
Intelligent Information Systems VIII
Proceedings of the Workshop held in
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Abstract. Methodology of extraction, optimization and application of sets of logical rules
is described. The three steps are largely independent. Neural networks are used for initial
rule extraction, local or global minimization procedures for optimization, and Gaussian
uncertainties of measurements are assumed during application of logical rules. A tradeoff
between rejection/error level is discussed. This methodology has been applied to a number
of benchmark and real life problems with very good results.
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1 Introduction.

There is no reason why a simple model based on logical rules should always work, but in cases
when it does it is certainly worth using. Our strategy is to use the simplest description possible,
but not simpler. If the number of logical rules required for high accuracy of classification is too
large other, more sophisticated models are needed. In many applications simple crisp logical
rules proved to be more accurate and were able to generalize better than many machine and
neural learning algorithms [1]. In other applications fuzzy rules proved to be more accurate.
Using soft trapezoidal membership functions allows for smooth transition from crisp to fuzzy
rules and enables natural interpretation of rules. Moreover, it is equivalent to using crisp rules for
data which has Gaussian uncertainties (cf. Section 4).

Extraction of logical rules from data may be done using statistical, pattern recognition and
machine learning methods, as well as neural network methods. In this paper we present complete
methodology for extraction, optimization and application of logical rules. These last two steps



are largely neglected in the literature, with current emphasis being still on the extraction method-
s. Overlapping clusters may lead to non-zero probability of classificationp(C i|X ;M) for several
classes. In medical diagnosis it is important to obtain an estimation of reliability of several possi-
ble classifications, not just a single decision. This is possible if the probability density functions
(PDFs) modeling data clusters are approximated by combinations of products of “membership”
functions. Using conjunction of all membership functions for clusters belonging to a given class
classification probabilities may be calculated.

Classical crisp logic rules are obtained from fuzzy rules if all membership functions are rect-
angular (values 0 or 1). Rectangles allow to define logical linguistic variables for each feature
by intervals or sets of nominal values and thus allow to express logical rules in simple sentences
like “if the size is small then fruit is not ripe”. If rules from different classes are not overlapping
classification probabilities 1 or 0 are sufficient. If rectangular functions are softened or changed
to trapezoidal membership functions natural generalization and fuzzy interpretation is obtained.
Fuzzy logic classifiers are frequently based on triangular membership functions for each input
feature, a further simplification comparing to trapezoidal functions. Membership functions usual-
ly do not depend on the region of the input space. Feature Space Mapping (FSM) [2], our neuro-
fuzzy system, does not require such drastic simplifications. Using a difference of two sigmoidal
functionsσ(x)−σ(x−b) one may obtain a soft trapezoid membership functions. Increasing the
slope of sigmoids changes trapezoidal functions into rectangular functions. The shape of these
functions depends on the location in the input space, providing context-dependent membership
functions.

In the next section several neural rule extraction algorithms are described, the third section
deals with simplification and optimization of logical rules. The fourth section concerns the appli-
cation of rules and overcoming their brittleness and the fifth section illustrates our methodology
on a few problems. The paper is finished with a short discussion.

2 Neural rule extraction

Several neural algorithms for feature selection and extraction of initial rules have been developed
in our group. Since logical rules require linguistic inputs, selection of initial linguistic variables
(symbolic inputs) is the first step of the rule extraction process.

Linguistic (logical) input variables sk, for integer or symbolic variablesxi, taking values

from a finite set of elementsXi = {X ( j)
i }, are defined as true ifxi belongs to a specific subset

Xik ⊆ Xi. DefiningX as a subset of integers such linguistic variables as “prime-number” or “odd-
number” may be defined. For continuos input featuresx i linguistic variablesk is obtained by
specifying an open or closed intervalxi ∈ [Xk,X ′k] or some other predicatePk(xi). Each continuos
input featurexi should be replaced by two or more linguistic values for which predicatesPk are
true or false. If such representation is used at the pre-processing stage inputs to neural networks
are already discretized and the actual selection of intervals is done independently of the rule
extraction. An alternative is to include selection of linguistic variables in neural models.

