
NEURAL PROCESSING LETTERS, 7: 211-219, 1998 1

Extraction of logical rules from backpropagation

networks
Włodzisław Duch, Rafał Adamczak and Krzysztof Gra̧bczewski

Abstract—Three neural-based methods for extraction of log-
ical rules from data are presented. These methods facilitate
conversion of graded response neural networks into networks
performing logical functions. MLP2LN method tries to convert
a standard MLP into a network performing logical operations
(LN). C-MLP2LN is a constructive algorithm creating such
MLP networks. Logical interpretation is assured by adding
constraints to the cost function, forcing the weights to ±1 or
0. Skeletal networks emerge ensuring that a minimal number
of logical rules are found. In both methods rules covering
many training examples are generated before more specific rules
covering exceptions. The third method, FSM2LN, is based on the
probability density estimation. Several examples of performance
of these methods are presented.

I. INTRODUCTION

Classification using crisp logical rules is preferable to

humans over other methods because it exposes the inherent

logical structure of the problem. Although the class of prob-

lems with logical structure simple enough to be manageable

by humans may be rather limited nevertheless it covers some

important applications, such as the decision support systems

in financial institutions. One way to obtain logical description

of the data is to analyze neural networks trained on these

data. Many methods for extraction of logical rules from neural

networks exist (for a review and extensive references see [?]).

In this paper several new methods of logical rule extraction

and feature selection are presented. Although we concen-

trate on crisp logical rules these methods can easily obtain

also fuzzy rules. In contrast with the existing neural rule

extraction algorithms based on analysis of small connection

weights, analysis of sensitivity to changes in input or analysis

Authors are with the Department of Computer Methods, Nicholas

Copernicus University, Grudzia̧dzka 5, 87-100 Toruń, Poland. E-mail:

wduch,raad,kgrabcze@is.umk.pl

of the total network function [?] our goal is to create a

simplified network with nodes performing logical functions.

This goal is achieved either by constraining the multi-layered

perceptron (MLP) network that has already been trained,

or by constructing the network during training, adding new

neurons and immediately simplifying their connections. Third

possibility is based on density estimation. Cuboidal density

regions are easily interpreted as crisp logic rules, therefore one

should select appropriate transfer functions and either convert

smooth complicated densities into cuboids or create cuboidal

densities directly. These three algorithms are briefly described

in the next section. Pedagogical example and a few illustrative

applications are presented in the third and the fourth section.

The paper is finished with a short discussion.

II. THREE RULE EXTRACTION ALGORITHMS

Preliminary: linguistic variables. Logical rules require

symbolic inputs (linguistic variables). If the input data

components xi are real numbers finding optimal linguistic

variables is a part of the classification problem. Density

estimation networks provide linguistic variables from analysis

of response of network nodes. The inputs from features

giving strong response along the whole range of data are

irrelevant and should be removed. The range of values taken

by continuous inputs may also be partitioned into distinct (for

crisp logic) sets by analysis of class-membership histograms.

The initial linguistic variable boundary points are optimized

after the rules are found and the whole rule extraction process

is repeated with new linguistic variables. MLPs may find

linguistic variables using a combination of two neurons,

called here an L-unit, performing for each continuous input

a “window-type” function:

NEURAL PROCESSING LETTERS, 7: 211-219, 1998 2

s(x; b, b′) = σ(x− b)(1− σ(x− b′))

s(x; b, b′) = σ(x− b)− σ(x− b′) (1)

where the gain of the sigmoidal functions σ(x) reaches a

very high value during learning, changing s(x; b, b′) into a

step-like logical function. This function has two biases which

may be treated as boundaries defining linguistic variable (l =

true) ≡ (x ∈ [b, b′]).

MLP2LN method. Logical rules giving classification re-

sults corresponding to the trained, multi-layered network, are

required. MLP network is modified by retraining it while the

slope of sigmoidal functions is gradually increased and the

weights simplified. Integer weight values are enforced: 0 for

irrelevant inputs, +1 for features that must be present and −1

for features that must be absent. This is achieved by modifying

the error function:

E(W) = E0(W)+
λ1

2

∑

i,j

W 2
ij+

λ2

2

∑

i,j

W 2
ij(Wij−1)2(Wij+1)2

(2)

E0(W) is the standard quadratic error measure, the second

term with λ1 leads to a large number of zero weights,

i.e. elimination of irrelevant features, and the third term

vanishes for weights equal 0 or ±1. Similarly as in the

case of weight pruning techniques in the backpropagation

algorithm these terms lead to the additional change of weights:

