼ Seff

m;ii and grouping together contributions owing to
a given determinant, one may write:

Em ¼
hCS�s

m jĤHjCS�s
m i

hCS�s
m jĜGmjCS�s

m i
: ð13Þ

If the references are not dressed, then the gm
I coefficients

will be equal to one. Otherwise, one may define them in
a similar way as gm

I ¼ Seff
m;II . The above reformulation

allows one to introduce for a specific form of the dressing
its functional counterpart which offers an important
advantage, namely the simplicity of analytical gradient
calculations. In that regard, the present approach is an
extension of the closely related CPF strategy.

Finally, we would like to reiterate that even though
the scheme considered here is not restricted to the
ground state only, it remains a one-state formalism that
is, for each state the whole procedure has to be in
principle applied separately. Unfortunately generaliza-
tions to many-state formalisms are not straightforward.
However, an approximate reformulation of multistate
dressings of the Hamiltonian matrix [22] in terms of the
overlap matrix dressing may be achieved, for example,
by averaging the energy over all the states considered in
the dressing (in analogy to the MCSCF procedure for an
average of the reference states).

2.2. The (SC)2CI and MR(SC)2CI methods revisited
The new MR-FCPF method may be seen as a

functional reformulation of the self-consistent size-
consistent dressing of the MRCI matrix employed in
the (SC)2CI method [21]. Therefore, the latter method is
briefly described below. Strictly speaking, the (SC)2CI is
a single reference method, as one of the reference
determinants plays a distinguished role. Nevertheless, it
may in fact work in an arbitrary multireference space
(e.g. numerically selected), leading to a ground state
dressing of the MRCI matrix. Here, for simplicity, we
shall explicitly consider the (SC)2CI method in the
MRCISD space.

Let the reference space S consist of the Hartree–Fock
(HF) determinant j0i and some other relevant determi-
nants that are used to generate the s space of all the
single and double excitations from references. The
relevant outer space determinants j�i are triplets and
quadruples with respect to the references. The outer
space determinants are subsequently redefined in terms
of excitations from the HF determinant only and are
decomposed as products of lower (s-space) excitations
with respect to j0i. The state-specific dressing concerns
the ground state only and in the following the state
index m will be omitted.

The intermediate normalization is employed and the
outer space determinant coefficients are approximated
by the products of the coefficients of determinants
belonging to s. Thus, for j�i ¼ êej êeij0i where êej and êei are
defined by jji ¼ êejj0i and jii ¼ êeij0i, respectively, for
some determinants i; j 2 s, we postulate that:

c� ¼ cicj: ð14Þ
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Inserting (14) into (6) and using the fact that the
determinant basis is used (implying that Hi� ¼ H0j), one
gets the following form of the diagonal dressing:

�ii ¼ Ecorr þEPVi þRi: ð15Þ

In the above equation, Ecorr ¼
P

j H0jcj is the correla-
tion energy and EPVi denotes the sum over contribu-
tions from the conjoint or exclusion principle violating
(EPV) terms:

EPVi ¼�
X

j; êej êei¼0

H0jcj: ð16Þ

The term Ri takes care of possible redundancy effects.
For example, a quadruple with respect to one reference
may nevertheless belong to the s space as a double from
another reference and should not be approximated in
terms of the decompositions into s space determinants.
Therefore,

Ri ¼�
X

j; êej êei j0i2S�s

H0jcj: ð17Þ

The dressing takes into account all EPV effects and
therefore the (SC)2CI method may be regarded as an
exact (full) CEPA method, when restricted to doubles
only. Of course, �̂� is dependent on the coefficients and
the method is iterative. From the practical point of view
it is sufficient to calculate efficiently the EPV contribu-
tions. Since this can be done easily using a trick
proposed for the infinite summation of EPV diagrams
[26], the method is simple modification of the original CI
problem.