Initial values of the intervals for continuos linguistic variables may be determined by the
analysis of histograms, dendrograms, decision trees or clusterization methods.FSM, our proba-
bility density estimation neurofuzzy network, is initialized using various clusterization methods
[4, 3]. Optimization of linguistic variables is a part of the FSM learning process. These variables



are modeled using rectangular, triangular, trapezoidal, Gaussian or soft trapezoidal functions.
The learning algorithm [4] finds optimal intervals and logical rules at the same time. These in-
tervals are gradually increased if the number of errors does not grow, until the whole data range
for a given feature is covered, indicating that the feature may be removed.

MLP (multilayered perceptron) neural models were modified by adding a special neural lay-
er [5] of L-units (linguistic units) to find linguistic variables and logical rules simultaneously.
L-units replace the continuos input variables with logical variables using rectangular (or soft
trapezoid) filtering functions. They may also combine several inputs in the feature aggrega-
tion process. The simplest L-unit is a combination of two sigmoidal functionsL(x i;bi,b′i,β) =
σ(β(xi−bi))−σ(β(xi−b′i)), parameterized by two biasesb,b ′ determining the interval in which
this function has non-zero value. The slopeβ of sigmoidal functionsσ(βx) is slowly increased
during the learning process, transforming the fuzzy membership function (“soft trapezoid”) in-
to a window-type rectangular function [2, 5]. Similar smooth transformation is used in the FSM
network using biradial transfer functions, which are combinations of products ofL(x i;bi,b′i) func-
tions [6] with some additional parameters. Outputs of L-unitsL(x i;bi,b′i,β) are usually combined
and filtered through another sigmoidσ(∑i j L(xi;bi j,b′i j,β)) or the product∏i j L(xi;bi j,b′i j,β) of
these functions is used.

Initial linguistic variables have a strong influence on the logical rules extracted, especially if
the learning process does not include optimization of their intervals. Therefore an iterative opti-
mization process is used: neural networks with initial linguistic inputs are constructed, analyzed,
logical rules are extracted, intervals defining linguistic variables are optimized using rules, and
the whole process repeated until convergence is achieved. Usually two or three steps are suffi-
cient, depending on the initial choice.

Construction and training of neural networks follows the initial definition of linguistic
variables. We are using a constructive neural network algorithms, increasing their complexity to
account for the incoming data. In FSM new neurons, corresponding to single rules, are created
if the new data vectorX is sufficiently far from the nearest center of the localized (for example
rectangular) function realized by the existing neuron and if the activity of this function does
not exceed certain minimum. MLP networks do not use localized representations and therefore
should be transform first into something resembling a network performing logical operations
(Logical Network, LN). In the constructive version of our method, called C-MLP2LN [7], we
start from a single neuron connected to all L-units or linguistic inputs. This neuron is trained on
all data minimizing the standard mean error function plus two penalty terms:

E(W ) = E0(W ) +
λ1

2 ∑
i, j

W 2
i j +

λ2

2 ∑
i, j

W 2
i j(Wi j−1)2(Wi j + 1)2 (1)

The first term, scaled by theλ1 hyperparameter, encourages weight decay, leading to skele-
tonization of the network and elimination of irrelevant features. A relatively large value ofλ 1

is set at the beginning of the training to ensure that only the most important features are left.
The second term, scaled byλ2, forces the remaining weights to approach±1 or 0, facilitating
easy logical interpretation of the network function: 0 = irrelevant input,+1 = positive and−1
= negative evidence. As long as the slopeβ of sigmoidal functions in L-units is high or linguis-
tic inputs are directly given the last condition does not have to be strictly enforced since it has



little influence on the final shapes of decision borders. The hyperparameters determine the sim-
plicity/accuracy tradeoff of the generated network and extracted rules. If very simple networks
(logical rules) are desired, giving only rough description of the data,λ 1 is increased until the
error will grow sharply: although one may estimate the relative size of the regularization term
versus the mean square error (MSE) a few experiments are sufficient to find the largest value
for which the MSE is still acceptable and does not decrease quickly whenλ 1 is decreased. After
training of the first neuron (inK-class problemK−1 neurons may be trained at the same time)
the simplified, skeleton network is kept frozen and a second neuron is added. Thus the network
expands and shrinks during the learning process. This procedure is repeated until most of the data
is correctly classified or the number of new neurons starts to grow rapidly, indicating overfitting
and noise in the data. We have also tried a fully numerical procedure replacing the gradient-
based procedure by search-based procedure with quantized weight values (Gra¸bczewski, Duch,
submitted).