∆Wij = λ1Wij + λ2Wij(W 2
ij − 1)(3W 2

ij − 1) (3)

where λ1 and λ2 scale the relative importance of auxiliary

conditions. This form of error function has two advantages:

independent parameters control enforcing of 0 and ±1

weights, and an interpretation of this function from the

Bayesian point of view [?] is straightforward. It defines our

prior knowledge about the probability distribution P (W |M)

of the weights in our model M . A network trained on

classification tasks should give crisp logical decision “yes”,

“no” or “irrelevant”, therefore a priori conditional probability

[?] is:

P (W |M) = Z(α)−1e−αEa(W |M) ∝ (4)
∏

ij

e−α1W 2
ij

∏

kl

e−α2(Wkl−1)2
∏
mn

e−α2(Wmn+1)2

To find logical rules giving classifications equivalent to

those of trained MLP network new error function Eq. (??)

with relatively large values of regularization parameters is

used for further training. Typical MLP network has many

irrelevant connections and large non-integer weights, therefore

the training error will initially be large. After such retraining

a skeletal network emerges, with a few connections left. The

network is capable of rough classification performing simple

logical operations. This part of the network is inserted into

the original network and kept frozen. Modified MLP is now

retrained with smaller regularization parameters. After several

cycles of retraining the original network is changed into a sim-

plified MLP performing logical operations that approximate

original classifications.

C-MLP2LN method. In this approach a single hidden layer

skeleton MLP is constructed. One hidden neuron per output

class is created and the modified error function minimized

during training on all data until convergence is reached. The

remaining non-zero weights and the thresholds obtained are

then analyzed and the first group of logical rules is found,

covering the most common input-output relations. The input

data correctly handled by the first group of neurons does not

contribute to the error, therefore the weights of these neurons

are kept frozen during further training. A second group of

neurons is added and trained on the remaining data. This

process is repeated until all data are correctly classified and

a set of rules R1 ∨ R2... ∨ Rn for each class is found, or

until the number of cases correctly classified by a given new

neuron drops below certain minimum. Neurons handling only

few specific training cases model noise, rather than regularities

in the data, and thus should be deleted. The output neuron for

each class is connected to the hidden neurons created for that

class, performing a simple summation of the incoming signals.

Logical rules are sometimes simpler if, in a small number

of cases, wrong classifications by a newly added neuron are

allowed. These cases are treated as exceptions to the rules.

NEURAL PROCESSING LETTERS, 7: 211-219, 1998 3

The set of extracted logical rules has then a hierarchical

order. Rules handling exceptional cases, placed at the top of

hierarchy, should be applied first.

Extraction of rules from skeleton network with small num-

ber of integer connections is quite simple. For each neuron

non-zero inputs define levels of a search tree, and values of

linguistic variables define possible branches of this tree. To

each node of the search tree a contribution to the activation

of neuron is assigned. Since at each level maximum activation

that lower levels may contribute is known, nodes that do not

lead to activations larger than threshold are quickly deleted.

Rules obtained by both MLP2LN algorithms are ordered,

starting with rules that are used most often and ending with

rules that handle only a few cases. Quality of a set of rules

is checked using test data – an optimal balance between the

number of rules and the generalization error is usually obtained

when only the rules that classify larger number of cases are

retained. The final solution may be presented as a set of

rules or as a network of nodes performing logical functions,

with hidden neurons realizing the rules and the hidden-output

neuron weights all set to +1.

FSM2LN method. It is well known that RBF networks with

Gaussian functions are equivalent to the fuzzy logic systems

with Gaussian membership functions [?]. To obtain crisp logic

one can either use rectangular basis functions [?] or use

transfer functions that may be smoothly changed into functions

with cuboidal contour surfaces, for example products of L-

units defined in Eq. (??). Such functions are separable, but

not radial, therefore we use the Feature Space Mapping (FSM)

density estimation constructive network [?] instead of RBF.

The slopes of sigmoidal functions are gradually increased

during the training process, allowing for smooth transition

from fuzzy to crisp rules. Feature selection is performed by

adding penalty term for small dispersions to the error function:

E(V) = E0(V) + λ

N∑

i

1/(1 + σ2
i) (5)

where V represents all adaptive parameters, such as posi-

tions and dispersions σi = |bi− b′i| of localized units, and the

sum runs over all active inputs for the node that is the most

active upon presentation of a given training vector. The penalty

term encourages dispersions to grow – if σi includes the whole

range of input data the connection to xi is deleted. After the

training each node has class label and represents a cuboid in

relevant dimensions of the input subspace, easily interpreted

as logical conditions for a given class. An alternative approach

is to test how much the nodes may expand without changing

the classification error.

