
Minimal distance neural methods.
W�lodzis�law Ducha, Karol Grudzińskia and Geerd H.F. Diercksenb

aDepartment of Computer Methods, Nicholas Copernicus University,
Grudzia̧dzka 5, 87-100 Toruń, Poland; e-mail: duch,kagru@phys.uni.torun.pl

bMax-Planck Institute of Astrophysics, 85740-Garching, Germany,
e-mail: GDiercksen@mpa-garching.mpg.de

Abstract— A general framework for minimal distance
methods is presented. Radial Basis Functions (RBFs) and
Multilayer Perceptrons (MLPs) neural networks are in-
cluded in this framework as special cases. New versions
of minimal distance methods are formulated. A few of them
have been tested on a real-world datasets obtaining very
encouraging results.

I. Introduction

Classification is one of the most important applications
of neural systems. The accuracy of 24 neural-based, pat-
tern recognition and statistical classification systems has
been compared recently on 11 large datasets by Rhower and
Morciniec [1]. No consistent trends have been observed in
the results of this large-scale study. For each classifier one
may find a real-world dataset for which the results will be
excellent and another one for which the results will be quite
bad. In real world applications a good strategy is to find
the best classifier that works for given data. Frequently
simple methods, such as the nearest neighbor methods or
n-tuple methods [1], are among the best. These methods
have natural neural realizations. Recently one of us [2] has
presented a general framework for minimal distance (MD)
methods. This framework is extended here and results of
tests for a few new versions of the MD methods are pre-
sented.

Some of the simplest classification algorithms applicable
to pattern recognition problems are based on the k-nearest
neighbor (k-NN) rule [3]. This approach is so important
that in artificial intelligence it is referred to as the instance
based learning, memory based learning or case based learn-
ing. Each training data vector is labeled by the class it
belongs to and is treated as a reference vector. During
classification k nearest reference vectors to the unknown
(query) vector X are found, and the class of vector X is
determined by a ‘majority rule’. The probability of as-
signing a vector X to class Ci is p(Ci|X) = Ni/k. In the
simplest case of k = 1 only the nearest neighbor determines
the class of an unknown vector, i.e. p(Ci|X) =0 or 1. The
asymptotic error rate of the k-NN classifier in the limit of
large k and a large number of reference vectors becomes
equal to the optimal Bayesian values [3]. In practice the
number of reference vectors is relatively small and small
values of k work better.

Because the k-NN method is so simple it is frequently

used as a standard reference for other classificators. One
problem is the computational complexity of the actual clas-
sification, demanding for n reference vectors calculation of
∼ n2 distances and finding the k smallest distances. Al-
though Laaksonen and Oja [4] claim that “For realistic pat-
tern space dimensions, it is hard to find any variation of
the rule that would be significantly lighter than the brute
force method” various hierarchical schemes of partitioning
the data space or hierarchical clusterization schemes are
quite effective. The search for the nearest neighbors is eas-
ily paralelizable and the training time (selection of optimal
k) is relatively short. Nearest neighbor methods are espe-
cially suitable for complex applications, where large train-
ing datasets are available. They are also used in case-based
expert systems, an alternative to the rule-based systems
(cf. [5]).

Only one neural model proposed so far is explicitly based
on the nearest neighbor rule: the Hamming network [6]
computes the Hamming distances for binary patterns and
finds the maximum overlap (minimum distance) with the
prototype vectors, thus realizing the 1-NN rule. Although
other minimal distance methods presented here have nat-
ural neural-network type realizations we will concentrate
more on the presentation of general framework and on the
testing of specific methods derived from this framework
rather than on the network implementation issues, since at
this initial stage the implementation is of secondary impor-
tance. In the next section the general framework for MD
methods is presented and relations between neural and MD
methods explained. In the third section results of tests on
real datasets are given. A short discussion is presented in
the last section.

