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Development of novel statistical potentials for protein fold
recognition
N-V Buchete1, JE Straub2 and D Thirumalai3

The need to perform large-scale studies of protein fold

recognition, structure prediction and protein–protein interactions

has led to novel developments of residue-level minimal models

of proteins. A minimum requirement for useful protein force-

fields is that they be successful in the recognition of native

conformations. The balance between the level of detail in

describing the specific interactions within proteins and the

accuracy obtained using minimal protein models is the focus of

many current protein studies. Recent results suggest that the

introduction of explicit orientation dependence in a coarse-

grained, residue-level model improves the ability of inter-residue

potentials to recognize the native state. New statistical and

optimization computational algorithms can be used to obtain

accurate residue-dependent potentials for use in protein fold

recognition and, more importantly, structure prediction.
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Abbreviations
BB backbone

PDB Protein Data Bank

Pep virtual interaction site located in the geometric center of the

peptide bond

SC sidechain

SHA spherical harmonic analysis

SHS spherical harmonics synthesis

Introduction
With the exponential growth of known protein structures

in the Protein Data Bank (PDB, [1]), proteome- and

genome-wide studies [2,3�,4�] become feasible. The

emphasis on genome-wide analysis has made it urgent

to devise new algorithms and methods that rely on coarse-

grained yet accurate descriptions of polypeptide chains.

Simple models of peptides and proteins have a signif-

icantly reduced number of degrees of freedom compared

to all-atom treatments of the corresponding systems.

Minimal models of proteins are widely used to obtain

insights into folding mechanisms [5] of proteins, as well

as in structure prediction [6–14,15��]. Improvements in the

design of minimal models of proteins have made it possible

to assess their accuracy by direct comparison with exper-

iments [16��,17�,18��]. In the simplest approach, the

polypeptide chains are modeled using only the a-carbon

representation. Such models are useful in providing a

global picture of folding and may also be used to obtain

low-resolution structures. Although the simplest models

allow detailed even exhaustive studies of proteins, it is

increasingly clear that a certain degree of complexity is

needed for more realistic applications [15��,19–22].

Reduced models of proteins have been used in protein

structure prediction [23], in studies of the dynamics of

protein folding [24] and, more recently, to investigate

protein–protein interactions [25��]. The general strategy

in many applications is to employ minimal models (typ-

ically using centers of mass of sidechains attached to Ca
atoms) to obtain the topology of structures. Subsequently,

a higher resolution prediction can be obtained using all-

atom representations. This dual strategy has found suc-

cess in the challenging ab initio prediction of protein

structures. Minimal models were also studied in conjunc-

tion with detailed atomistic approaches [26��,27��]. The

importance of minimal models is expected to increase

when treating protein–protein interactions in which sub-

stantial conformational changes occur upon interface

formation. This necessitates sampling a large space of

conformations for both proteins — a task that can be more

easily achieved using coarse-grained models. Indeed,

results of the most recent structure prediction (CASP,

[23]) and protein–protein interaction prediction (CAPRI,

[25��]) ‘community-wide experiments’ emphasize the

need for better methods that can probe such conforma-

tional changes. This need becomes even more important

as fast and accurate automatic structure prediction servers

become widely available to the structural biology com-

munity [28��,29,30].

Accurate residue-based potentials are needed to obtain

reliable minimal models of proteins. The growing num-

ber of structures available in the PDB [1] has enabled the

analysis of factors that control packing in folds with

different architectures. Several studies have shown that

pairwise contact or isotropic distance-dependent poten-

tials are inadequate for predicting or describing sidechain
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packing in folded structures [14,31–33]. These studies

argue the need for obtaining anisotropic potentials or

multi-particle interactions for use in coarse-grained

models. Recently, it has been shown that it is also crucial

to incorporate interactions between sidechains and back-

bone in the construction of statistical potentials [16��]. In

the past few years, there has been considerable progress

in obtaining reliable interaction schemes for use in struc-

ture prediction, fold recognition and folding kinetics

studies. In this article, we review some of the key ideas

that have contributed to the design of statistical poten-

tials. In most applications, the efficacy of these schemes

has been tested for fold recognition only. The success of

anisotropic potentials can be assessed in future applica-

tions. The review concludes with a description of some

of the outstanding issues that need to be addressed

before statistical potentials can be most effectively

employed in structure prediction and protein–protein

interaction studies.

Coarse-grained representations of
polypeptide chains
Ca models

Depending on the nature of the application, several levels

of coarse-grained representations of polypeptide chains

have been used [16��,17�]. In the simplest representation,

the polypeptide chain is represented using only the Ca
atoms [34]. Models that represent the polypeptide chain

as a polymer of connected Ca atoms have been poten-

tially useful in obtaining insights into the folding kinetics

of proteins.