III. PEDAGOGICAL EXAMPLE

Because of the lack of space only one pedagogical example

of C-MLP2LN application to the rule extraction from the

classical iris dataset is presented here. The data has 150

vectors evenly distributed in three classes, called iris setosa,

iris versicolor and iris virginica. Each vector has four features:

sepal length x1 and width x2, and petal length x3 and width

x4 (all in cm). The input values (length) for each of these

features were initially obtained by analysis of histograms of

the individual features for each class, cutting the histograms

into the regions where values of features are most frequently

found in a given class. Discretization was made by smooth-

ing the histogram (assuming small Gaussian width for each

sample). The following linguistic variables were obtained:

TABLE I

LINGUISTIC VARIABLES OBTAINED BY ANALYSIS OF HISTOGRAMS.

s m l

x1 [4.3,5.5] (5.5,6.1] (6.1,7.9]

x2 [2.0,2,75] (2.75,3.2] (3.2,4.4]

x3 [1.0,2.0] (2.0,4.93] (4.93,6.9]

x4 [0.1,0.6] (0.6,1.7] (1.7,2.5]

Thus x1 is called small if it is in [4.3, 5.5] range etc.

Instead of four inputs xi a network with 12 linguistic inputs

equal to ±1 is constructed. For example, the medium value

of a single feature is coded by (−1, +1,−1). With this

discretization of the input features two vectors of the iris

versicolor class (coded as (m,m, l, l) and (m, l,m, l)) become

identical with a number of iris virginica vectors and cannot

be classified correctly. These vectors were removed from the

training sequence.

A single neuron per class was sufficient to train the network,

therefore the final network structure is 12 input nodes and 3

output nodes (hidden nodes are only needed when more than

one neuron is necessary to cover all rules for a given class).

NEURAL PROCESSING LETTERS, 7: 211-219, 1998 4

The scaling parameter was increased from λ = 0.001 at the

beginning of the training to λ = 0.01− 0.1 near the end. The

network needed about 1000 epochs on average and the final

weights were within 0.05 from the desired ±1 or 0 values.

The following weights and thresholds are obtained (only the

signs of the weights are written):

Iris setosa: (0, 0, 0; 0, 0, 0;+, 0, 0;+, 0, 0), θ = 1

Iris versicolor: (0, 0, 0; 0, 0, 0; 0,+,−; 0,+,−), θ = 3

Iris virginica: (0, 0, 0; 0, 0, 0;−,−, +;−,−, +), θ = 1

m
s

l

m
s

l

m
s

l

m
s

l

X

X

X

X

1

2

3

4

l1

l2

l3

input
linguistic
variables

hidden
layer output

Setosa
50 cases,
all correct

Versicolor,
47 cases,
all correct

Virginica
53 cases
3 wrong

Fig. 1. Final structure of the network for the iris dataset.

To find logical rules contributions from various inputs

to the activation of the output neuron are considered.

For the iris setosa vectors the weights for x3 and x4 are

(+, 0, 0), therefore to obtain activation larger than θ = 1 both

x3 = x4 = (+,−,−) = s are necessary. Therefore iris setosa

class is obtained for x3 = s ∧ x4 = s. For iris versicolor

x3 = m ∧ x4 = m is needed to exceed the threshold θ = 3

and for iris virginica x3 = l ∨ x4 = l is sufficient.

IF (x3 = s ∧ x4 = s) THEN iris setosa

IF (x3 = m ∧ x4 = m) THEN iris versicolor (6)

IF (x3 = l) ∨ (x4 = l) THEN iris virginica

These rules allow for correct classification of the 147

vectors, achieving 98% of accuracy or 3 errors. Using smaller

constraint parameters λ additional logical rules are obtained,

but since clasiffication of one vector requires 10 additional

logical conditions these rules are clearly overfitting the data.

Increasing constraint hyperparameters further selects only one

attribute, petal length x3, and leaves two rules: iris setosa if

x3 < 2.5, iris virginica if x3 > 4.9, else iris versicolor, giving

95.3% accuracy (7 errors).

The accuracy of classification using logical rules critically

depends on selection of features. L-units allowing neural

network to find linguistic variables were also used. Three

linguistic variables per each input were assumed. In the trained

network only two of the twelve L-units were relevant, one

distinguishing the iris setosa, the other iris virginica class. If

none of the two L-units is activated iris versicolor class is

assumed. Two rules with two attributes were obtained: iris

setosa for x3 ≤ 2.56, iris virginica for x4 > 1.63, else iris

versicolor. These rules allow for correct classification of all

but six vectors, achieving 96% of accuracy. Finally FSM2LN

method has also been applied to the iris data. After training

with rectangular basis function or with functions Rq. (??) four

rules gave 98% accuracy. The remaining 3 vectors need 8

additional rules for correct classification – again a clear case

of overfitting.

IV. ILLUSTRATIVE RESULTS

The rule extraction methods presented in this paper have

been applied to a number of datasets obtained from the UCI

repository [?], producing small number of crisp logic rules

and giving frequently better classification accuracy than the

original neural classifiers.