II. A framework for minimal distance methods

The problem of classification is stated as follows: given a
set of class-labeled training vectors {Xp,C(Xp)}, p = 1..K,
where C(Xp) is the class of Xp, and a vector X of an
unknown class, use the information provided in the dis-
tance d(X,Xp) to estimate the probability of classification
p(Ci|X; M), where M describes the classification model
used (parameter values and procedures employed). A gen-
eral model of an adaptive system used for classification may
include all or some of the following:
M = {k, d(·; r), G(d(·)), {Dn}, E[·], K(·)), where

k is the number of reference vectors taken into account in
the neighborhood of X;
d(·; r) is the metric function used to compute distances;
r is the maximum size of the neighborhood considered;
G(d(X,Xp)) is the weighting function estimating contribu-
tion of the reference vector Xp to the classification proba-
bility;
{Dn} is the set of reference vectors created from the set of
training vectors {Xp} by some procedure;
E[·] is the total cost function minimized at the training
stage;
K(·) is a kernel function, scaling the influence of the error,
for a given training example, on the total cost function.
Various selections of parameters and procedures in the con-
text of network computations lead to different versions of
MD neural methods.

Before analyzing the details of this general framework
the relations between neural networks and MD methods
are explained. Threshold neurons compute distances in
a natural way. If the input signals {Xi = ±1} and the
weights {Wi = ±1} are binary, neurons with N inputs and
the threshold θ realize the following function:

Θ(
N∑
i

WiXi − θ) =
{

0 if ||W − X|| > θ
1 if ||W − X|| ≤ θ

(1)

where the norm || · || is defined by the Hamming dis-
tance. One can interpret the weights of neurons in the first
hidden layer as addresses of the reference vectors in the
input space. Threshold neurons are activated by inputs
falling into a hard sphere of radius θ centered at W. By
changing the binary into real values and the threshold into
sigmoidal transfer functions, for inputs and weights nor-
malized to ||X|| = ||W|| = 1, a soft activation of neurons
by input vectors that are close to W on the unit sphere is
realized. In general the output function of neurons is:

σ(W ·X) = σ

(
1
2
(||W||2 + ||X||2 − ||W − X||2)

)
=

σ(Imax − d(W,X)) (2)

For normalized input vectors sigmoidal functions (or
any other monotonically growing transfer functions) sim-
ply evaluate the influence of the reference vectors W de-
pending on their distance d(W,X), on the classification
probability p(Ci|X; {W, θ}). As a function of a distance
the output function σ(Imax − d(W,X)) monotonically de-
creases, reaching the value of 0.5 at d(W,X) = Imax. For
normalized weights and inputs σ(1−d(W,X)) ∈ [0.5, σ(1)],
with 0 ≤ d(W,X)) ≤ 1, i.e. only a part of the range of
the sigmoidal function is used. For normalized X but ar-
bitrary W the range of the sigmoid argument lies in the
[−|W|, +|W|] interval. A unipolar sigmoid has a maxi-
mum curvature around ±2.4, therefore smaller weights of

the norm mean that the network operates in an almost lin-
ear regime. Regularization methods add penalty terms to
the error function forcing the weights to become small and
thus smoothing the network approximation to the training
data.

In MLP networks sigmoidal functions are used to es-
timate the influence of weight vectors according to the
distance between weight and training vectors, combining
many such estimations to compute the final output. In
RBF networks Euclidean distance functions d(X,Dn) =
||X − Dn|| and exponential exp(−d2) weighting functions
are used. By changing the distance function in equation (2)
new types of neural networks may be defined. The interpre-
tation of neural classifiers as a special MD adaptive systems
is worth investigating. Combining different weighting and
distance functions with additional parameters a large num-
ber of possible classification systems is obtained. Several
variants of the MD methods are presented below.

