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Abstract

Backpropagation based on minimization algorithms is replaced by heuristic search techniques for quantized
weights. The resulting algorithm is fast, avoids local minima of the cost function, and may be used either as initial-
ization method for standard backpropagation or as a logical rule extraction technique.

I. INTRODUCTION

BACKPROPAGATION (BP) methods use local, gradient-based minimization techniques
for training the multilayer perceptrons (MLP). Gradient-based minimization of the cost

function is relatively fast, but for complex problems, with a large number of vectors and input
features, it has several drawbacks and may be very time consuming. Despite the use of mo-
mentum and multistart techniques, requiring extensive experimentation, BP training may find
local minima of the error function that are far from the global minimum. An additional prob-
lem with MLPs using sigmoidal transfer functions is that minimization of the mean square
error (MSE) is not the same as minimization of the classification error. Smooth sigmoidal
functions contribute to the MSE even for vectors that are far from the decision borders. MLP
decision borders tend to have wide margins (placed far from vectors of both classes that are
discriminated), which is good for generalization, but for overlapping distributions decision
borders are shifted away from the class which has higher density of vectors near the deci-
sion border. An optimal placement of decision borders requires an increase of the slopes of
sigmoids, but gradient procedures are not stable during such transition since the volume of
the feature space, in which gradients are non-zero, shrinks rapidly to zero when sigmoids are
changed into step functions. In effect linear discrimination analysis may sometimes obtain
better results than non-linear neural techniques [1].

To avoid such drawbacks one may use either global minimization techniques [2], which
from computational point of view are rather expensive, use better initialization methods [3],
[1] or try to average over an ensemble of neural models [4], [2]. In this paper a radically
different approach is proposed. Minimization and search methods [5] share the same goal of
optimizing some cost functions. Quantization of network parameters (weights and biases) al-
lows to replace minimization by search. Increasing step by step the resolution of quantization
from coarse to fine, allows to find the network parameters to arbitrary precision. Search-based
optimization allows to use step-like functions or smooth sigmoids. At worst heuristic search
procedures may be applied to initialize network parameters, bringing the network close to the
global minimum of the cost function. Further training with standard backpropagation should
then be short and give better solutions than random initialization allows. At best search-
based MLP may replace the BP algorithm completely. An additional advantage of the search
procedures concerns the logical rule extraction from data. Although we have obtained excel-
lent results converting MLPs into logical-like networks [6] the process is not automatic and
requires tuning of regularization parameters by the user.



II. SEARCH-BASED OPTIMIZATION OF MLP COST FUNCTION
There are several ways to introduce search techniques into neural networks. In this paper

we will consider fully discrete situation, in which both the data and all network parameters
are discrete, although the resolution of the network parameters may be different than the
resolution of the data. Inputs may also be continuous and only the network parameters dis-
cretized. If the step functions are used instead of smooth sigmoids the MSE error function
becomes the classification error function.

Replacing the gradient-based BP methods by global search algorithm to minimize the value
of the error function is rather expensive, therefore some form of a heuristic search should be
used, for example the best first search or the beam search [5]. Even if the best first search
algorithm is used (corresponding to the steepest gradient descent) a good solution may be
found decreasing the resolution of the discrete network parameters. In BP this would roughly
correspond to a period of learning with large learning constants, with some annealing sched-
ule for decreasing the learning constant. It is surprising that the correspondence between
search and minimization techniques has not yet been analyzed in details since it seems to be
quite fruitful.

The first step of the algorithm is to design a network. Although the method does not
require special architectures our tests were made on networks with similar structure for all
the datasets (up to three hidden neurons per output, with adaptive weights only between
the input and the hidden neurons). We have also used a constructive method, adding more
neurons as long as the results were improving. If logical rules are extracted from the network
it is easy to stop this procedure before overfitting occurs – the number of logical rules grows
rapidly when overfitting occurs. On the other hand if an ensemble of networks is used in
some averaging procedure one should also include networks that overfit the data [7], [8]. The
transfer functions used are of the standard sigmoidal type. For the purpose of logical rules
extraction sigmoids with very large slopes or the threshold functions are used.

