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Abstract

Transfer functions play a very important role in
learning process of neural systems. This paper
presents new functions which are more flexible
than other functions commonly used in artifi-
cial neural networks. The latest improvement
added is the ability to rotate the contours of
constant values of transfer functions in multi-
dimensional spaces with only N − 1 adaptive
parameters. Rotation using full covariance ma-
trices requires N2 parameters. These functions
have biases and slopes separable in each dimen-
sion for each neuron, completely independen-
t in multi-dimensional spaces. Therefore they
are dimensionally separable — each dimension
may be excluded independently at any time.
As the neural network model for testing the
performance of these new transfer function-
s the Incremental Network (IncNet) was cho-
sen. These networks are similar to radial ba-
sis function (RBF) networks and resource allo-
cating networks. The architecture of IncNet is
the same as the architecture of RBF network-
s, but the structure (the number of hidden n-
odes) changes during the learning process ac-
cording to certain statistical criterion that con-
trols growth and pruning of network connec-
tions.
Preliminary results show superior performance
of the new transfer functions comparing with
gaussian functions often used by RBF networks
and other models.

1 Introduction
The research on the artificial neural networks (ANNs)
can be divided to local and global optimization. Both
have the same goal which is finding the unknown map-
ping between the input and output space for given data
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sets S = {〈x1, y1〉, . . . , 〈xn, yn〉}, where 〈xi, yi〉 is in-
put – output pair (xi ∈ RN , yi ∈ R). The underlying
mapping F (·) can be written as

F (xi) = yi + η, i = 1, . . . , n (1)

η is a zero mean white noise with variance σ2
ns.

Artificial neural networks use many different architec-
tures and many different transfer functions. The prob-
lems considered in this paper will deal rather with the
local learning than global. Especially the local and semi-
local transfer functions will be described. For extensive
review of other transfer function see [Duch and Jankows-
ki, 1999].

The best known local learning models are the radial
basis function networks [Powell, 1987; Broomhead and
Lowe, 1988; Dyn, 1989; Poggio and Girosi, 1990], adap-
tive kernel methods and local risk minimization [Bottou
and Vapnik, 1992; Vapnik, 1995; Girosi, 1998].

The Radial Basis Function (RBF) networks [Powell,
1987; Poggio and Girosi, 1990; Lowe, 1989] were designed
as a solution to an approximation problem in multi–
dimensional spaces. The typical form of the RBF net-
work can be written as

f(x; w,p) =
M∑
i=1

wiGi(||x||i,pi) (2)

where M is the number of neurons in hidden layer,
Gi(||x||i,pi) is the i-th Radial Basis Function, pi are ad-
justable parameters such as centers, biases, etc., depend-
ing on Gi(||x||i,pi) function. Commonly used radial ba-
sis functions are Gaussian functions, the nonlocal radial
coordinates, general multiquadratics, and thin-plate s-
pline functions defined as

h1(x; t, b) = e−||x−t||2/b2 (3)
h2(x; t) = ||x− t|| (4)

h3(x; t, b) = (b2 + ||x− t||2)−α, α > 0 (5)

h4(x; t, b) = (b2 + ||x− t||2)β , 0 < β < 1 (6)

h5(x; t, b) = (b||x− t||)2 ln(b||x− t||) (7)

In contrast to many artificial neural networks (ANNs)
including well known multi-layered perceptron (MLP)
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Figure 1: A few shapes of the biradial functions in 2D
(Eq. 8).

networks the RBF networks and local risk minimiza-
tion methods have well known mathematical properties.
RBF networks are universal aproximator [Hartman et
al., 1990; Park and Sandberg, 1991]. Girosi and Pog-
gio [Poggio and Girosi, 1990] proved the existence and
uniqueness of best approximation for regularization and
RBF networks.

2 Transfer Functions
Sigmoidal functions may be combined into a window
type localized functions in several ways. Perhaps the
simplest is to take the difference of two sigmoids, σ(x)−
σ(x−θ). One may also use products of pairs of sigmoidal
functions σ(x)(1 − σ(x)) for each dimension. This type
of transfer functions are very flexible, producing decision
regions with convex shapes, suitable for classification.
Product of N pairs of sigmoids has the following general
form (see Fig. 2):

Bi(x; t,b, s) =
N∏
i=1

σ(esi · (xi − ti + ebi))

(1 − σ(esi · (xi − ti − ebi)))
(8)

where σ(x) = 1/(1 + e−x). The first sigmoidal factor in
the product is growing for increasing input xi while the
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Figure 2: Biradial functions with two slopes (Eq. 9).

second is decreasing, localizing the function around ti.
Shape adaptation of the density Bi(x; t,b, s) is possible
by shifting centers t, rescaling b and s. Radial basis
functions are defined relatively to only one center ||x−t||.
Here two centers are used, ti + ebi and ti− ebi , therefore
these functions are called biradial. Product form leads
to well-localized convex densities of biradial functions.
Exponentials esi and ebi are used instead of si and bi
parameters to prevent oscillations during the learning
procedure (learning becomes more stable).