Ca–SC models

To account for the various sizes and specific packing

features of the 20 different types of amino acids, more

detailed models are used. Dense packing of the native

states can be captured using models [6,8,35] in which the

backbone is described using non-interacting backbone

sites located at the positions of the Ca atoms, with a

second type of interaction center, Si, which corresponds

to each sidechain (SC). The Si interaction centers are

typically located at the geometric center of the heavy

atoms in each sidechain, with the exception of glycine,

where it coincides with the position of the Ca atom.

The use of geometric centers to represent sidechain inter-

action centers is a better choice than using the Ca or

Cb atoms [15��]. In the Ca–SC model, the Cai sites

are used to describe the backbone connectivity of the

polypeptide chain structure, but only the SC interaction

centers are considered to interact with each other. This

type of model has been successfully used to obtain contact-

based sidechain–sidechain (SC–SC) interaction poten-

tials [10,11,36] distance-dependent potentials [9,37] and,

more recently, distance- and orientation-dependent

potentials [15��,16��]. These models do not include expli-

citly the interactions between sidechain–backbone and

backbone–backbone atoms.

Ca–SC–Pep models

The dense packing in the interior of most proteins arises

through not only favorable interactions between the

buried hydrophobic sidechains but also a preponderance

of backbone–sidechain and backbone–backbone interac-

tions. Analysis of a large number of single-domain protein

structures reveals that, whenever two sidechains are in

contact, their backbones also interact with each other with

high probability [38]. Indeed, it has been recently esti-

mated [16��] that the number of backbone–backbone

(BB–BB) contacts can range from 12% to as much as

35% of the total number of SC–SC, SC–BB and BB–BB

contacts depending on the protein class (e.g. a, b, mixed

a/b [39]). The importance of including the backbone

interactions is also supported by the results of previous

statistical derivations of backbone potentials that used

virtual bond and torsion angles [40], and secondary struc-

ture information [41]. Therefore, more complex models

have been used [16��,20] that include an additional inter-

action center located on the backbone [35] at the geo-

metric center of each peptide bond (Pepi). In the

resulting Ca–SC–Pep models, it is assumed that the local

conformation of residue i is described by the correspond-

ing Cai, Si and Pepi interaction centers.

With these coarse-grained representations of polypeptide

chains, interaction potentials, including both distance and

orientational dependence, can be extracted from a non-

homologous subset of the PDB database of known struc-

tures using the standard Boltzmann scheme.

Sidechain packing and orientation-
dependent statistical potentials
It has been appreciated for some time that the orientation

of sidechains in the native state influences the dense

packing found in the interior of proteins [20,42–45]. The

formation of hydrogen bonds between atoms of side-

chains that are in contact requires preferred orientations.

An analysis of native structures has revealed residue-

specific coordination and preferred orientations of side-

chains [46]. A more recent study based on orientational

order parameters [15��] shows that there may be certain

symmetries associated with sidechain packing. Although

the preferred orientational symmetry is difficult to ascer-

tain, it is clear that it depends on the topology of the

native state. Certain classes of proteins (immunoglobulins

with b-sheet topology and a-helical hemoglobins) exhibit

a mixture of icosahedral and face-centered cubic arrange-

ments. However, the orientational symmetry in myoglo-

bins, as quantified by orientational order parameters, is

different. These results show that the orientational pack-

ing of sidechains in the native state is subtle. Never-

theless, these studies point to the need for orientational

potentials to describe packing in proteins.

To extract orientational and distance-dependent statisti-

cal potentials (UDO), we assume that the known native
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protein structures represent an equilibrium ensemble of

‘states’. This assumption allows one to compute the

statistical potentials from the distribution functions:

U ij
DOðr;f; yÞ ¼ �kBT ln

Pij r;f; yð Þ
Pref r;f; yð Þ

� �
: (1)

In the above equation, Pij(r,f,y) is the probability of

having sidechain j in a spherical volume element corre-

sponding to distance separation r with respect to side-

chain i, and with relative orientations y and f. The

computation of Pij(r,f,y) requires an appropriate choice

of reference frame to define the local orientations of y and

f. The quality of the statistical potentials depends not

only on the precise computation of Pij(r,f,y) but also on

the reference state. Bahar and Jernigan [46], who were the

first to capture relative orientation probabilities using a

simple-body fixed-coordinate system, showed clearly that

the preferred orientation of sidechains depends on the

nature of the residue. Their results also implied that

statistical potentials would be sensitive to orientations.

Recently, we have introduced [16��] a new way to calcu-

late Pij(r,f,y) using a local reference frame for each amino

acid sidechain, as well as the virtual interaction center

that represents the peptide backbone (Pep).