Numerical results support the claim that the (SC)2CI
method ensures sufficient quality of the ground state
potential energy surface (PES) [21]. Perhaps surpris-
ingly, the (SC)2CI was also successfully applied to the
description of many excited states, even though the
ground state dressing is used [27] (see discussion in
the next section). There are however many cases, such as
strong quasi-degeneracy and certain excited states, that
require a truly multireference description. The multi-
reference self-consistent size-consistent configuration
interaction method [23] is a generalization of the
(SC)2CI method, and it aims at such difficult cases. In
MR(SC)2CI all the reference determinants contribute to
the dressing in a way that reflects their total contribution
to the correlation energy. The diagonal, state-specific
dressing of the MR(SC)2CI method, as introduced in
[23], reads:

�m
ii ¼

X
I

ðhm
I þEPVði; IÞm þRði; IÞmÞ�m

iI : ð18Þ

The hm
I denotes here the effective energy shifts of the

references:

hm
I ¼

X
i2s

cmi HIi

 !
Cm �1

I ; ð19Þ

whereas the terms EPVði; IÞm and Rði; IÞm take care of
all exclusion and redundancy effects, with respect to a
reference jIi [23]. The weighting factor (parentage ratio)
is given by �m

iI ¼ HiIC
m
I =
P

J HiJC
m
J .

As pointed out before, MR(SC)2CI and (SC)2CI
methods are non-functional. In the next subsection we
propose a simple solution to this problem.

2.3. Multireference full coupled pair functional
The CI wavefunctions are obtained as solutions of the

secular equation which arises when making the CI
energy functional Fci½F� ¼ hFjĤHjFi=hFjFi stationary
with respect to the variations of the CI expansion
coefficients ck, jFi ¼

P
k ckjFki. Suppose that the func-

tions jFki are normalized and orthogonal hFkjFli ¼ �kl
and consider a modified functional:

FG½F� ¼ hFjĤHjFi=hFjĜGjFi; ð20Þ

where ĜG ¼
P

k gkjFkihFkj and gk are some real num-
bers, gk 2 ð0; 1�. Following the standard variational
procedure, one gets from such a defined functional
a generalized eigenvalue problem (7) with a diagonal
overlap matrix Seff

� G. The quantity E, which is the
minimal value of FG, is no longer bound from below by
the real energy (except for the case when all the diagonal
elements of the overlap matrix gk are equal to one as in
the original CI functional). One may, however, verify
that E is bound from below by a number M ¼ Eci=
minkfgkg, where Eci is in turn bounded from below by
the real energy.

Any truncated CI functional is an approximation with
respect to the full configuration interaction (FCI)
functional, Ffci½C� ¼ hCjĤHjCi=hCjCi, leading to solu-
tions that are not size-consistent. One may ask, however,
whether it is possible to define the quantities gk such that
the modified (truncated) functional FG, although not
having the variational upper bound property, would
preserve size-consistency and provide better approxima-
tions to the FCI solutions. Recalling now our previous
considerations regarding the dressing of the CI overlap
matrix, we may easily find the desired form of ĜG.

As previously, we only consider one-state formalisms,
assuming that jFmi is the mth MRCI eigenstate in the
space S � s. Putting together (7) and (13) on the one
hand and (20) on the other, one finds that the mth exact
(full CI) eigenvalue is reproduced by the truncated
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functional FG, if the gk quantities are identified with
the corresponding state-specific dressing of the overlap
matrix, Seff

m;kk ¼ 1 ��m
kk=Em. For a specific form of

the dressing, �m
kk, there is a corresponding functional

scheme. Before we introduce the multireference full
coupled pair functional (MR-FCPF) which employs the
MR-CEPA-type dressing, we shall slightly modify our
definitions and notation in order to keep consistency
with other works devoted to similar functionals.

From now on, the reference space S will be further
divided into two orthogonal subspaces, taking a zeroth
order approximation to the mth state jF0

mi ¼P
I2S

~CCm
I jIi as spanning one subspace and the remaining

linear combinations of reference determinants spanning
its orthogonal complement SQ0

. Assuming the inter-
mediate normalization, hF0

mjFmi ¼ 1, we may write:

jFmi ¼ jF0
mi þ jFc

mi ¼ jF0
mi þ jFa

mi þ jFe
mi; ð21Þ

where jFa
mi includes SQ0

-space functions and jFe
mi

denotes now s-space functions, respectively and
jFc

mi ¼ jFa
mi þ jFe

mi. The general expression for the
expectation value of the energy in the state jFmi may
be rewritten in the form of the correlation energy
expectation value:

Em
corr ¼

hF0
m þFc

mjĤH �E0
mjF

0
m þFc

mi

1þ hFa
mjF

a
mi þ hFe

mjF
e
mi

; ð22Þ

with the zero of the energy taken as E0
m ¼ hF0

mjĤHjF0
mi

and obtained by the diagonalization in the reference
space S.