k-NN networks.
In the simplest version p(Ci|X; M) is parameterized by

p(Ci|X; k, d(·), {Xn}}), leading to the k-NN method in
which the whole training dataset is used as the reference
set. The distance function d(X,Xn) is a hard-sphere metric
function with a variable radius such that exactly k neigh-
boring vectors Xn fall inside the sphere. The type of the
metric function d(·) and k are the only parameters that
should be optimized. For k=2 the training vector near the
class border may have nearest vectors from two different
classes. The error on the training set, equal to zero for
k = 1, grows for k > 1 but may decrease for larger values
of k. The leave-one-out test is recommended to optimize
k using the training set only. This test is easy to perform
in the k-NN method since there is no learning phase, un-
less the metric function is parameterized. For the L-class
problem selecting k = 1, L + 1, 2L + 1, ... avoids the ties
but is a severe restriction on the value of k. Ties may be
resolved either by: a) rejecting cases in which ties occur,
b) adding one or more extra neighboring vectors until the
tie is broken, c) decreasing the number of neighboring vec-
tors d) randomly braking the tie and e) giving probabilities
instead of yes-no decisions. Details of the k-NN procedure
are rarely given in practice and it is not clear which of the
five possibilities is used. In our experience adding more
vectors to break a tie is preferable although differences in
classification accuracy are sometimes negligible.

Neural realization of the 1-NN rule for binary patterns
is afforded by the Hamming network [6]. This network
is significantly simplified if more complex output network
nodes are allowed. For normalized vectors the output unit
should determine from which hidden node the maximum
input is received and transfer the class label of this node
to the output.

r-NN algorithm.
Instead of enforcing exactly k neighbors the radius r

may be used as an adaptive parameter. The number

of classification errors, or the probability of classification
p(Ci|X; r) = Ni/

∑
j Nj , is then optimized using the leave-

one-out method or a validation set. The hard sphere trans-
fer functions should be used in the network realization of
this algorithm. r-NN may reject some vectors X if no refer-
ence vectors fall into the r radius of X or if equal probabil-
ity of classification for several classes is obtained. To avoid
such problems r is increased until a unique classification is
done.

Introduction of variable radiuses ri for each reference
vector instead of one universal radius in the input space im-
proves the method further increasing the number of adap-
tive parameters significantly. Development along this line
leads to the Restricted Coulomb Energy (RCE) classifier
introduced by Reilly, Cooper and Elbaum [7] which may be
treated as the hard limit approximation of the Gaussian-
based RBF network. If no neighbors are found around the
training vector X new spheres (virtual reference vectors)
are added, with largest radius such that the new sphere
does not overlap with the spheres of other classes. If the
new training vector falls into the range of a sphere of a
wrong class the radius of this sphere is shrinked to leave
the vector outside of the sphere. Positions of the spheres
are not optimized in the RCE algorithm (this would lead in
the direction of LVQ algorithms [4]), but voting methods
for the committees of classifiers were used with success [8].
The number of radiuses ri may be reduced by using only a
few independent values in selected input space areas. One
could also optimize components of one radius (i.e. not just
a total distance but separate distances for individual input
features), but this would give the same result as optimiza-
tion of the metric function described below. To reduce the
number of parameters variable radiuses should be attached
only to the centers of clusters. To assure smooth transition
between different regions of the input space interpolation
of the r values from the nearest cluster centers is recom-
mended.

Soft weighting the k-NN and r-NN algorithms.
Nearest reference vectors should influence probabilities

of classification more strongly than those laying further.
Changing the hard sphere transfer functions into smoother
functions allows to include such weights. The favorite fuzzy
logic membership function is the conical radial func-
tion: it has zero value outside the radius r and grows lin-
early to 1 inside this radius. Classification probability is
calculated by the output node using the formula:

p(Ci|X; r) =

∑
n∈Ci

G(X;Dn, r)∑
n G(X;Dn, r)

;

G(X;D, r) = max
(

0, 1 − d(X,D)
r

)
(3)

Here G(X;D, r) plays the role of a weight estimating
contribution of reference vector placed at distance d(X,D).