Once the local reference systems for special groups of

atoms (e.g. the heavy atoms in sidechains, or the C, O and

N of the peptide link) are defined, the statistics collected

from a database of non-homologous proteins can be used

to estimate the pair distributions for each specific type of

site–site interaction. The Pij(r,f,y) distribution functions

may be computed from the set of non-homologous pro-

teins used by Scheraga et al. [20–22] for similar purposes.

A larger training set of protein structures could be used if

higher accuracy is necessary. The pair distributions can

be further normalized by considering the corresponding

volume elements and the total number of observations for

building orientational probabilities Pij(r,f,y) for each type

of interaction.

An important technical issue that appears when using

probability density functions with the Boltzmann device

is ‘the problem of small datasets’. As noted by Sippl [9],

dividing the SC–SC pair frequencies by both sidechain

type and distance intervals can lead to situations in which

the available data are too small in number for conven-

tional statistical procedures. This problem was solved by

Sippl, who proposed a ‘sparse data correction’ formula

that builds the correct probability densities as linear

combinations of the measured data and the reference

[9,47,48].

We used the Boltzmann method to extract potentials

for three distance ranges by considering short-range

(2:0 ! 5:6 Å), medium-range (5:6 ! 9:2 Å) and long-

range (9:2 ! 12:8 Å) SC–SC interactions [16��]. For

example, Figure 1 shows 3D representations of the

extracted residue-based orientation-dependent poten-

tials for Gly–Gly (Figure 1a, short-range interactions),

Ala–Gly (Figure 1b, short-range interactions) and Pep–

Pep (Figure 1c, medium-range interactions).

In this notation (e.g. Ala–Gly), the orientational potential

is calculated in the local reference frame of the first amino

acid (i.e. alanine) for its interactions with the second

amino acid type (i.e. glycine).

To efficiently use the orientational dependence of the

inter-residue coarse-grained potentials, it is necessary to

provide an easily computable functional representation.

Assuming that the angular-dependent potential function

is sufficiently smooth, one can decompose the potentials

in terms of spherical harmonic analysis (SHA) [16��].
Alternatively, using the expansion coefficients, the

potential function U(y,f) can be reconstructed using

Figure 1

(a) (b) (c)

Current Opinion in Structural Biology

3D representations of the residue-based orientation-dependent potentials for (a) Gly–Gly short-range interactions, (b) Ala–Gly short-range

interactions and (c) Pep–Pep medium-range interactions. The potential values, corresponding to a color scale ranging from blue (most attractive

values) to red (repulsive), are projected on the surface of a spherical grid centered on the interaction center that corresponds to each type of

sidechain (Si).
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the spherical harmonics synthesis (SHS) [16��]. This

method provides a realistic representation of the orienta-

tion-dependent statistical potentials as smoothed, con-

tinuous functions.

In Figure 2, we show 3D representations of the SHS-

reconstructed short-range residue-based orientation-

dependent potentials for Ala–Gly interactions.

The new continuous orientation-dependent potentials

lead to results that are consistent with and, in many

cases, improved when compared to the raw potentials

constructed directly from orientational interaction prob-

abilities [16��]. Results from decoy tests show that the

smoothing of the orientational potentials using the SHA/

SHS approach does not necessarily lead to a loss of

accuracy. In this context, we have shown that the

Ca–SC–Pep representation improves protein fold recog-

nition [16��].

The choice of reference states
Regardless of the level of description used for polypep-

tide chains, the derivation of knowledge-based poten-

tials from PDB structures hinges on the ‘quasi-chemical’

approximation (i.e. the interacting sidechains are in

equilibrium with the solvent) [8,36]. Therefore, to mini-

mize the errors introduced by entropy losses due to chain

connectivity, without specifically correcting for it (as in

[49]), one needs to choose a reference state as close to the

random mixing approximation as possible [31]. In obtain-

ing the anisotropic potentials, we have constructed the

reference state by averaging over all interaction types.

Recently, potentials of mean force constructed using a

distance-scaled, finite ideal-gas reference state were

shown to result in improved performance in native fold

recognition at both atomistic [50�] and residue [51]

levels. Alternatively, one can consider as a reference

an amino acid such as threonine, with intermediate

hydrophobic properties, closely correlated to experimen-

tal estimates [31].

In Figure 3, we show a qualitative spatial representation

of the orientation-dependent potentials that control the

non-bonded ‘quasi-chemical’ interactions responsible for

the specific sidechain packing in proteins.