Logical rule extraction: the slopes of sigmoidal functions are gradually increased to ob-
tain sharp decision boundaries and the complex decision regions are transformed into simpler,
hypercuboidal decision regions. In FSM networks rule extraction is immediate since each node
corresponds directly to one rule. RulesRk implemented by MLP networks are obtained in the
form of logical conditions by considering contributions of inputs for each linguistic variables. A
combination of linguistic variables activating the hidden neuron above the threshold is a logical
rule of the form:R = (s1∧¬s2∧ ...∧ sk). After analysis of all weights a set of rulesR 1∨ R 2...∨
R n is found for each output class. Since the first neuron for a given class is trained on all data
for that class the rules it learns are most general, covering largest number of instances. Therefore
rules obtained by the C-MLP2LN algorithm are ordered, starting with rules that cover many cas-
es and ending with rules that cover only a few cases. Initial knowledge about the problem may
also be inserted directly into the network structure, defining initial conditions modified further
in view of the incoming data. Insertion of partially correct rules to be refined by the learning
process is quite straightforward because the final network structure is quite simple.

3 Optimization of rules

The neural network training process unfortunately does not guarantee that the globally optimal
solution is found, therefore rules should be optimized. In this step an additional choice between
accuracy and rejection rates is possible.

Simplification of rules: some rules obtained from analysis of the network may involve spuri-
ous conditions, more specific rules may be contained in general rules or logical expressions may
be simplified if written in another form. We use a Prolog program for the simplification step.

Optimization of rules: optimal intervals for linguistic variables are found by maximization
of a predictive power of the rule-based classifier. LetP (Ci,Cj|M) be the confusion matrix, i.e.
the number of instances in which classC j is predicted when the true class wasCi, given the mod-
el M. Then forn samplesp(Ci,Cj|M) = P (Ci,Cj|M)/n is the probability of (mis)classification.
The best parameters of the modelM are selected by maximizing the “predictive power” of rules
maxM [Tr P (Ci,Cj|M)] over all parametersM, or by minimizing the number of wrong predic-
tions (possibly with some risk matrixR(Ci,Cj)), minM

[
∑i�= j R(Ci,Cj)P (Ci,Cj|M)

]
. We use the



weighted combination of these two terms:

E(M) = γ∑
i�= j

P (Ci,Cj|M)−Tr P (Ci,Cj|M)≥−n (2)

which is minimized over parametersM without constraints. Ifγ is large the number of errors after
minimization may become zero but some instances may be rejected (i.e. rules will not cover the
whole input space). An alternative to minimization of the whole set of rules simultaneously is to
define a cost function for each rule separately and minimize it over parametersM used only in the
single ruleR . We have used two global minimization techniques, Adaptive Simulated Anneal-
ing (ASA) and shuffled multisimplex method [7]. One problem with optimization of rules at this
level is the brittleness of classification error. Neural systems have good generalization proper-
ties because they are wide margin classifiers. Their decision borders are obtained from the mean
square error optimization of smooth function that extends over larger neighborhood contribut-
ing to the error. This allows for three important improvements: the use of inexpensive gradient
method instead of global minimization, more robust rules with wider classification margins, and
probabilistic estimation of confidence. These improvements are discussed below.

4 Application of rules

Estimation of the accuracy of rules in important but difficult. Usually classification accuracy
is tested using crossvalidation, each time including rule optimization on the training set. For
rule-based classifiers this does not work because different sets of rules are produced for different
partitions of the training set and in the end we do not know what confidence should be placed
in the final set of rules. One may assign a confidence factor to each rule based on the number
of correct classifications, for exampleci = P(Ci,Ci|M)/∑ j P(Ci,Cj|M), but such estimations are
independent of the data classified and therefore are misleading.

One way to estimate confidence of rule-based classification is to use hierarchy of rules with
different accuracy/rejection tradeoffs. Changing the value ofγ during the optimization of rules
leads to a series of models with higher and higher confidence of correct classification at the
expense of growing rejection rate. A set of rules may classify some cases at the 100% confidence
level; if some instances are not covered by this set of rules another set of (usually simpler)
rules at a lower confidence level is used (confidence level is estimated as the accuracy of rules
achieved on the training set). Estimation of classification confidence of a rejected vectorX is
possible if two sets of rules are considered, high reliabilityR (1) set rejecting vectorX, and
lower reliability R (2) set assigning it to some class. Reliability of classification in the border
regionR (2)\R (1) should be estimated by looking at the number of training vectors belonging
to this region and being in the neighborhood ofX that fall into each class. A better method for
estimation of confidence is given below.