In the soft r-NN algorithm the r parameter is optimized.
Radial Basis Function (RBF) networks using Gaussian or
inverse multiquadratic transfer functions are a particular
example of the soft weighting MD algorithm. Other use-
ful weighting functions include the combination of two sig-
moidal functions: σ(||X − Dn|| − r) − σ(||X − Dn|| + r).
Variable r equal to the distance to the k-th neighbor may
be used as the weighting function for the vectors inside
this radius. If rk is the distance to the k-th neighbor
and rk ≥ ri, i = 1..k − 1 then a conical weighting func-
tion G(d) = 1 − d/αrk, α > 1 has values G(0) = 1 and
G(rk) = 1 − 1/α; for large α the cone is very broad and
all vectors receive the same attention; for α approaching
1 the furthest neighbor has weight approaching zero. MD
classifier with optimized α can not be less accurate than k-
NN. The effect of weighting is more pronounced for larger
k values.

Parameterization of distance measures
Calculation of distance is most often based on Euclidean

metric for continuos inputs and on Hamming metric for bi-
nary inputs. Additional parameters that may be optimized
are either global (the same in all input space) or local (dif-
ferent for each reference vector). Minkowski’s metric in-
volves one parameter α. Scaling factors are very useful
parameters – for Minkowski’s distance:

d(A,B; g)α =
N∑
i

si|Ai − Bi|α (4)

Euclidean metric corresponds to α = 2, which is com-
pletly isotropic, and Manhattan metric to α = 1, which is
less sensitive in directions along the axis than to the di-
rections between the axis. In the simplest RBF version
with Gaussian functions only one parameter – dispersion –
is optimized. Independent optimization of all N dispersion
components has the same effect as optimization of the scal-
ing factors si in soft-weighted r-NN method with Euclidean
metric. Scaling is the simplest way of pre-processing the
attributes. Mahalanobis distance is obtained by applying
a particular linear transformation to the input vectors. Al-
ternatively, a metric tensor Gij = Gji is introduced, pro-
viding N(N + 1)/2 adaptive parameters:

d(A,B;G)2 =
N∑
i,j

Gij(Ai − Bi)(Aj − Bj) (5)

Calculation of distances may also be parameterized in
a different way around each reference vector, providing a
large number of adaptive parameters. Local coordinate
systems with their origin placed at the reference vectors
may provide either local scaling factors or local metric
tensors. A simple way to select features useful for clas-
sification and at the same time to lower the complexity
of the classification model is to add to the cost function
an additional penalty term, such as the sum of all s2

i or

G2
ij . Features for which the product of the scaling factors

si maxjk |X(j)
i −X

(k)
i | is small may be deleted without sig-

nificant loss of accuracy – after additional optimization of
the scaling factors accuracy may even increase.

In memory-based reasoning the Modified Value Differ-
ence Metric (MVDM) has gained popularity [5]. The dis-
tance between two N -dimensional vectors A,B with dis-
crete (for example symbolic) elements, in a K class prob-
lem, is computed using conditional probabilities:

d(A,B) =
N∑
j

K∑
i

(p(Ci|Aj) − p(Ci|Bj)) (6)

where p(Ci|Aj) is estimated by calculating the number
Ni(Aj) of times feature Aj occurred in vectors belong-
ing to class Ci, and dividing it by the number of times
feature Aj occurred for any class. We can also define
a “value difference” for each feature j as dv(Aj , Bj) =∑K

i (p(Ci|Aj)−p(Ci|Bj)) and compute d(A,B) as a sum of
value differences over all features. Metric is defined here via
a data-dependent matrix with the number of rows equal to
the number of classes and the number of columns equal to
the number of all attributes. Generalization for continuos
values requires a set of probability density functions pij(x),
with i = 1..K, j = 1..N or some discretization procedure.