For illustration purposes, interactions with respect to

threonine are considered for all the interaction centers

shown here. The degree of observed orientational inter-

action anisotropy is significant in most cases, even for

interactions involving small amino acids such as alanine

and glycine. The specific locations of statistically pre-

ferred interaction loci are observable. In particular, the

preferred orientations for hydrogen bonding are clearly

visible in the Pep interaction maps. Although the impor-

tance of physically motivated reference states is recog-

nized, a rigorous theoretically based means of choosing

one is not clear.

Decoy sets: standard tests for native fold
recognition
To assess the efficacy of various models and interaction

schemes in protein fold recognition, standard tests are

needed. Based on the observation that there are various

ways in which one could improve even the simplest

scoring functions, Samudrala and Levitt [52] have under-

stood the necessity to organize a standard database of

computer-generated, alternative protein conformations

that are native-like, but are not the true native states.

The ‘decoy structures’ are generated by various meth-

ods [53–55], with the specific aim of ‘fooling scoring

functions’ [52,56–58,59�]. Our results from tests using

the decoy sets of Samudrala and Levitt [52] confirmed

that considering explicitly the Pep interaction centers on

Figure 2

(a) Low resolution (b) High resolution (c) High resolution
    (3D contour)

Current Opinion in Structural Biology

3D representations of the SHS-reconstructed short-range residue-based orientation-dependent potentials for Ala–Gly interactions (a) on a

12 � 24 angular grid of the same size as the grid used for collecting the statistical data and (b,c) on a grid with a resolution that is ten times higher.

In (c), the magnitude of the potential is proportional to both the distance from the interaction center of the sidechain and the color scale (i.e. red,

repulsive, regions are located distant from the sidechain interaction center [Si], whereas the blue, attractive, regions are closer to Si).
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the backbone offers significant improvement over simpler

models for the ability to recognize the native conforma-

tions of proteins [15��]. We have further used these decoy

tests to assess the statistical improvement in the ability to

recognize native protein folds resulting from the explicit

inclusion in the residue-based statistical potentials of the

orientation dependence. As newer scoring functions are

being developed, new sets of decoys are also being

generated and studied [56–58,59�]. There is a need to

generate robust decoy sets for standard evaluation studies

of the potentials.

All-atom statistical potentials for proteins
All-atom models with various degrees of sophistication

have been used in structure prediction studies for close

homology modeling [60], native fold recognition [50�] and

folding of small proteins [61]. Recently, Skolnick et al.
[62,63] compared residue-based knowledge-based poten-

tials with their heavy-atom-based statistical pair potential.

They concluded that, although more time-consuming,

the atom-based potential performs better in identifying

near-native structures from docking-generated decoys.

On the other hand, they suggest that the residue-based

potential is well suited to genome-scale protein interac-

tion prediction and analysis (e.g. in threading-based algo-

rithms [3�]). Moreover, reduced models tend to perform

better in more challenging ab initio structure predictions

or structure refinement in distant homology modeling

and threading calculations [3�,16��,17�,64,65]. Despite

the success of anisotropic coarse-grained potentials in

protein fold recognition, it is important to develop other

physically motivated constructions of all-atom force-

fields. For example, the profile method introduced by

Wilmanns and Eisenberg [66] can be used in principle to

compute all-atom potentials. Chang et al. [67] have

already used this idea to obtain a simple class of mean

field one-body potentials using a learning procedure.

More recently, Kussell et al. [61] have constructed

Figure 3

Ala–Thr

Lys–Thr

Leu–Thr

Asp–Thr

Pep–Thr

Thr–Thr

Current Opinion in Structural Biology

Qualitative spatial representations of the orientation-dependent potentials that control the non-bonded, ‘quasi-chemical’ interactions

responsible for specific sidechain packing in proteins. For illustration purposes, the interactions with respect to threonine are considered for

all the interaction centers shown here. The relatively different sizes of the anisotropic residue-dependent potentials depicted in this figure are a

qualitative reflection of the 3D spatial sidechain packing.
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all-atom pairwise potentials including a one-body term

that accounts for sidechain exposure to solvent. Using

this force-field, they successfully studied the folding

kinetics of a three-helix bundle.

Optimization of potential energy functions
The performance in fold recognition of orientation-

dependent statistical potentials can be enhanced by a

variety of methods, such as increasing and improving the

quality of the training set of non-homologous structures or

considering architecture-specific potentials. Recently,

general methods have been developed for constructing

new classes of effective contact-based [68] or distance-

dependent [69] potentials by employing novel optimiza-

tion techniques. For potentials expressed as linear com-

binations of pairwise additive functions, the optimal

interaction parameters are calculated by employing linear

programming. New algorithms, based on linear program-

ming techniques such as the interior-point method, have

been shown to be useful in both native state recognition

and threading computations [64,70]. The results for

potentials optimized by linear programming suggest that

multibody interactions play a significant role in native

state recognition. Large-scale potential optimization can

be performed on a few hundred parameters and tens of

millions of constraints [71], which makes this new class of

algorithm generalizable to more complex potential func-

tions that can explicitly include the relative orientation

dependence of protein sidechains.