The brittleness problem: good generalization requires the decision borders to be placed as
far from the training data vectors as possible without increasing the error. Input values result
usually from observations which are not quite accurate, therefore instead of the attribute value
x a Gaussian distributionGx = G(y;x,sx) centered aroundx with dispersionsx should be given.
This distribution may be treated as a membership function of a fuzzy numberG x. A Monte
Carlo procedure may be performed sampling vectors from Gaussian distributions defined for



all attributes to compute probabilitiesp(Ci|X). Analytical evaluation is based on the cumulative
distribution function:

ρ(a− x) =
∫ a

−∞
G(y;x,sx)dy =

1
2

[
1+ erf

(
a− x

sx
√

2

)]
≈ σ(β(a− x)) (3)

where erf is the error function andβ = 2.4/
√

2sy makes the erf function similar to the standard
unipolar sigmoidal function with the accuracy better than 2%. A ruleR a(x) with single crisp
conditionx≥ a is fulfilled by a Gaussian numberGx with probability:

p(Ra(Gx) = T ) =
∫ +∞

a
G(y;x,sx)dy≈ σ(β(x−a)) (4)

Incidentally, this is the reason why sigmoidal functions are so useful. Taking instead of the erf
function a sigmoidal function changes the assumption about error distribution ofx measurements
from Gaussian toσ(x)(1− σ(x)), approximating Gaussian withs2 = 1.7 within 3.5%. If the
rule involves closed interval[a,b],a≤ b the probability that it is fulfilled by a sample from the
Gaussian distribution representing the data is:

p(Ra,b(Gx) = T )≈ σ(β(x−a))−σ(β(x−b)) (5)

Thus the probability that a given condition is fulfilled is proportional to the value of soft
trapezoid function realized by L-units. Crisp logical rules with assumption that data has been
measured with finite precision lead to soft L-functions that allow to compute classification prob-
abilities that are no longer binary. In this way we may either fuzzify the crisp logical rules or
obtain fuzzy rules directly from neural networks. The normalized product form(σ(x + b)(1−
σ(x− b)))/(σ(b)(1−σ(−b))) is equal to(σ(x + b)−σ(x− b))/(σ(b)−σ(−b)). If more con-
ditions are present for the same featurex probabilities should be summed over all contributions.
If conditions for other, independent features are present in a rule, probabilities should be multi-
plied. To obtain the same probabilities as those from the Monte Carlo procedure, for more than
two conditions probabilities for combinations of pairs of conditions should be subtracted. Instead
of the number of misclassifications the error function may include a sum over all probabilities:

E(M,sx) =
1
2∑

X
∑

i
(p(Ci|X ;M)−δ(C(X),Ci))

2 (6)

whereM includes intervals defining linguistic variables and dispersionss x. Probabilistic con-
fusion matrix allows for optimization of Eq. (2) using gradient-based methods. This minimization
may be performed directly or may be presented as a neural network problem with special network
architecture. Dispersionssx of the values of features are additional adaptive parameters that may
be optimized. We have used so far a very simple optimization with alls x taken as a percentage
of the range of featurex to perform one dimensional minimization of the error function indepen-
dently of other steps. This approach to soft optimization may be used with any crisp logical rules
to overcome the brittleness problem and to obtain robust wide margin rule-based classifiers.



5 Illustrative Applications

Wisconsin breast cancer data.
We have already analyzed the Wisconsin cancer dataset before giving detailed comparison

with other results [1]. It contains 699 instances, with 458 benign (65.5%) and 241 (34.5%) ma-
lignant cases. Although the values of the 9 attributes are quantized in the range 1-10 we may
assume that they are continuos and imprecisely measured. The simplest set of rules obtained
from optimization includes only two rules for malignant class:

f2 ≥ 7∨ f7≥ 6

The confusion matrix, including the ELSE condition for the benign class, is:P =
(