Any adaptive system may provide a distance function
for MD methods. For example [9], a typical MLP net-
work may be trained on the differences of pairs of vectors
{Ai − Bi}, giving at the output the distance between the
classes ||C(A)−C(B)||. The output of the neural network
is then used in k-NN or other MD procedure. A better way
is to input to MLP both A and A−B = {di(Ai)− di(Bi)}
vectors, where di(·) is a set of attribute pre-processing func-
tions (for example, scaling factors). A similarity function
(it does not have all properties required from the distance
function, for example it is not symmetric) d(A − B;A),
smoothly changing between different regions of the input
space, is obtained iteratively: for each training vector k
nearest neighbors are selected using initial similarity esti-
mation, and after the first epoch the process is repeated
using the new similarity function. In general one should
create a distance function that minimizes in-class distances
and maximizes between-class distances.

Active selection of reference vectors.
In MD method one should avoid large number of refer-

ence vectors. Reducing the number of vectors in the refer-
ence set leads to models of lower complexity and helps to
improve generalization capabilities of the classification sys-
tem. K-means, dendrograms or other clusterization tech-
niques are used to select a relatively small number of initial
reference vectors close to the cluster centers. Classification
accuracy is checked on the remaining set (using k-NN or r-
NN algorithm) and each wrongly classified vector is moved
from the training to the reference set. Variants of this ap-

proach my use a validation set to determine best candidates
for the reference set.

An alternative approach that does not require initial
clusterization starts from the whole training set and re-
moves those vectors that have all k nearest vectors from
the same class. These vectors are far from cluster borders
and all new vectors in their neighborhood will be anyway
unambiguously classified. This approach leads to a “hol-
low” cluster representation. Here one may start with a
large number of neighbors k′ to remove vectors near the
centers of clusters first and reduce it to k in a few steps.
An interesting algorithm to select good reference vectors is:
run over all vectors X, determine k nearest vectors from
each class different than C(X) and move these vectors to
the reference set. This algorithm leaves only vectors near
the class borders.

Parameterization of reference vectors
Active selection of reference vectors may leave only a

small subset of training vectors. Further optimization of
their positions should decrease the training error. The ref-
erence vector D in the neighborhood of the training vector
X should be updated as follows:

D ← D + ηδ±(C(X), C(D))(X − D) (7)

Here η is the learning rate, slowly decreasing during
training, and δ± is +1 if the class C(X) = C(D) or −1
otherwise. Various rules for moving centers D are used:
moving only the nearest neighbor, moving all k neighbors
by the same amount, using distance-dependent η etc. [4].
One can also optimize a subset of vectors, for example only
those that are close to the center of clusters.

Virtual Support Vectors (VSV) may be added to the
reference set to improve classification rates. The simplest
approach is to interpolate between existing training vec-
tors and add VSV between neighboring vectors belonging
to different classes. In cases when data clusters belong-
ing to different classes are well separated VSV should help
to shift decision borders improving generalization. A min-
imum threshold value for the distance between vectors of
different classes is used to prevent creation of VSV for over-
lapping vector distributions.

Selection of the kernel function and the error
function The choice of kernel function in the measure of
classification error should also be discussed. In local regres-
sion based on the MD approaches [10] the error function is
simply

E(X; M) =
∑

p

K(d(Xp,Xref))(F (Xp; M) − yp)2 (8)

where yi are the desired values for Xi and F (Xi; M)
are the values predicted by the model M ; here the kernel

function K(d) measures the influence of the reference vec-
tors on the total error. For example if K(d) has a sharp
high peak around d = 0 the function F (X; M) will fit the
values corresponding to the reference input vectors almost
exactly and will make large errors for other values. This is
not quite the same as the weighting function G(d) which
is used to estimate the distance. In classification problems
kernel function will determine the size of the neighborhood
around the known cases in which accurate classification is
required.

The cost function is either a classification error (as for
the hard-distance case) or – since continuos output values
are provided – minimization of risk for overall classification:

ER(X; M) =
∑
i,p

R(Ci, C(Xp))
[
p(Ci|Xp; M)−δ(Ci, C(Xp))

]2

(9)

where the sum runs over all training vectors X, C(X) is
the true class of vector Xp, R(Ci, Cj) is the risk matrix, and
M specifies parameters of the classifier. To minimize the
leave-one-out error the sum runs over all training examples
Xp and the model used to specify the classifier should not
contain the Xp vector in the reference set while p(Ci|Xp)
is computed.