Conclusions
Detailed force-fields are often needed for capturing the

specific, essential features of native protein folds, protein

kinetics and protein–protein interactions. It is reasonable

to expect that an accurate residue-level description can

be constructed to successfully meet the expectations of

modern proteome- and genome-scale studies [3�,4�], and

to simplify the rather complex current ab initio [72]

protein design methods. Recent developments suggest

that the specific orientation-dependent interactions

responsible for sidechain packing and for backbone con-

tacts should be included explicitly. This inclusion seems

to partially alleviate the errors introduced by the assump-

tion of pairwise interactions.

We have shown [15��] that the performance of energy-

based scoring functions can be improved by using statis-

tical information extracted from the relative residue–

residue orientations. Our recent results [16��] suggest

that the statistical data extracted from protein structural

databases can be successfully used to build orientation-

dependent potentials that have sufficient continuity

properties to make possible their SHA. The resulting

smooth, continuous interaction potentials are represented

using separate spherical harmonic expansions of the

orientation-dependent potential for short-, medium-

and long-range interactions.

The choice of the reference state for statistical interac-

tions is also important. The ideal-gas reference state can

be generalized to sidechain interactions [50�,51], but

further tests are needed to determine if this is a better

choice than using a reference amino acid type (i.e. threo-

nine [31]) or considering all the observed sidechain–

sidechain interactions [15��]. New large-scale linear pro-

gramming based optimization techniques [71] or machine

learning procedures could be used to circumvent this type

of question and to derive potential parameters directly

optimized for native fold recognition.

The new continuous distance- and orientation-

dependent statistical potentials could be useful in devel-

oping more efficient computational methods for protein

structure prediction, as well as for Monte Carlo or mole-

cular dynamics simulations of coarse-grained models of

peptides and proteins. For structure prediction, the new

residue-level statistical orientational potentials could be

connected to the local backbone structure, using the

information from a detailed rotamer library [73�] or a

simplified SC–BB energy function [74].

Acknowledgements
This work was supported by the National Institutes of Health (R01
NS41356-01, JES and DT). The data visualization was carried out using
Matlab (The Mathworks Inc, Natick, MA). NVB is thankful to Gerhard
Hummer for helpful discussions and support during the preparation of
this review. We thank the editors, J Janin, R Page and T Simonson, for
their useful suggestions and help with this review.

References and recommended reading
Papers of particular interest, published within the annual period of
review, have been highlighted as:

� of special interest
��of outstanding interest

1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN,
Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank.
Nucleic Acids Res 2000, 28:235-242.

2. Service RF: Proteomics - Public projects gear up to chart the
protein landscape. Science 2003, 302:1316-1318.

3.
�

Lu L, Arakaki AK, Lu H, Skolnick J: Multimeric threading-based
prediction of protein-protein interactions on a genomic scale:
application to the Saccharomyces cerevisiae proteome.
Genome Res 2003, 13:1146-1154.

A novel, multimeric threading algorithm (MULTIPROSPECTOR) for the
prediction of protein–protein interactions is presented and applied on a
large scale to search for possible interactions between more than 6000
encoded proteins.

4.
�

Janin J, Seraphin B: Genome-wide studies of protein-protein
interaction. Curr Opin Struct Biol 2003, 13:383-388.

A review of two large-scale experimental studies of protein–protein
interactions. It is suggested that the majority of proteins exist in the cell
as parts of multicomponent assemblies.

5. Thirumalai D, Klimov DK: Deciphering the timescales and
mechanisms of protein folding using minimal off-lattice
models. Curr Opin Struct Biol 1999, 9:197-207.

6. Tanaka S, Scheraga HA: Medium- and long-range interaction
parameters between amino acids for predicting three-
dimensional structures of proteins. Macromolecules 1976,
9:945-950.

7. Levitt M: A simplified representation of protein conformations
for rapid simulation of protein folding. J Mol Biol 1976,
104:59-107.

230 Theory and simulation

Current Opinion in Structural Biology 2004, 14:225–232 www.sciencedirect.com



8. Miyazawa S, Jernigan RL: Estimation of effective interresidue
contact energies from protein crystal structures: quasi-
chemical approximation. Macromolecules 1985, 18:534-552.

9. Sippl MJ: Calculation of conformational ensembles from
potentials of mean force. J Mol Biol 1990, 213:859-883.

10. Miyazawa S, Jernigan RL: Residue-residue potentials with a
favorable contact pair term and an unfavorable high packing
density term for simulation and threading. J Mol Biol 1996,
256:623-644.