The number of adjustable parameters per processing
unit is in this case 3N . Dimensionality reduction is pos-
sible as in the Gaussian bar case [Hartman et al., 1990;
Park and Sandberg, 1991], but more flexible density
shapes are obtained, thus allowing to reduce the number
of adaptive units in the network.

Biradial functions with independent slopes. Lo-
calized biradial functions may be extended to the semi-
localized universal transfer functions using independent
slopes in the pair of sigmoids:

Bi2s(x; t,b, s) =
N∏
i=1

σ(esi · (xi − ti + ebi)) (1−

σ(es
′
i · (xi − ti − ebi)))

(9)

Using small slope si and/or s′i the biradial function
may delocalize or stretch to left and/or right in any di-
mension. This allows to get such contours of transfer
functions as half-infinite channel, half-hyper ellipsoidal,
soft triangular, etc. Although the cost of using this func-
tion is a bit higher than of the biradial function (it uses
4N parameters for each neuron), more flexible density
contours are produced.

Biradial functions with rotation. The biradial
functions proposed above contain 3N parameters per
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Figure 3: Biradial functions with rotation (Eq. 10).

one unit and are quite flexible in representing vari-
ous probability densities. Semi-biradial functions and
biradial functions with independent slopes provide lo-
cal and non-local units in one network. Next step to-
wards even greater flexibility requires individual rota-
tion of densities provided by each unit. Of course one
can introduce a rotation matrix operating on the in-
puts Rx, but in practice it is very hard to parame-
terize this N × N matrix with N − 1 independent an-
gles (for example, Euler’s angles) and to calculate the
derivatives necessary for backpropagation training pro-
cedure. Rotated densities in all dimensions may be ob-
tained in two ways using transfer functions with just
N − 1 additional parameters per neuron. In the first ap-
proach (for the second see [Duch and Jankowski, 1999;
1997]) product form of the combination of sigmoids is
used (see Fig. 3)

CP (x; t, t′,R) =
N∏
i

(
σ(Rix + ti)− σ(Rix + t′i)

)
(10)

SCP (x; t, t′,p, r,R) =
N∏
i

(
pi · σ(Rix + ti) +

ri · σ(Rix + t′i)
) (11)

where Ri is the i-th row of the rotation matrix R with
the following structure:

R =



s1 α1 0 · · · 0
0 s2 α2 0

...
. . .

...
sN−1 αN−1

0 · · · 0 sN

 (12)

If pi = 1 and ri = −1 then SCP function is localized
and gives similar densities as the biradial functions (ex-
cept for rotation). Choosing other values for the pi and
ri parameters non-local transfer functions are created.

3 Incremental Network
In the 1991 Platt published the article on the Resource–
Allocating Network [Platt, 1991]. The RAN network is
an RBF-like network that starts from empty hidden layer
and grows when the following criteria are satisfied:

yn − f(xn) = en > emin; ||xn − tc|| > εmin (13)

en is equal the current error, tc is the nearest center of
a basis function to the vector xn and emin, εmin are some
experimentally chosen constants. The growing network
can be described by

f (n)(x,p) =
k−1∑
i=1

wiGi(x,pi) + enGk(x,pk)

=
k∑
i=1

wiGi(x,pi)

(14)

where pk includes centers xn and other adaptive param-
eters which are set up with some initial values. If the
growth criteria are not satisfied the RAN network uses
the LMS algorithm to estimate adaptive parameters.

Although LMS algorithm is faster than Extended
Kalman Filter (EKF) algorithm [Candy, 1986], the EK-
F algorithm was chosen because it exhibits fast con-
vergence, uses lower number of neurons in hidden layer
[Kadirkamanathan and Niranjan, 1992; 1993] and gives
some tools which would be useful in control of the growth
and pruning process.

RAN network using EKF learning algorithm (RAN-
EKF) was proposed by [Kadirkamanathan and Niran-
jan, 1993]. The previous version of the IncNet [Kadirka-
manathan, 1994] is a RAN-EKF network with statistical-
ly controlled growth criterion. For more exhaustive de-
scription of ontogenic neural networks see [Fiesler, 1994].