In the fully discrete situation (if the data are not discrete we discretize them) we may
replace all input data by binary variables. In such case the number of input units is equal to
the sum of the numbers of discrete values for all the inputs. Each of the input data is then
converted into the form of tuples consisting of±1 (as in the case of MLP2LN method [6]).
The number of outputs is usually equal to the number of output classes. Choosing one of the
classes as the default reduces the number of outputs by one. A data vector is then classified
to the default class if none of the outputs gets sufficiently activated.

Given a network the algorithm starts with all weightsWi j = 0 and biasesθi = −0.5, so
that all data is assigned to the default class. It is also possible to start with random values of
the parameters, but so far we have investigated only the fully deterministic approach. At the
beginning of the search procedure the step value∆ for weights (and biases) is set. This value
is added or subtracted from weights and biases,Wi j ±∆,θi±∆. This significantly reduces the
space searched through. The best first and the beam search strategies were used to modify
one parameter at a time. Since computer experiments showed that it may not be sufficient
variants of the search method modifying two weights at a time were used, though more time
consuming. To improve the search methods they are performed in two stages. First, all the
single changes of parameters are tested and a number of the most promising (i.e. decreasing
the value of the cost function) changes is selected (the beam width). Second, all pairs of
parameter changes from the chosen set, or even all the subsets of this set, are tested, and



the best combination of changes applied to the network. Since the first stage reduces the
number of weights and biases that are good candidates for updating the whole procedure is
computationally efficient.

One could train all the network parameters simultaneously, but more effective variant is
the constructive approach, which determines parameters for each newly added hidden neuron
separately. After convergence these parameters are kept frozen and new neurons are added
for further training if necessary. Depending on the method of searching and the value of∆
results can be used for initialization of BP training on the neural network found by search
procedure or for the crisp or fuzzy logical rule extraction.

A. Logical rule extraction

Adding some constraints to the cost function optimized can produce networks easily con-
vertible to crisp logical rules or fuzzy logical rules with soft trapezoidal membership func-
tions obtained by subtracting two sigmoids. If all the weights are integers – which can be
obtained with setting the∆ = 1) and the hidden neuron transfer function is sufficiently steep,
then the resulting network can easily be converted to a number of M-of-N rules (if M con-
ditions out of N are satisfied then the condition is true). The rules are generated by simple
analysis of network parameters. All the input combinations are checked, and if their sum
exceeds appropriate bias a logical rule is generated. Although sometimes the logical descrip-
tion of data is much shorter if M-of-N style rules are used classical logic form of rules is
preferred, because they are more comprehensible.

To obtain small number of classical logic rules the space of weights values is searched
assuming that biases are always equal to the sum of the incoming weights minus 0.5, i.e.
θi = ∑ j Wi j −0.5. In such cases single neuron is equivalent to just one logical rule, since one
combination of inputs gives a sum greater than the bias.

B. MLP initialization

Weights and biases found during the search represent a proper neural network which can be
further trained with any variant of the backpropagation algorithm. The network parameters
should be very close to a minimum of the error function, so usually a short training process
is sufficient. Quite often backpropagation training has not been able to improve the accuracy
of the initial network, which shows that search can yield more accurate results than gradient
descent methods. Since the search method may use sigmoids with high slopes it works also
in cases when the standard MLPs fall behind linear discrimination. Our experience with soft
sigmoids also shows that backpropagation is frequently not able to improve classification
results of the networks found using search procedures.

III. ILLUSTRATIVE RESULTS.
The search based (S-MLP) approach has been applied to several benchmark datasets giving

in most cases very promising results. S-MLP results for classification on 3 datasets are given
below and results of the rule extraction are given in the next subsection.

A. Black box classification

10-fold cross validation tests on the Iris flowers problem [9] gave 96% of accuracy. It
is hard to obtain better results with cross validation since there are several vectors from the



TABLE I

Results for the Ljubljana cancer dataset.

Method Accuracy % Reference

S-MLP, 2 weights per step 83.6 This paper
C-MLP2LN, 2 rules 78.0 Ref. [10]
Assistant-86 78.0 Ref. [12]
CART 77.3 Ref. [13]
CART, PVM, C-MLP2LN single rule 76.2 Ref. [13]
Naive Bayes rule 75.9 Ref. [13]
MLP with backpropagation 71.5 Ref. [13]
AQ15 66-72 Ref. [14]
Weighted network 68-73.5 Ref. [15]
Default class 70.3
LERS (rough sets) 67.1 Ref. [11]
k-NN, k=1 65.3 Ref. [13]

TABLE II

10-fold cross validation results for the appendicitis data.