11. Miyazawa S, Jernigan RL: Self-consistent estimation of
inter-residue protein contact energies based on an equilibrium
mixture approximation of residues. Proteins 1999, 34:49-68.

12. Meller J, Elber R: Linear programming optimization and a double
statistical filter for protein threading protocols. Proteins 2001,
45:241-261.

13. Kolinski A, Godzik A, Skolnick J: A general method for the
prediction of the three dimensional structure and folding
pathways of globular proteins: application to designed helical
proteins. J Chem Phys 1993, 98:7420-7433.

14. Gatchell DW, Dennis S, Vajda S: Discrimination of near-native
protein structures from misfolded models by empirical free
energy functions. Proteins 2000, 41:518-534.

15.
��

Buchete N-V, Straub JE, Thirumalai D: Anisotropic coarse-
grained statistical potentials improve the ability to identify
native-like protein structures. J Chem Phys 2003,
118:7658-7671.

This is the first paper that uses sidechain-specific definitions of a local
reference frame to derive and test distance- and orientation-dependent
residue-based statistical potentials for proteins.

16.
��

Buchete N-V, Straub JE, Thirumalai D: Orientational potentials
extracted from protein structures improve native fold
recognition. Protein Sci 2004, in press.

In this paper, the authors show that there are substantial contacts
between the backbone and sidechains in the native states of proteins.
Using this observation, they introduce the Ca–SC–Pep model, whereby
the Pep virtual interaction center represents the peptide bond. The
orientational potentials using this model greatly improve fold recognition.

17.
�

Kolinski A, Skolnick J: Reduced models of proteins and their
applications. Polymer 2004, 45:511-524.

Various reduced models developed for proteins are presented and
classified.

18.
��

Head-Gordon T, Brown S: Minimalist models for protein folding
and design. Curr Opin Struct Biol 2003, 13:160-167.

A review of the development of minimalist protein models in the context of
their application to current research issues in protein folding and design.

19. Lee J, Liwo A, Scheraga HA: Energy-based de novo protein
folding by conformational space annealing and an off-lattice
united-residue force field: application to the 10-55 fragment
of staphylococcal protein A and to apo calbindin D9K.
Proc Natl Acad Sci USA 1999, 96:2025-2030.

20. Liwo A, Oldziej S, Pincus MR, Wawak RJ, Rackovsky S,
Scheraga HA: A united-residue force field for off-lattice protein-
structure simulations. I. Functional forms and parameters of
long-range side-chain interaction potentials from protein
crystal data. J Comput Chem 1997, 18:849-873.

21. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Oldziej S,
Scheraga HA: A united-residue force field for off-lattice
protein-structure simulations. II. Parameterization of
short-range interactions and determination of weights of
energy terms by Z-score optimization. J Comput Chem 1997,
18:874-887.

22. Liwo A, Kazmierkiewicz R, Czaplewski C, Groth M, Oldziej S,
Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA: United-
residue force field for off-lattice protein-structure simulations:
III. Origin of backbone hydrogen-bonding cooperativity in
united-residue potentials. J Comput Chem 1998, 19:259-276.

23. Moult J, Fidelis K, Zemla A, Hubbard T: Critical assessment of
methods of protein structure prediction (CASP)-round V.
Proteins 2003, 53:334-339.

24. Srinivas G, Bagchi B: Study of the dynamics of protein folding
through minimalistic models. Theor Chem Acc 2003, 109:8-21.

25.
��

Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJE, Vajda S,
Vasker I, Wodak SJ: CAPRI: A Critical Assessment of PRedicted
Interactions. Proteins 2003, 52:2-9.

An analysis of the results of CAPRI, a community-wide experiment to
assess the ability of current protein docking methods to predict protein–
protein interactions. Recent results ‘‘stress the need for new scoring
functions and for methods handling the conformation changes that were
observed in some of the target systems’’.

26.
��

Murphy J, Gatchell DW, Prasad JC, Vajda S: Combination of
scoring functions improves discrimination in protein-protein
docking. Proteins 2003, 53:840-854.

This study suggests that the discrimination strategies that perform best
in protein–protein docking combine an RPScore (residue pair potential
score) filter with an ACP (atomic contact potential)-based scoring
function.

27.
��

Hummer G, Kevrekidis IG: Coarse molecular dynamics of a
peptide fragment: free energy, kinetics, and long-time
dynamics computations. J Chem Phys 2003, 118:10762-10773.

A new molecular dynamics algorithm is presented. It is shown that the
evolution of conformationally coarse variables for a small peptide can be
inferred from an ensemble of short, appropriately initialized all-atom
simulations.

28.
��

Fischer D, Rychlewski L, Dunbrack RL, Ortiz AR, Elofsson A:
CAFASP3: The third critical assessment of fully automated
structure prediction methods. Proteins 2003, 53:503-516.