The EKF equations can be written as follows:

en = yn − f(xn; pn−1)
dn = ∂f(xn;pn−1)

∂pn−1

Ry = Rn + dTnPn−1dn
kn = Pn−1dn/Ry
pn = pn−1 + enkn
Pn = [I− kndTn ]Pn−1 +Q0(n)I

(15)

The suffixes n − 1 and n denotes the priors and pos-
teriors. pn consists of all adaptive parameters: weights,
centers, biases, etc. To prevent too quick convergence of
the EKF, which leads to data overfitting, the Q0I adds a
random change, where Q0 is scalar and I is the identity
matrix.

Novelty Criterion: Using methods which estimate
during learning covariance of uncertainty of each pa-
rameter, the network output uncertainty can be deter-
mined and the same criterion as in previous version of
IncNet [Jankowski and Kadirkamanathan, 1997a; 1997b;



Kadirkamanathan, 1994] may be used. Then the hy-
pothesis for the statistical inference of model sufficiency
is stated as follows:

H0 :
e2

Var[f(x; p) + η]
=

e2

σ2
y(x) + σ2

ns

< χ2
n,θ (16)

where χ2
n,θ is θ% confidence on χ2 distribution for n de-

gree of freedom. e = y−f(x; p) is the error (see Eq. 15).
If this hypothesis is not satisfied the current model is not
sufficient and should change. Ry = Var[f(x; p)+η] (part
of EKF) estimates the total uncertainty in the expected
output and the null hypothesis can be written as:

H0 : e2
n/Ry < χ2

n,θ (17)

If hypothesis H0 is satisfied then IncNet continues
learning using the EKF algorithm. Otherwise, a new
neuron (M + 1)-th should be added with some initial
parameters. For Gaussian functions GM+1(·) these pa-
rameters are: wM+1 := en, tM+1 := xn, bM+1 :=

b0, Pn :=
[

Pn 0
0 P0I

]
, where en is the error for giv-

en input vector xn, b0 and P0 are some initial values
for bias (depending on a given problem) and covariance
matrix elements (usually 1).

Pruning: As a result of the learning process a neuron
can become completely useless and should be pruned.
Assume the structure of vector pn and the covariance
matrix as:

pn = [w1, . . . , wM , . . . ]T P =
[

Pw Pwv

PT
wv Pv

]
(18)

where Pw is a matrix of correlations between weights,
Pwv between weights and other parameters, Pv only
between others parameters (excluding all weights).

Then by checking the inequality P (Eq.19) we can
decide whether to prune or not and also we know that
the neuron for which value L was obtained has smallest
saliency and should be pruned.

P : L/Ry < χ2
1,ϑ L = min

i
w2
i /[Pw]ii (19)

where χ2
n,ϑ is ϑ% confidence on χ2 distribution for one

degree of freedom.
Neurons are pruned if the saliency L is too smal-

l and/or the uncertainty of the network output Ry is
too big.

Many pruning methods were described in the last
decade. Pruning leads to the removal of the network con-
nections and unnecessary neurons, but frequently many
neurons contribute to decision borders that could be rep-
resented by smaller network without decreasing of accu-
racy. Therefore one should merge two [Jankowski, 1998]
neurons(or even more – it may be more complicated com-
putationally) keeping the current shape of the decision
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Figure 4: The MSE error on training and testing sets,
and below number of neurons in hidden layer was shown.

surface unchanged as much as possible. Two neurons
can be replaced by a sigle one if the ratio:

∫
d⊆Dn |φi(x) + φj(x)− φnew(x)| dx∫

d⊆Dn |φi(x) + φj(x)| dx < α (20)

is smaller than some confidence parameter α.
Unfortunately merging of neurons has not been used

yet in the simulations described below.

4 Results
Gabor and Girosi functions are approximation
benchmark. These functions were used previously by
Girosi et al. [Girosi et al., 1993]:

fgab(x, y) = e−||x||
2

cos(.75π(x+ y)) (21)

fgir(x, y) = sin(2πx) + 4(y − 0.5)2 (22)

The learning is difficult because only 20 points were
provided for learning from uniformly distributed inter-
val [−1, 1] × [−1, 1] for Gabor function (Eq. 21) and
from [0, 1]× [0, 1] interval for additive function (Eq. 22).
10,000 points were used in testing phase from the same
intervals1. The table 1 describes the models2 and the
MSE errors of those models.

Although the IncNet model is not always the best one,
it is the best on average, adapting more flexibly (see ta-
ble 1). Remember that building the network one should
choose the transfer function using only the training error.

1Methods of preparation of training and testing data and
methods of results comparing are the same as used by previ-
ous authors.

2Models 1 to 8 originally published by Girosi, Jones and
Poggio in [Girosi et al., 1993].