The new MR-FCPF functional may be defined now.
It reads:

Fm
fcpf ½F

c� ¼
hF0

m þFcjĤH �E0
mjF

0
m þFci

1þ hFajĜGm
a jF

ai þ hFejĜGm
e jF

ei
: ð23Þ

The state-specific dressing of the norm of determinants
is defined as follows (with the k index standing for n or i):

ĜGm
a ¼

X
n6¼m

gm
n jF

0
nihF

0
nj ; ĜGm

e ¼
X
i

gm
i jiihij; ð24Þ

gm
k ¼ 1��m

kk=E
m
corr: ð25Þ

The actual form of the dressing �m
kk in (25) will be the

MR-CEPA-type dressing, either of the (SC)2CI or of
the MR(SC)2CI method, as defined in equation (15)
or equation (18), respectively. In order to distinguish
between these two versions we shall denote the one
corresponding to the (SC)2CI method by MR-FCPF(g),
with g standing for the ground state dressing.

It is important to realize that the gk quantities are
coefficient- and energy- (and thus also nuclear co-
ordinate-) dependent, gk � gkðCðRÞ;EðRÞÞ. Reflecting
a pseudo-eigenvalue problem arising within the self-
consistent intermediate Hamiltonian dressing scheme,
the expression in the definition (23) of the MR-FCPF
remains a pseudo-functional. In order to obtain a purely
functional form that may be used for efficient gradient
computations, one has to get rid of these dependences.
We propose here a simple solution to that problem,
namely fixing the gk as numbers at a conveniently
chosen geometry, R0. Either converged (‘dressed’) or
partial solutions, CðR0Þ, taken from a given dressing
iteration or even from the pure CI eigenstate may be
used to evaluate the gk. As discussed in the next section,
such an approximation works well since the coefficients
gk are slowly changing ratios of two quantities.

The formal properties of Fm
fcpf ½F

c� are the same as
those of the general FG functional. It is an approxima-
tion to the FCI functional without the variational upper
bound property, although it is bound from below by
a finite number. Variations with respect to the expansion
coefficients in Fc (subject to normalization constraints)
give rise to a generalized eigenvalue problem, with the
diagonal elements of the overlap matrix equal to the
corresponding coefficients gk, when they are fixed as
numbers. As we demonstrate in the next section, other
MR-CEPA-type functionals, such as ACPF and AQCC
are approximations with respect to MR-FCPF.

2.4. Discussion and comparison with other methods
The CPF, ACPF and AQCC functionals are based on

the observation that the effect of higher excitations
(necessary to restore size-extensivity) manifests in a
partial cancellation of the CI functional norm denomi-
nator, or in other words that the outer space effect may
be effectively taken into account by a proper change of
the normalization [16, 17]. Clearly, the new MR-FCPF
is closely related to CPF-like functional methods.

Let us first consider the MR-FCPF(g) variant, which
employs the ground state dressing of the (SC)2CI
method, �ii ¼ Ecorr þ EPVi þ Ri. Now, the zeroth
order approximation to the exact ground state is just
the HF determinant j0i and the zero of the energy is
taken as E0 ¼ h0jHj0i. The MR-FCPF(g) dressing of
the norm of determinants is given by:

gi ¼ Seff
ii ¼�ðEPVi þRiÞ=Ecorr: ð26Þ

In the CPF method, on the other hand, one defines
pair functions (in the usual CEPA sense) and the norm
of each pair function is multiplied by a factor g� chosen
to satisfy certain limit conditions [17]. The ACPF
employs an averaged, common factor g ¼ 2=N, derived
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from a requirement of a correct description of a super-
system of np identical, non-interacting pair systems:

g� ¼ g¼
1

np
¼

2

N
; ð27Þ

where N is the number of electrons and 2np ¼ N. The
single reference ACPF energy functional reads