This report shows the significant progress achieved in automatic struc-
ture prediction and its important implications for the prospects of auto-
mated structure modeling in the context of structural genomics.

29. Koh IYY, Eyrich VA, Marti-Renom MA, Przybylski D,
Madhusudhan MS, Eswar N, Grana O, Pazos F, Valencia A,
Sali A, Rost B: EVA: evaluation of protein structure prediction
servers. Nucleic Acids Res 2003, 31:3311-3315.

30. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U,
Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B,
Sali A: Tools for comparative protein structure modeling
and analysis. Nucleic Acids Res 2003, 31:3375-3380.

31. Betancourt MR, Thirumalai D: Pair potentials for protein folding:
choice of reference states and sensitivity of predicted
native states to variations in the interaction schemes.
Protein Sci 1999, 8:361-369.

32. Vendruscolo M, Domany E: Pairwise contact potentials are
unsuitable for protein folding. J Chem Phys 1998,
109:11101-11108.

33. Meller J, Wagner M, Elber R: Maximum feasibility guideline in
the design and analysis of protein folding potentials.
J Comput Chem 2002, 23:111-118.

34. Honeycutt JD, Thirumalai D: Metastability of the folded states of
globular proteins. Proc Natl Acad Sci USA 1990, 87:3526-3529.

35. Levitt M, Warshel A: Computer simulation of protein folding.
Nature 1975, 253:694-698.

36. Miyazawa S, Jernigan RL: Long- and short-range interactions
in native protein structures are consistent/minimally frustrated
in sequence space. Proteins 2003, 50:35-43.

37. Sippl MJ: Knowledge-based potentials for proteins.
Curr Opin Struct Biol 1995, 5:229-235.

38. Dima RI, Thirumalai D: Asymmetry in the shapes of folded and
denaturated states of proteins. J Phys Chem B 2004, in press.

39. Pearl FMG, Lee D, Bray JE, Sillitoe I, Todd AE, Harrison AP,
Thornton JM, Orengo CA: Assigning genomic sequences to
CATH. Nucleic Acids Res 2000, 28:277-282.

40. Bahar I, Kaplan M, Jernigan RL: Short-range conformational
energies, secondary structure propensities, and recognition
of correct sequence-structure matches. Proteins 1997,
29:292-308.

41. Miyazawa S, Jernigan RL: Evaluation of short-range interactions
as secondary structure energies for protein fold and sequence
recognition. Proteins 1999, 36:347-356.

42. Tsai J, Taylor R, Chothia C, Gerstein M: The packing density in
proteins: standard radii and volumes. J Mol Biol 1999,
290:253-266.

Development of novel statistical potentials for protein fold recognition Buchete, Straub and Thirumalai 231

www.sciencedirect.com Current Opinion in Structural Biology 2004, 14:225–232



43. Bagci Z, Jernigan RL, Bahar I: Residue packing in proteins:
uniform distribution on a coarse-grained scale. J Chem Phys
2002, 116:2269-2276.

44. Bagci Z, Jernigan RL, Bahar I: Residue coordination in proteins
conforms to the closest packing of spheres. Polymer 2002,
43:451-459.

45. Banavar JR, Maritan A, Seno F: Anisotropic effective interactions
in a coarse-grained tube picture of proteins. Proteins 2002,
49:246-254.

46. Bahar I, Jernigan RL: Coordination geometry of nonbonded
residues in globular proteins. Folding Des 1996, 1:357-370.

47. Hendlich M, Lackner P, Weitckus S, Floeckner H, Froschauer R,
Gottsbacher K, Casari G, Sippl MJ: Identification of native protein
folds amongst a large number of incorrect models: the
calculation of low energy conformations from potentials
of mean force. J Mol Biol 1990, 216:167-180.

48. Thomas PD, Dill KA: Statistical potentials extracted from
protein structures: how accurate are they? J Mol Biol 1996,
257:457-469.

49. Skolnick J, Jaroszewski L, Kolinski A, Godzik A: Derivation and
testing of pair potentials for protein folding. When is the
quasichemical approximation correct? Protein Sci 1997, 6:1-13.

50.
�

Zhou HY, Zhou YQ: Distance-scaled, finite ideal-gas reference
state improves structure-derived potentials of mean force
for structure selection and stability prediction. Protein Sci 2002,
11:2714-2726. [Correction appears in Protein Sci 2003,
12:2121-2121].

The authors suggest that the use of the ideal-gas reference state greatly
improves fold recognition.

51. Zhang C, Liu S, Zhou H, Zhou YQ: An accurate, residue-level, pair
potential of mean force for folding and binding based on the
distance-scaled ideal-gas reference state. Protein Sci 2004,
13:400-411.