III. Results

The framework for the minimal distance methods de-
scribed in the previous section leads to many different
methods of classification. The k-NN approach is frequently
one of the best among many popular statistical, neural and
machine learning classification methods. Most MD meth-
ods presented here should improve the k-NN results. We
have tested so far only a few simplest choices on the real
and artificial data. k-NN results reported here are based
on increasing the number of neighbors until a tie is bro-
ken. Manhattan distance function was used in all studies
(
∑

i |Xi−Yi|) although in some cases optimized Minkovsky
metric gives better results. Both raw and standardized
data (zero mean, unit variance) were used, since standard-
ization does not always lead to improvement. The optimal
value of k was found first and then adaptive simmulated
annealing [11] or a multistart simplex minimization method
was used to find the scaling factors and other parameters.

Most of the data were taken from the UCI repository [12]
of the Machine Learning Databases, where more detailed
description may be found. Medical data include appendici-
tis (106 vectors, 8 attributes, two classes, obtained from S.
Weiss), Wisconsin breast cancer (699 cases, 9 attributes,
two classes), Cleveland heart disease (303 cases, 13 at-
tributes, two classes), hepatitis (155 vectors, 19 attributes,
two classes) and a larger hypothyroid dataset (described
in more details below). All medical datasets strongly ben-
efited from normalization. The missing values of features
have been replaced by the mean for their class (this is not

always the best procedure).
Detailed comparison of the scaled k-NN data with other

approaches shows that even for small datasets results be-
long to the best reported so far. PVM, Cart, MLP and
Bayes results are taken from [13], C-MLP2LN from [14],
RIAC and C4.5 from [15] and FSM [16] are our own. Un-
fortunately we have only a few results of the the leave-one-
out tests to compare with. k-NN result for appendicitis is
very good and has been significantly improved by scaling
using ASA minimization, while the conical-weighted r-NN
result, 85.9% is at the MLP level. For the Wisconsin breast
cancer data the best results were obtained by FSM, with
scaled k-NN results only slightly worse. Tests using 10-fold
crossvalidation give accuracies worse by as much as 1.5%.
For the hepatitis data scaled results with ASA optimiza-
tion are excellent. Scaled results for the Cleveland heart
disease data are also quite good, although the much better
result obtained by FSM shows that more than one distance
function should be used in this case (FSM uses clusters of
different sizes in different regions of the input space).

The hypothyroid dataset was created from real med-
ical tests screening for hypothyroid problems [12]. Since
most people were healthy 92.5% of cases belong to the nor-
mal group, and 7.5% of cases belonging to the primary
hypothyroid or compensated hypothyroid group. A total
of 3772 cases are given for training (results from one year)
and 3428 cases for testing (results from the next year).
Many neural classifiers have been tried on this data, giving
accuracies up to 98.5% on the test set. Schiffman et.al.
[17] optimized about 15 MLPs trained with different vari-
ants of backpropagation and cascade correlation algorithms
and performed tedious genetic optimizations on many MLP
network architectures. The best results of this study [17]
(genetic optimization, local adaptation rates) reach 98.5%
accuracy on the test set, while logical rules derived us-
ing C-MLP2LN method [14] reach 99.36% accuracy. The
best k-NN results give only 97.0% and were obtained for
k = 6 with scaled metric optimized using multisimplex
method (ASA is more reliable but more expensive). Since
the number of reference vectors is rather large these re-
sults are rather disappointing. We have tried to use soft
weighting with the conical function and optimized radius
but the results were not significantly better. The failure of
the minimum distance method with global parameters for
this case is surprising and requires further study.