Facpf ½Cc� ¼
h0þCcjĤH �E0j0þCci

1þ ghCcjCci
: ð28Þ

In the single reference case the difference between CPF
and ACPF comes simply from the less refined statistical
limit employed by the latter method. For heterogeneous
electronic systems the gi factors may significantly vary
within a given pair since they may involve excitations to
orbitals of very different nature. As demonstrated by the
explicit computation of gi quantities for some model
systems they are indeed quite different. In light of this
observation, the ACPF approximation appears to be
weakly grounded.

However, the notion of the electron pair is no longer
employed in ACPF and the method may be defined for
the MRCISD functional with respect to a multireference
zeroth order energy, for both ground and excited states
[18]. Such a generalization is rather heuristic, as discussed
later. Nevertheless, the numerical results reported so far
of the MR-ACPF method are very encouraging [7]
and it is desirable to understand this fact better. The
MR-AQCC method [19], which may be viewed as a
functional generalization of Meissner’s size-extensivity
correction for single reference CI [28], represents an
improvement over MR-ACPF as it partially takes into
account the EPV terms owing to the particle indices.
Recently, a further improvement of MR-AQCC has
been proposed, which also partially includes redundancy
effects [19].

The MR-FCPF(g) method is different from the ori-
ginal CPF method by determinant-specific change of the
norm. One also avoids restrictions to pair and single
reference closed shell theories as in MR-ACPF. However,
contrary to MR-ACPF or MR-AQCC, both the EPV
and redundancy contributions are taken into account
exactly, without any averaging.

In the limit of non-interacting pairs the determinant-
specific gi factors of the FCPF(g) functional reduce to
the common ACPF factor. Consider the (SC)2CID
dressing for a system of np identical non-interacting,
closed shell electron pairs (e.g. separated H2 molecules).
In the single reference case, �ii ¼ Ecorr þ EPVi, since the
redundancies are only relevant when one dresses the
MRCI. Let the determinant jii � jabmni belong to a pair
� � mn. Certainly, all excitations êej, jji � jcdmni 2 �, are

not possible on i, whereas charge transfer excitations
involving indices of different pairs have vanishing matrix
elements. Thus, we get that EPVi ¼ ���. The super-
system correlation energy is equal to the sum of
localized pair energies and therefore:

gi ¼
�EPVi

Ecorr
¼

��Pnp

	¼1 ��
¼

2

N
: ð29Þ

Note that by putting all EPV terms as zero, one gets
the functional form of CEPA(0) found already by
Čižek [3, 17].

Regarding the practical implementation, let us note
that the determinant-dependent gi factors may be
evaluated at some geometry of interest or averaged
over a range of nuclear frames. Furthermore, they may
be obtained from pure CI coefficients, that is effectively
from the first iteration of dressing or after subsequent
iterations. One has to diagonalize the CI matrix first
(dressed or not) or provide another (e.g. perturbative)
starting guess and then use such evaluated gi in the MR-
FCPF step. In this way one obtains a functional (and
not only pseudo-functional) form of dressing, differing
from the CPF form by the fact that all diagonal elements
of the overlap matrix are different. This means that the
density matrix and gradients may be evaluated analo-
gously, as described in [17], with the numerical cost
essentially the same as that of CI gradient computation.
The gi coefficients should not strongly depend on the
dressing steps since they are relative quantities. Fixing
them from the pure CI coefficients (by simple evaluation
of EPV contributions) brings about only small error as
shown by preliminary numerical applications presented
in the next section. Let us also note that the results of
the MR-FCPF and its non-functional counterpart,
(SC)2CI, will be identical only at a specific nuclear
frame that was used to compute the gi coefficients.