52. Samudrala R, Levitt M: Decoys ‘R’ Us: a database of incorrect
conformations to improve protein structure prediction.
Protein Sci 2000, 9:1399-1401.

53. Park B, Levitt M: Energy functions that discriminate X-ray and
near native folds from well-constructed decoys. J Mol Biol 1996,
258:367-392.

54. Park B, Huang ES, Levitt M: Factors affecting the ability of
energy functions to discriminate correct from incorrect folds.
J Mol Biol 1997, 266:831-846.

55. Simons KT, Kooperberg C, Huang ES, Baker D: Assembly of
protein tertiary structures from fragments with similar local
sequences using simulated annealing and Bayesian scoring
functions. J Mol Biol 1997, 268:209-225.

56. Keasar C, Levitt M: A novel approach to decoy set generation:
designing a physical energy function having local minima
with native structure characteristics. J Mol Biol 2003,
329:159-174.

57. Tsai J, Bonneau R, Morozov AV, Kuhlman B, Rohl CA, Baker D:
An improved protein decoy set for testing energy functions for
protein structure prediction. Proteins 2003, 53:76-87.

58. Chen W, Mirny L, Shakhnovich EI: Fold recognition with minimal
gaps. Proteins 2003, 51:531-543.

59.
�

Zhu J, Zhu QQ, Shi YY, Liu HY: How well can we predict native
contacts in proteins based on decoy structures and their
energies? Proteins 2003, 52:598-608.

Decoys based on Gromos96 were generated and used to predict native
contacts.

60. Sali A, Potterton L, Yuan F, Vanvlijmen H, Karplus M: Evaluation of
comparative protein modeling by Modeller. Proteins 1995,
23:318-326.

61. Kussell E, Shimada J, Shakhnovich EI: A structure-based method
for derivation of all-atom potentials for protein folding.
Proc Natl Acad Sci USA 2002, 99:5343-5348.

62. Lu H, Lu L, Skolnick J: Development of unified statistical
potentials describing protein-protein interactions.
Biophys J 2003, 84:1895-1901.

63. Lu H, Skolnick J: A distance-dependent atomic knowledge-
based potential for improved protein structure selection.
Proteins 2001, 44:223-232.

64. Meller J, Elber R: Protein recognition by sequence-to-structure
fitness: bridging efficiency and capacity of threading models.
Adv Chem Phys 2002, 120:77-130.

65. Betancourt MR: A reduced protein model with accurate native-
structure identification ability. Proteins 2003, 53:889-907.

66. Wilmanns M, Eisenberg D: Inverse protein-folding by the residue
pair preference profile method - Estimating the correctness
of alignments of structurally compatible sequences.
Protein Eng 1995, 8:627-639.

67. Chang I, Cieplak M, Dima RI, Maritan A, Banavar JR: Protein
threading by learning. Proc Natl Acad Sci USA 2001,
98:14350-14355.

68. Tobi D, Shafran G, Linial N, Elber R: On the design and analysis of
protein folding potentials. Proteins 2000, 40:71-85.

69. Tobi D, Elber R: Distance-dependent, pair potential for protein
folding: results from linear optimization. Proteins 2000,
41:40-46.

70. Meller J, Elber R: Linear optimization and a double statistical
filter for protein threading protocols. Proteins 2001, 45:241-261.

71. Wagner M, Meller J, Elber R: Large-scale linear programming
techniques for the design of protein folding potentials.
Mathematical Programming 2004, in press.

72. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D:
Design of a novel globular protein fold with atomic-level
accuracy. Science 2003, 302:1364-1368.

73.
�

Canutescu AA, Shelenkov AA, Dunbrack RL Jr: A graph-theory
algorithm for rapid protein side-chain prediction.
Protein Sci 2003, 12:2001-2014.

The newest (third) version of the SCWRL program for sidechain prediction
using a backbone-dependent rotamer library is presented.

74. Kazmierkiewicz R, Liwo A, Scheraga HA: Addition of side chains
to a known backbone with defined side-chain centroids.
Biophys Chem 2003, 100:261-280.

232 Theory and simulation

Current Opinion in Structural Biology 2004, 14:225–232 www.sciencedirect.com


	Development of novel statistical potentials for protein fold recognition
	Introduction
	Coarse-grained representations of polypeptide chains
	Calpha models
	Calpha-SC models
	Calpha-SC-Pep models

	Sidechain packing and orientation-dependent statistical potentials
	The choice of reference states
	Decoy sets: standard tests for native fold recognition
	All-atom statistical potentials for proteins
	Optimization of potential energy functions
	Conclusions
	Acknowledgements
	References and recommended reading