Model1
∑20
i=1 ci[e

−
(

(x−xi)
2

σ1
+

(y−yi)
2

σ2

)
+ e
−
(

(x−xi)
2

σ2
+

(y−yi)
2

σ1

)
] σ1 = σ2 = 0.5

Model2
∑20
i=1 ci[e

−
(

(x−xi)2
σ1

+
(y−yi)2
σ2

)
+ e
−
(

(x−xi)2
σ2

+
(y−yi)2
σ1

)
] σ1 = 10, σ2 = 0.5

Model3
∑20
i=1 ci[e

(x−xi)
2

σ + e−
(y−yi)

2

σ ] σ = 0.5

Model4
∑7
α=1 bαe

− (x−tαx )2

σ +
∑7
β=1 cβe

− (y−tβy )2

σ σ = 0.5

Model5
∑n
α=1 cαe

−(Wα·X−tα)2

Model6
∑20
i=1 ci[σ(x− xi) + σ(y − yi)]

Model7
∑7
α=1 bασ(x− tαx ) +

∑7
β=1 cβσ(y − tβy )

Model8
∑n
α=1 cασ(Wα ·X− tα)

Additive function — MSE train/test
IncNet Rot IncNet Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
.00000133 .00000232 .000036 .000067 .000001 .000001 .000170 .000001 .000003 .000743
0.000859 .000082 .011717 .001598 .000007 .000009 .001422 .000015 .000020 .026699

Gabor function — MSE train/test
.000006 .000025 .000000 .000000 .000000 .345423 .000001 .000000 .456822 .000044
0.015316 0.025113 .003818 .344881 67.9523 1.22211 .033964 98.4198 1.39739 .191055

Table 1: Comparison of different models, based on different transfer functions with IncNet network using biradial
and biradial with rotation functions for approximation of two functions Eq. (21) and Eq. (22)

The table shows that rotation of biradial functions work-
s well and can help in learning. Biradial functions with
rotation can estimate more complex unknown mapping
and the costs of N − 1 additional adaptive parameters
is not too big. For Gabor function Eq. (21) IncNet used
4 neurons using biradial functions Eq. (8) and 6 neuron-
s using biradial function with rotation Eq. (10). Note
that IncNet with biradial neurons which use more than
4 neurons loss the generalization on testing set. For ad-
ditive Girosi function Eq. (22) 8 biradial neurons Eq. (8)
and the same number of functions of biradial with rota-
tion Eq. (10) were used. Note that the IncNet controls
the growth and pruning during the learning process, see
Fig. 4. In the first phase of learning IncNet adds and re-
moves neurons to find the final structure — the growth
and pruning is looking for optimal structure continuous-
ly during the learning.

Sugeno function. The second benchmark problem
concerns an approximation of Sugeno function [Sugeno
and Kang, 1988] defined as

f(x, y, z) = (1 + x0.5 + y−1 + z−1.5)2 (23)

Results using IncNet with biradial and biradial with
rotation transfer functions were compared to other re-
sults presented by Sugeno [Sugeno and Kang, 1988],
Kosiński [Kosiński and Weigl, 1995], and Horikawa et
al. [Horikawa et al., 1992] (see table 2). Although this
function is frequently used for testing the approxima-
tion capabilities of adaptive systems, there is no stan-
dard procedure to select the training points and thus
the results are rather hard to compare. For training 216
points from [1, 6] interval and 125 points for testing from
[1.5, 5.5] interval were randomly chosen. All tests were
performed using the same (if possible) or similar initial

Model APETRS APETES
GMDS model Kongo 4.7 5.7

Fuzzy model 1 Sugeno 1.5 2.1
Fuzzy model 2 Sugeno 0.59 3.4
FNN Type 1 Horikawa 0.84 1.22
FNN Type 2 Horikawa 0.73 1.28
FNN Type 3 Horikawa 0.63 1.25

M - Delta model 0.72 0.74
Fuzzy INET 0.18 0.24

Fuzzy VINET 0.076 0.18
IncNet 0.119 0.122

IncNet Rot 0.053 0.061

Table 2: Approximation of Sugeno function.

parameters. The Average Percentage Error (APE) was
used as a measure of approximation error:

APE =
1
N

N∑
i=1

∣∣∣∣f(xi)− yi
yi

∣∣∣∣ ∗ 100% (24)

Final networks had maximally 11 neurons in the hidden
layer.

5 Conclusions
Results presented above show that biradial with rota-
tion and biradial functions used with incremental net-
work work very efficiently. The final networks have quite
high generalization, and the structure of the networks are
controlled online by statistical criteria. Biradial transfer
functions may estimate many different probability densi-
ties with good generalization in efficient framework. Bi-
radial functions with rotation definitely improve estima-



tion of complex densities using just 4N − 1 parameters
per neuron (where N is dimension of input space).
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