215 10
26 448

)
,

and the overall accuracy is 94.9%. Using rules in such form will immediately show their brit-
tleness. If f2 ≥ 7 then any vector sampled from the left side of Gaussian distribution centered
at 7 will give an error, i.e. any uncertainty in the measurement sharply increases the number of
errors. The simplest solution is to shift the intervals to 6.5 and 5.5 for example. The number of
errors on the whole dataset is not changed since these rules have single conditions, but in several
erroneously classified cases significant probabilities for alternative classifications are obtained.
Higher accuracy set of five rules (percentage of correct classifications for each rule is given in
parenthesis):

R 1: f2 < 6∧ f4 < 3∧ f8 < 8 (99.8)%
R 2: f2 < 9∧ f5 < 4∧ f7 < 2∧ f8 < 5 (100)%
R 3: f2 < 10∧ f4 < 4∧ f5 < 4∧ f7 < 3 (100)%
R 4: f2 < 7∧ f4 < 9∧ f5 < 3∧ f7 ∈ [4,9]∧ f8 < 4 (100)%
R 5: f2 ∈ [3,4]∧ f4 < 9∧ f5 < 10∧ f7 < 6∧ f8 < 8 (99.8)%

give 99.00% overall accuracy with the confusion matrixP =
(

240 1
6 452

)
. Assuming uncer-

tainties of up to 5% times the data range the same accuracy is achieved. After this operation one
benign vector misclassified as malignant has only 54% probability of belonging to the wrong
class. Unfortunately the 6 misclassified malignant cases have almost 100% confidence to belong
to the wrong class, perhaps indicating that the data is really noisy.
The Ljubliana cancer data.

The Ljubliana cancer data [8] contains 286 cases, of which 201 are no-recurrence-events
(70.3%) and 85 are recurrence-events (29.7%). There are 9 attributes, with 2-13 different values
each. A single logical rule for the recurrence-events:

NOT involved nodes=[0,2]∧ Degree malignant = 3

with ELSE condition for the second class gives over 77% accuracy in crossvalidation tests. This
rule is easy to interpret: the number of involved nodes is bigger than 2 and the cells are highly
malignant. More accurate and optimized rules:

R 1: Degree malignant = 3∧ breast=left∧ node caps=yes
R 2: (Degree malignant = 3∨ breast=left)∧ age = NOT [30-49]∧ tumor size = [35-54]

give slightly higher accuracy of 78%. Since the dataset is small many different sets of rules may
give similar accuracy. It would be hard to improve this simple result, most methods give signif-
icantly lower accuracies using more complex models. For example LERS, a machine learning



technique based on rough sets, gives after optimization almost 100 rules achieving only 69.4%
of accuracy (below the majority rate).

Method Accuracy % Reference

C-MLP2LN, 2 rules 78.0This paper
Assistant-86 78.0 Ref. [10]
CART 77.3 Ref. [11]
CART, PVM, C-MLP2LN single rule 76.2 Ref. [11]
Naive Bayes rule 75.9 Ref. [11]
MLP with backpropagation 71.5 Ref. [11]
AQ15 66-72 Ref. [12]
Weighted network 68-73.5 Ref. [13]
LERS (rough sets) 67.1 Ref. [9]
k-NN 65.3 Ref. [11]

Table 1. Results for the Ljubliana cancer dataset.

Psychometric data
The psychometric data was collected in the Academic Psychological Clinic of Nicholas

Copernicus University and in several psychiatric hospitals around Poland. In the present version
of our project computerized version of the Minnesota Multiphasic Personality Inventory (MMPI)
test was used (hundreds of books and papers about this test exist, cf. review in [15]), consisting
of 566 questions with yes/no/don’t know answers. Questions range from general health prob-
lems and specific neurological symptoms to personal political and moral opinions. Questionnar-
ies, collected from 750 people, including 100 people considered as ”normal”, were evaluated
in a standard way computing 14 coefficients. These coefficients are often displayed as a his-
togram (called “a psychogram”) allowing skilled psychologists to diagnose specific problems,
such as neurosis, drug addiction or criminal tendencies. The first four coefficients are used for
control, measuring consistency of answers or the number of “don’t know” answers, allowing to
find malingerers. The next 10 coefficients form clinical scales, developed to measure tendencies
towards hypochondria, depression, hysteria, psychopathy, paranoia, schizophrenia etc. For ex-
ample values between 70 and 80 in the hypochondria scale may be interpreted as “very strong
worries about own health, leading to psychosomatic reactions”. A large number of simplification
schemes has been developed to make the interpretation of psychograms easier. They may range
from rule-based systems derived from observations of characteristic shapes of psychograms, sta-
tistical discrimination functions, or systems using smaller number of aggregated coefficients.