As already pointed out in the introduction, even
keeping the coefficient-dependent factors gi, one may
define a functional, which furnishes the starting equa-
tions (of the CEPA or CC type) when making it
stationary with respect to variations of the coefficients.
Nevertheless, such a functional depends on additional
parameters (Lagrangian multipliers) [15] and therefore
the calculations of derivatives become expensive [7].
The simple alternative, which is presented here, provides
an excellent approximation to the true functionals in the
local neighbourhood of the geometry to be optimized
(see next section) and may be viewed as a pragmatic
solution applicable to various MRCC-type formalism.
Starting from the definition of equation (6) one may add
the linked CC-type corrections as well, obtaining the CC
type of dressing [20, 22] and then the corresponding
functional approximation.
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Let us finally comment that MR-FCPF(g), following
its non-functional counterpart, is essentially a single
reference formalism working in the multireference CI
space. Thus, we assume that the outer space determi-
nant coefficients are defined with respect to a single
determinant, j0i, and the remaining references play only
the role of generators of the CI space, assuring that
the non-dynamical correlation effects are taken into
account. In MR-FCPF(g), similar to the MR-ACPF or
MR-AQCC methods, one may obtain solutions for
excited states as well. However, the dressing or the
change of the norm remains the ground state only. It
cancels to a great extent the ground state unlinked
effects, but the quality of the description of the excited
states is, in principle, difficult to estimate.

Thus, the MR-FCPF method should be advocated for
the description of the excited states. On the other hand,
in many situations it is sufficient to calculate first the
ground state correlation effects and then to take into
account modifications owing to excited states. In other
words, one may assume the transferability of the
correlation effects between the ground and excited
states. In fact, many methods for excited states, such
as SAC-CI [29], EOM CC [30] and the Green function
method [31], are such single reference formalisms
working in the multireference spaces.

3. Numerical examples

As shown in the previous sections, the state-specific
dressing of the Hamiltonian matrix may be transformed
into a corresponding overlap matrix dressing and
consequently into a functional procedure. However,
the reverse is also true–that is, one may obtain the
results of a given functional in terms of a proper
Hamiltonian matrix dressing. This fact was used to
obtain preliminary results of the MR-FCPF method, as
well as to calculate for comparison results of MR-
AQCC and MR-ACPF. The latter method, for instance,
leads to the following simple diagonal dressing of the
MRCI Hamiltonian matrix:

�m
ii;acpf ¼ ð1� gacpf ÞEm

corr ¼
N � 2

N
Em
corr; ð30Þ

where the correlation energy is defined with respect to
the zeroth order energy obtained by the diagonalization
in the reference space.

3.1. H2O
Symmetrical bonds stretching in the water molecule

using the double zeta (DZ) basis set is a well-known
benchmark [32] that has been used to test and calibrate
many methods. We first examine the MR-FCPF(g)
variant of the method and compare it in detail with

MR-AQCC and MR-ACPF. The CIPSI procedure [33]
was used to generate the MRCI spaces: in the first step
the threshold 
 is set to choose references and in the
second step all singles and doubles are produced with
zero threshold.

The potential curves of (SC)2CI and MR-FCPF(g)
methods, corresponding to the symmetrical stretching of
the O–H bonds, are presented in figure 1. The numerical
selection of reference functions leads to a reference space
of 21 determinants (threshold 
 ¼ 0:03). Once selected,
determinants were kept as references while changing the
geometry. The gi coefficients of the MR-FCPF(g) are
fixed here at the equilibrium geometry of the [32] (O–H
distance equal to 1 in the figure), from the converged
(SC)2CI dressing. Thus, both methods give identical
results at this geometry and there are growing dis-
crepancies when going to elongated or squeezed
geometries.

These discrepancies, however, are very small in the
region near the equilibrium geometry or, in other words,
in the neighbourhood of the geometry at which
the effective change of the norm was fixed. When
using the gi fixed from the pure CI coefficients (and not
from the converged dressing), a hardly distinguishable
curve is obtained (results not shown). For example, at
RO�H ¼ 1:05Req (point not shown in the figure) the MR-
FCPF(g) energy is shifted with respect to the (SC)2CI
energy (which is in turn 1.1 mEh below the MRCI result)
by only 15 mEh, if the gi are fixed from the converged
equilibrium geometry dressing, or by 24 mEh if the gi are
fixed from the equilibrium geometry CI coefficients.