Non-medical datasets included the ionosphere (350 cases,
34 attributes, 2 classes), satimage (4435 cases, 36 at-
tributes, 6 classes), sonar (208 cases, 60 attributes, 2
classes) and vovel (528 training and 462 test cases, 10 at-
tributes, 11 classes) data. For this data scaling factors
were optimized with multisimplex method only. For the
ionosphere we have the RIAC accuracy of 94.6% and C4.5
of 94.9% which are significantly worse than our results. For
satimage slightly better results (90.5%) were obtained from
conical soft-weighting of the number of neighbors and for
vowel the r-NN method gives 57.8% accuracy, but in both

TABLE I

The appendicitis, Wisconsin breast cancer data, hepatitis

and the Cleveland heart data.

Dataset and method Leave-one-out %
The appendicitis data
Bayes rule (statistical) 83.0
CART, C4.5 (dec. trees) 84.9
MLP+backpropagation 85.8
RIAC (prob. inductive) 86.9
9-NN 89.6
PVM, C-MLP2LN (logical rules) 89.6
1-NN + ASA 94.3
Wisconsin breast cancer data
RIAC 95.0
C4.5 (dec. tree) 96.0
3-NN 97.0
scaled 4-NN + ASA 97.9
FSM 98.3
The hepatitis data
MLP+backprop 82.1
CART 82.7
LDA 86.4
9-NN 90.3
FSM 93.6
Scaled 1-NN + ASA 98.1
The Cleveland heart data
CART 80.8
MLP+backprop 81.3
C-MLP2LN 82.5
7-NN 83.2
LDA 84.5
Scaled 4-NN + ASA 88.1
FSM 96.3

cases scaling improves the accuracy even more (of course
one can combine scaling with soft-weighting and r-NN).
We have also tried the artificial data using the three monk
problems. For the scaled 3-NN method in the first Monk
problem 100% accuracy was obtained, for the second prob-
lem 85.9% (in this case MLP obtain 100%) and for the third
problem 97.7%, which is optimal in this case (the error is
due to some noise added to the data).

IV. Summary and discussion

General conclusions that one may draw from these pre-
liminary results are: scaling of individual features is very
important and can bring substantial gains in accuracy as
well as reduce the number of features (small scaling fac-
tors). Selection of a fixed number of neighbors works usu-
ally better than optimization of one radius in which the
number of neighbors is counted. If the optimal number
of neighbors is small weighting procedures do not con-
tribute significantly to accuracy. Better results are prob-

TABLE II

Results for non-medical datasets.

database k k-NN % scaled k-NN %
ionosphere 3 96.7 98.7
satimage 2 90.3 91.4
sonar 1 93.3 95.2
vowel 9 56.5 62.1

ably achieved if local weighting functions are introduced,
similarly as in the RBF, where adaptation of individual
dispersions is of great importance, or if the α-optimized
soft weighting is performed.

The minimal distance point of view leads to a fruitful
framework in which many methods are accommodated. We
have found very few methods in the literature that try to
improve upon the simple k-NN scheme. Hastie and Tib-
shirani [18] write about adaptive k-NN classification from
the linear discriminant point of view, advocating the use of
several local metrics in different areas of the input space,
instead of just one. Friedman [19] proposed an interesting
way of adapting the metric based on a tree-structure in-
teractive partitioning of the data. Laaksonen and Oja [4]
proposed to improve the k-NN reference vectors using LVQ
techniques. Atkenson, Moor and Schaal [10] discuss locally
weighted regression techniques, minimal distance methods
with various metric and kernel functions applied to approx-
imation problems.

All these proposals may be accommodated in the general
framework presented here. Both MLP and RBF networks
may be seen as particular examples of neural MD meth-
ods. Identification of the best combination of procedures
and adaptive parameters should allow for improvement of
results achieved by the k-NN as well as neural classifiers.
Many possibilities to create fuzzy k-NN models remain also
to be explored. Performance of various methods described
here (as well as any other classification methods) depends
on the nature of the data given for classification and re-
mains a subject of further empirical study. Our prelim-
inary results for most of the datasets tried are the best
obtained so far by any method. Bearing in mind that so
far we have tested only a few simplest methods our results,
even for small datasets, are very encouraging.