Although many computerized versions of the MMPI test exist to assist in information ac-
quisition, evaluation of results is still done by an experienced clinical psychologist. Our goal
is to provide automatic psychological diagnosis. Rule based system is most desirable because a
detailed interpretation, including description of personality type, may be assigned to each diagno-
sis. We have worked with different datasets containing up to 34 classes (normal, neurotic, drug



addicts, schizophrenic, psychopaths, organic problems, malingerers etc.) determined by expert
psychologists. Our initial logical rules achieved about 93% accuracy on the whole set, increasing
to over 95% after some optimization. For comparison we have also used C4.5 [14] decision tree,
a very good classification system which may also generate logical rules. For this application C4.5
gives comparable accuracy but most rules use open intervals and therefore are harder to interpret.
For different data (man, woman, mixed) sets of 50-60 rules were generated. On average 2.5 logi-
cal rules per class were derived, involving between 2 and 9 features. For most classes there were
only a few errors and it is quite probable that they are due to the psychologists interpreting the
psychogram data. The only exception is the class of organic problems, which leads to answers
that are frequently confused with symptoms belonging to other classes. A typical rule has the
form:

If Hy ∈ [72,88]∧Ps∈ [74,80]∧Pt ∈ [81,90] Then Organic problem

These rules are used with assumption about accuracy of the measurement in each of the scales
corresponding to a Gaussian dispersion of about 5 units. Each rule has detailed interpretation as-
sociated with it. An expert system using these rules should be evaluated by clinical psychologist
in the near future.

6 Discussion

We are sure that in all cases, independently of the final classifier used, it is advantageous to
extract crisp logical rules. First, in our tests logical rules proved to be highly accurate; second,
they are easily understandable by experts in a given domain; third, they may expose problems
with the data itself. However, if the number of rules is too high or the accuracy of classification
is too low other methods should be used. For small datasets logical rules may provide very good
results but, due to a large statistical error which is inevitable for such datasets, only the most
robust rules should be trusted.

In this paper complete methodology for construction and application of logical models of
data has been presented. Although we use neural networks to obtain initial sets of rules the other
two steps, optimization and application of rules, may be used independently from the extraction
step. We prefer to start from crisp logical rules and fuzzify them by assuming uncertainties in the
inputs, obtaining probabilities of classification.

Using the early version of our hybrid methodology simplest logical description for several
benchmark problems was obtained [1]. For many medical datasets very simple and highly accu-
rate results were obtained. Recently we have improved further our neural method of linguistic
variable determination [16] obtaining good logical description of some datasets that were previ-
ously hard to analyze, such as the diabetes dataset. Considering the simplicity of decision borders
and difficulties in finding the best coverings it is not quite clear why logical rules work so well.
For example in the hypothyroid or the Wisconsin breast cancer case the accuracy is better than
that of any other classifier. One reason for such performance of rule-based systems is due to
the good control of the complexity of data representation. Another possible explanation for the
medical data is that the classes labeled “sick” or “healthy” have really fuzzy character. If the
doctors are forced to make yes-no diagnosis they may fit the results of tests to specific intervals,
implicitly using crisp logical rules.
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1. W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal. Hybrid neural-global minimization logical rule ex-
traction method for medical diagnosis support, Intelligent Information Systems VII, Malbork, Poland,
15-19.06.1998, pp. 85-94

2. W. Duch, G.H.F. Diercksen.Feature Space Mapping as a universal adaptive system, Computer Physics
Communication, 87: 341–371, 1995;

3. W. Duch, R. Adamczak, N. Jankowski.Initialization of adaptive parameters in density networks, 3rd
Conf. on Neural Networks, Kule, Oct. 1997, pp. 99-104

4. W. Duch, R. Adamczak, N. Jankowski.New developments in the Feature Space Mapping model, 3rd
Conf. on Neural Networks, Kule, Poland, Oct. 1997, pp. 65-70

5. W. Duch, R. Adamczak and K. Gra¸bczewski.Constrained backpropagation for feature selection and
extraction of logical rules, in: Proc. of “Colloquia in AI”, Łódź, Poland 1996, p. 163–170
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