Thus, one may conclude that the equilibrium geome-
try properties obtained using the MR-FCPF(g) method
should remain essentially the same as those of the
(SC)2CI, even for a simple estimate of gi in terms of
the CI expansion coefficients. As we are interested in the
relative errors, we may compare for example simple
harmonic vibrational frequencies resulting from the
curves presented in figure 1. They are different by 0.2
cm�1, with the absolute values of about 3472 cm�1

(the experimental frequency of the symmetric stretching
mode is equal to 3832 cm�1). The differences between
the equilibrium distances are also negligible; the change
is smaller than 0.001 Å.

Comparison of the MR-FCPF(g) results with those of
MR-ACPF and MR-AQCC is also of interest. In
figure 2 we show the convergence of the MRCI, MR-
FCPF(g), MR-ACPF and MR-AQCC (the MR prefixes
are omitted in the figure description) energies at the
equilibrium geometry [32], with the growing size of the
reference space. Again, the CIPSI procedure was used to
generate the MRCI spaces and the number of reference
determinants was equal to 5, 8, 21 and 46 with the selection
threshold 
 ¼ 0:05, 0:04, 0:03 and 0:02, respectively.
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For small reference spaces the MR-ACPF and MR-
AQCC results (which were obtained using a simple
modification of the CI problem based on the equation
(30)) seem to be favourable. One may notice, however,

that only the MR-FCPF(g) resembles the nice conver-
gence of the variational MRCI, smoothly approaching
the FCI result (zero of the energy in the figure) from
above. We would like to stress that although the
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Figure 2. Convergence of MR-CEPA-type functionals for water at equilibrium geometry. The MR-FCPF(g)/(SC)2CI results for
increasing size of the reference space are compared to those of other multireference functional methods. DZ basis set and
equilibrium geometry from Saxe et al. [32]. The CIPSI procedure was used to select numerically the reference spaces which
consist of 5, 8, 21 and 46 reference determinants with the selection threshold 
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Figure 1. Symmetrical bond stretching in water. MR-FCPF(g) curve compared to that of its parent (SC)2CI method. DZ basis set
and equilibrium geometry (RO�H ¼ 1) from Saxe et al. [32]. The CIPSI procedure was used to select numerically the reference
space of 21 determinants. The zero of the energy is set to 76.0 Eh.
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MR-ACPF and MR-AQCC methods may give better
results in some cases owing to a cancellation of different
errors, namely the neglect of some EPV and redundancy
contributions on one side and the contributions of triple
excitations on the other, it is desirable to understand
such coincidences using more accurate methods.

The explicit computation of the gi quantities shows
their inhomogeneous character. For the water molecule,
a single ACPF factor of gacpf ¼ 0:2 is used, in both
single and multireference cases and for both ground and
excited states, while the correlation energy defining the
final dressing of equation (57) is state-specific. On the
other hand, the actual (not averaged) values of the gi are
quite different. They may vary from 0.1 to 0.6 even
within a given pair in the single reference FCPF(d) with
doubles only. This simply reflects the fact that excita-
tions to very different unoccupied orbitals are involved.

When the reference space becomes larger, inducing a
more effective mixing of different categories of excita-
tions and smaller size-inconsistency error already on
the MRCI level, the corrections to be introduced by the
change of the norm should be smaller. Indeed, the
average value of the MR-FCPF(g) gi factors for water at
equilibrium geometry changes from 0.47 (which is much
different from the 0.2 ACPF factor) in the single
reference case to 0.74 with 21 reference determinants
(the standard deviations are about 0.1 in both cases,
showing quite wide distribution). MR-ACPF and MR-
AQCC methods account for this change using effectively
smaller correlation energy, which is defined with respect
to a multireference zeroth order function, whereas
the correction factor is fixed and of single reference
character. This strategy may fail when the reference
space contribution to the total wavefunction and energy
does not coincide with the decrease in the exact gi

factors. It is certainly more likely to occur in the case of
the less refined ACPF renormalization, explaining why
AQCC seems to be less sensitive to the choice of the
reference space [19].