Acknowledgments: Support of W.D. and K.G. by
the Polish Committee for Scientific Research, grant 8T11F
00308, is gratefully acknowledged.

References

[1] R. Rohwer and M. Morciniec, A Theoretical and Experimental
Account of n-tuple Classifier Performance, Neural Computation
8 (1996) 657–670

[2] W. Duch, Neural minimal distance methods, Proc. 3-rd Conf.
on Neural Networks and Their Applications, Kule, Poland, Oct.
14-18, 1997

[3] P.R. Krishnaiah, L.N. Kanal, eds, Handbook of statistics 2: clas-
sification, pattern recognition and reduction of dimensionality
(North Holland, Amsterdam 1982)

[4] J. Laaksonen, E. Oja, Classification with Learning k-Nearest
Neighbors. In: Proc. of ICNN’96, Washington, D.C., June 1996,
pp. 1480-1483.

[5] D.L. Waltz, Memory-based reasoning, in: M. A. Arbib, ed, The
Handbook of Brain Theory and Neural Networks (MIT Press
1995), pp. 568–570

[6] R.P. Lippmann, An introduction to computing with neural nets,
IEEE Magazine on Acoustics, Signal and Speech Processing 4
(1987) 4–22; P. Floreen, The convergence of Hamming memory
networks, Trans. Neural Networks 2 (1991) 449–457

[7] D.L. Reilly, L.N. Cooper, C. Elbaum, A neural model for cate-
gory learning, Biological Cybernetics 45 (1982) 35–41

[8] P.D. Wasserman, Advanced methods in neural networks (van
Nostrand Reinhold 1993)

[9] D.K.Y. Chiu, F.E. Kavanaugh, the ck-Nearest Neighbor distance
Network: a network using class boundary feature distances,
ICONIP’97, New Zealand, Nov.1997, pp. 535-538

[10] C.G. Atkenson, A.W. Moor and S. Schaal, Locally weighted
learning, Artificial Intelligence Review (submitted, 1997)

[11] L. Ingberg, Adaptive simulated annealing (ASA): Lessons
learned, J. Control and Cybernetics 25 (1996) 33-54

[12] C.J. Mertz, P.M. Murphy, UCI repository,
http://www.ics.uci.edu/pub/machine-learning-databases.

[13] S.M. Weiss, I. Kapouleas, An empirical comparison of pat-
tern recognition, neural nets and machine learning classification
methods, in: J.W. Shavlik and T.G. Dietterich, Readings in Ma-
chine Learning, Morgan Kauffman Publ, CA 1990

[14] W. Duch, R. Adamczak, K. Gra̧bczewski, Extraction of
crisp logical rules using constrained backpropagation networks.
ICANN’97, Houston, 9-12.6.1997, pp. 2384-2389, Logical rules
for classification of medical data using ontogenic neural algo-
rithm, EANN’97, Stockholm, 16-18.06.1997, pp. 199-202

[15] H.J. Hamilton, N. Shan, N. Cercone, RIAC: a rule induction
algorithm based on approximate classification, Tech. Rep. CS
96-06, Regina University 1996

[16] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a uni-
versal adaptive system, Comp. Phys. Comm. 87 (1995) 341-371

[17] W. Schiffmann, M. Joost, R. Werner, Comparison of optimized
backpropagation algorithms, ESANN ’93, Brussels 1993, pp. 97-
104; Synthesis and Performance Analysis of Multilayer Neu-
ral Network Architectures, Tech. Rep. 15/1992, available in
neuroprose as schiff.gann.ps.Z

[18] T. Hastie, R. Tibshirani, Discriminant adaptive nearest neighbor
classification, IEEE PAMI 18 (1996) 607-616

[19] J. H. Friedman, Flexible metric nearest neighbor classification,
Technical Report, Dept. of Statistics, Stanford University 1994