Dataset and method Accuracy

S-MLP 89.7
PVM, C-MLP2LN (logical rules) 89.6
RIAC (prob. inductive) 86.9
MLP+backpropagation 85.8
CART, C4.5 (dec. trees) 84.9
Bayes rule (statistical) 83.0

Iris-versicolor class that are very similar to the Iris-virginica samples.
The Ljubljana cancer data [9] contains 286 cases, of which 201 are no-recurrence-events

(70.3%) and 85 are recurrence-events (29.7%). The data is already discretized, there are 9
attributes with 2-13 different values each. This is a difficult and noisy data. S-MLP found a
solution with 47 errors, or 83.6% accuracy, which is the best result we know of. Results are
summarized in Table I.

The appendicitis dataset contains only 106 cases, with 8 attributes (results of medical
tests), and 2 classes: 88 cases with acute appendicitis and 18 cases with other problems. S-
MLP gives similar results as the best logical rules and significantly better than MLP results
obtained by Weiss [13]. Results are summarized in Table II.

B. Rule extraction

For the Iris three simple rules giving 4 errors, or 97.3% overall accuracy, were found:

R 1: If F4 ≤ 0.9 THEN Iris-setosa.
R 2: If F3 > 4.9 THEN Iris-virginica.
R 3: If F4 > 1.7 THEN Iris-virginica.
R 4: Else Iris-versicolor.



These rules are optimal from the generalization point of view and have been found by us
using MLP2LN method [6], [16]. For the Ljubljana breast cancer the two-stage search proce-
dure has been used, with selection of the eight best weights changes followed by evaluation of
all possible combination of changes for these weights. Two logical rules for the ‘recurrence-
event’ class were found:

R 1: Involved nodes�=0-2∧ Degree malignant = 3∧ Tumor-size�=45-49
R 2: involved nodes=[9,11]∧ tumor size = [35-39]

with ELSE condition for the no-recurrence, giving 64 errors or overall 77.6% of accuracy.
A simplification of these rules:

Involved nodes�=0-2∧ Degree malignant = 3

with ELSE condition for the second class gives over 77% accuracy in cross validation tests.
This rule is easy to interpret: the number of involved nodes is bigger than 2 and the cells are
highly malignant. Slightly more accurate rules are obtained with better search strategy (two
weights changed at a time):

R 1: Involved nodes�=0-2∧ Degree malignant = 3∧ Tumor-size�=45-49∧ age�= 10-19
R 2: Involved nodes=[9,11]∧ age�= 40-49
R 3: Tumor size = [35-39]∧ age=30-39

with ELSE condition for the second class. These rules make 62 errors (78.3% accuracy).
Rule accuracy and complexity depend on which class is the default one. For ‘no-recurrence-
events’ class S-MLP finds more accurate rules (59 errors, 79.4% accuracy), however they are
even more complex. Three rules given above are already too specialized, since the dataset
is so small and rules cover only a few cases, capturing accidental correlations. It would be
hard to improve these results – most methods give significantly lower accuracies. For exam-
ple LERS, a machine learning technique based on rough sets, gives after optimization almost
100 rules achieving only 69.4% of accuracy (below the default rate, Table I).

For appendicitis a single rule gives 92.5% accuracy:

R 1: NOT(MBAP∈(12.6,18.9]∨MBAP > 25.2)∧MNEA≤6650∧NOT WBC1∈ (16775,17400]
Additional rule covers two more cases

R 2: NOT MNEP∈(71.6,82.4]∧ MBAP∈(1,3]∧ WBC1> 9525
giving together with the first rule 94.3% accuracy, but for such small dataset it may be just an
accidental correlation.

IV. SUMMARY
Heuristic search procedures may effectively replace backpropagationalgorithm with gradient-

based minimization of the cost functions. Our preliminary results seem to confirm that the
method is fast, accurate, useful for classification and it is a big step towards fully automatic
logical rule extraction from raw data.
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