On the other hand, the MR-FCPF(g) method, as its
non-functional counterpart, must fail when strong quasi-
degeneracy occurs. In such a case the truly multireference
formalism of MR-FCPF, resulting from the MR(SC)2CI
method, should be used. In table 1 we present results of
the MR-FCPF method, in comparison with some other
relevant methods. The CAS reference space of 20
determinants as specified in [34] is used. The gi

coefficients are fixed at the equilibrium geometry from
the MR(SC)2CI solutions (alternatively, the simpler MR-
CEPA(0)-type approximation of the MR(SC)2CI0

method could be employed). The overall parallelism of
the MR-FCPF and FCI results is quite nice, but
simultaneously the deviation from the parent
MR(SC)2CI method increases up to 0.5 mEh at 2Re.

Thus, fixing the effective change of the norm at one
geometry works very well near this point, which is most
essential from the point of view of geometry optimiza-
tion, but does not necessarily ensure sufficient accuracy in
the whole range of the conformational changes. In such a
case, averaging the gi coefficients over crucial geometries
of interest may be used to improve the results.

3.2. CHþ
2

The five lowest states (1–5) 2A1 of CHþ
2 , for which

the FCI results are known [36], were used as a test of
the ACPF method by Gdanitz and Ahlrichs [18]. This
was also used to check the numerical efficiency of the
MR(SC)2CI method [35]. This gives us the opportunity
to reinterpret this test in terms of the functional
counterpart of the MR(SC)2CI method. As these were
single geometry calculations, the MR-FCPF results
obtained from the converged MR(SC)2CI dressing are
identical to the results of MR(SC)2CI presented in detail
in [35]. We only summarize here that the MR-FCPF/
MR(SC)2CI results are significantly better (except for
the first root) than those of the MR-ACPF method.

3.3. LiF
For further comparison of the new MR-FCPF(g)

method and its non-functional (SC)2CI counterpart, we
calculated the potential energy curve of a strongly polar
diatom. In such a molecule, for example LiF, the
dissociation breaks quite suddenly, through a weakly
avoided crossing, the ionic Li+F- bond into a LiF pair
of neutral free radicals. The change in the wavefunction
occurs at rather long distance (about 12 bohr) and its
position is very sensitive to the precise inclusion of the
dynamical correlation energy. The correlation energy
lowers the ionic forms more than the neutral forms and

Table 1. Symmetrical bond stretching in water. DZ basis
set and the geometry from Saxe et al. [32] are employed.
Energy errors in millihartrees, with respect to the full
CI energy given in the first row. CAS reference
space as specified in [34]. FCI, SCF—[32], CASSCF,
MRCI, MRCIQ—[34] and present work; MRACPF;
MRAQCC—[7]; MRðSCÞ2CI—[35] and present work.

Method Re 1.5Re 2Re

FCI � 76.15787 � 76.01452 � 75.90525

SCF 148.0 211.0 310.1

CASSCF 95.0 90.2 78.0

MRCI 2.1 2.3 2.0

MRACPF 0.0 0.2 0.5

MRAQCC 0.6 0.8 0.9

MR(SC)2CI0 � 0.6 � 0.3 � 0.2

MR(SC)2CI 1.7 1.9 1.5

MRFCPF 1.7 2.0 2.0
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thus moves the curve crossing towards larger inter-
atomic distances. This curve crossing, involving the two
lowest 1

Pþ states, has been the subject of several
theoretical studies [37].

We shall adopt the same basis set and methodology as
Bauschlicher et al. [37]. The active space consists of 4s,
5s, 1p and 2p orbitals, providing correct description in
the dissociation limit. In contrast to Bauschlicher et al.,
however, the orbitals 1s, 2s and 3s were not frozen at
the CASSCF level but only at the MRCI level. Thus,
the molecular orbitals come from an average of
CASSCF(2220) calculations whereas the MRCISD is
based on two electrons in two molecular orbitals of
CAS(2000) active space. We have also performed full CI
calculations for both states involved in the dissociation.

As the electrons are localized, the number of
interacting pairs varies with the distance. Indeed,
below the critical interatomic distance the eight valence
electrons are localized on F� while in the neutral
asymptote the valence electron on Li is not significantly
correlated, at least not in the same proportions as in F�:
One may therefore expect that the AQCC correction,
based upon a statistical calculation averaging the
number of electron pairs, will not yield the same error
in the ionic region as in the neutral region. As a
consequence the position of the avoided crossing may be
significantly shifted. In contrast, the (SC)2CI method,
evaluating all specific EPV corrections, should give more
reliable results.

Figure 3 presents the FCI, AQCC and (SC)2CI
potential energy curves for the lowest states, whereas

figure 4 reports the MRCISD results with their AQCC
and (SC)2CI corrected counterparts. As can be seen,
AQCC performs rather well, giving an error of about
10�3 au. However, the error of (SC)2CI is always smaller
for both states. Moreover, the AQCC error is larger for
the ionic state, compared to the neutral state, and
increases slightly with increase in the interatomic
distance. As a consequence the position of the curve
crossing is shifted from 12.5 bohr (FCI result) to 11.8
bohr with the AQCC approximation. In contrast, the
curve crossing position is correctly located with the
(SC)2CI method.

This example demonstrates the limits of procedures
that are based on statistical estimates of the EPV
corrections. Using the generalized procedure proposed
here, it is possible to obtain a good functional
approximation to (SC)2CI in all parts of the potential
energy curve, recalculating the gi factors at some critical
geometries of interest, such as the region of avoided
crossing.

4. Conclusions

In this paper we formally develop a new size-
consistent modification of the MRCI method, through
an effective change of the norm of the MRCI
wavefunction. Starting from a brief recall of the
self-consistent, state-specific intermediate Hamiltonian
theory [30], which was previously used to introduce
various CEPA and CC-type dressings of the MRCI
Hamiltonian matrix, one derives an equivalent, general
form of the dressing of the MRCI overlap matrix.

8 10 12 14 r(Li−F) [au]
−0.965

−0.945

−0.925

−0.905

E [au]

Gs FCI
Es FCI
Gs AQCC
Es AQCC
Gs SC2
Es SC2

Figure 3. Weakly avoided crossing in LiF. The (SC)2CI (denoted by SC2) and AQCC potential energy curves of LiF are compared
to FCI results. Ground (Gs) and excited (Es) state curves are presented. The basis set and reference spaces are as described in
Bauschlicher et al. [37] and in the text. Note that the location of the avoided crossing is not correct in the AQCC case.

Size-consistent MRCI method through dressing 2039



Its specific form in the case of the (SC)2CI and
MR(SC)2CI methods is explicitly considered. The
coefficient and energy-dependent Hamiltonian matrix
dressing of this method is transformed into an effective
change of the norm of the determinants. Simple
approximation is proposed in order to obtain a
functional form without dependence on the geometry
of the nuclei. It is demonstrated that the determinant-
specific dressings change slowly with the change of
geometry, as they are expressed in terms of ratios of two
quantities that may change quickly, but in a correlated
way. For this reason, one may evaluate an effective
change of the norm at some geometry and use it also
in its sufficiently large, for geometry optimization,
proximity.

The above procedure was used to define the func-
tional counterpart of (SC)2CI, referred to as the
multireference full coupled pair functional. The compu-
tation of analytical gradients within MR-FCPF follows
the gradient procedures of approximate MR-ACPF and
MR-AQCC functionals. The formal properties of ACPF
and AQCC are revisited to better understand the way in
which cancellation of errors takes place, ensuring quite
encouraging results of these simpler functionals. It is
explained why ACPF, and to a smaller extent AQCC,
are sensitive to the choice of the reference space, which
may lead to their failure.

The discrepancies between strictly size-consistent
treatment of (SC)2CI and the only approximately size-
consistent functional counterpart may become signifi-
cant at geometries much distorted with respect to
the conformation used to define the effective norm. An

apparently local character of MR-FCPF may, however,
be circumvented. One may easily average the dressing
over a few relevant geometries, if high accuracy is
required for a large geometrical region.

Another aspect of the new procedure may be of
special interest. A determinant-specific change of the
norm is not restricted to the disconnected parts of the
higher excitations. Taking into account linked terms of
the CC method as well opens a way to introduce simple,
approximate functional forms of various CC methods.
In analogy with the MR-FCPF and MR-ACPF, the
analytical gradient machinery developed for MRCI may
then be utilized.
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