The mushroom dataset: 8124 training cases, each case has

22 discrete attributes, with 51.8% of the cases representing

edible and the rest nonedible mushrooms. For poisonous

mushrooms odor is the single most important feature for

distinguishing poisonous and edible mushrooms – a single rule

odor=not(almond.or.anise.or.none) obtained with C-MLP2LN

method gives 120 errors, or 98.5% accuracy on the whole

dataset. Second rule with one additional attribute leaves 48

errors, third rule with two attributes leaves only 8 errors, and

fourth rule with two attributes allows for perfect classification.

Only 6 of the 22 attributes are important for classification.

Same rules are obtained by training on a small subset (10%)

of all the cases as well as on the whole dataset.

NEURAL PROCESSING LETTERS, 7: 211-219, 1998 5

The three monk problems: this is an artificial data used

frequently to test machine learning algorithms. In each of the

three monk problems one should determine whether an object

described by six features is a monk or not [?]. “Being a monk”

is defined by the following formulae in the three problems:

Monk 1: head shape = body shape ∨ jacket color = red

Monk 2: exactly 2 of 6 features have their first values

Monk 3: ¬ (body shape = octagon ∨ jacket color = blue) ∨
(holding = sward ∧ jacket color = green)

The data for the last problem is corrupted by adding 5%

noise. Rules allowing for perfect classification of all three

monk problems have been found, although it was necessary to

create exceptions to the rules and use them in a hierarchical

way. The first problem requires 4 explicit rules (head and body

shapes have 3 values). C-MLP2LN procedure has generated 4

rules and one exception while FSM2LN has generated rules in

their original form using either sigmoidal products or rectan-

gular functions. Monk 2 problem requires 15 explicit rules; C-

MLP2LN generated 16 rules and 8 exceptions, while FSM2LN

was again able to find 15 rules. For the third monk problem

using C-MLP2LN approach perfect classification accuracy was

obtained with 3 rules and 4 exceptions, despite the noise in the

data – for small datasets it is possible to find rules classifying

all examples. Using FSM2LN 8 rules were generated. None

of the methods tested in [?] found rules giving 100% accuracy

for all three monk problems.

The cancer dataset contains 286 cases, with 9 attributes

and two classes. This is rather difficult noisy data. With one

hidden neuron two rules were made by C-MLP2LN giving

22.03% error on all cancer data. Best MLP results give about

2% larger errors [?].

The appendictis dataset contains only 106 cases, with 8

attributes (results of medical tests), and 2 classes: 88 cases

with acute appendicitis and 18 cases with other problems.

Two simple rules (MNEA > 6650 or MBAP > 12) were

found by C-MLP2LN method giving 8.5% error; decreasing

constraints leads to two new complex rules that already overfit

the data. Similar results were found by FSM2LN. The best

MLP classification results give 9.8% error [?].

The hypothyroid dataset has 3772 cases for training, 3428

cases for testing, 22 discrete and continuous attributes, and 3

classes: primary hypothyroid, compensated hypothyroid and

normal (no hypothyroid). About 10% of values are missing.

For the first class two rules found by the C-MLP2LN are

sufficient to get 0.48% accuracy on the training set and 1.02%

accuracy on the test set. For comparison, MLP and Cascade

Correlation errors on the test set are slightly larger than 1.5%.

V. DISCUSSION AND SUMMARY

New methods for extraction of logical rules with the help

of neural classifiers have been presented. Results obtained for

several artificial and real-world datasets are very encouraging.

Crisp and fuzzy rules may be obtained, rules are ordered

from the most common to more specialized, hierarchy of

rules and exceptions is established, overfitting is avoided by

dropping more specialized rules and the accuracy is frequently

better than given by other (neural and statistical) approaches.

These methods require careful analysis and sometimes sim-

plifications of the rules extracted from weight analysis. The

MLP2LN method is similar to the “successive regularization

method” recently published by Ishikawa [?], although he does

not use integer weights while we do not use his “hidden unit

clarification” process. His method gives comparable results for

the mushroom problem but we believe that our C-MLP2LN

constructive approach is simpler and more reliable. The rect-

angular basis function method [?] and the Rulex method [?]

are comparable to the FSM2LN, although quite different in

actual implementation.

Hierarchy of rules and exceptions gives natural flexibility

to the rules derived in our approach, uncommon in other

approaches. One concept that is worth more attention is the

stability of rules (and other classification systems). Rules are

brittle if a small change in the input data leads to a different set

of rules or to large errors. The choice of linguistic variables

is most important for stability of rules. This is true in the

density networks as well as in MLPs – the training data places

the classification borders very close to the class boundaries,

therefore the test data may not fit in such tight compartments.

In FSM2LN the penalty Eq. (??) used to eliminate input

features is also useful to stabilize the rules. In MLP2LN

linguistic variables are optimized using extracted rules and

the rule extraction process is iteratively repeated with new,

optimized variables.

NEURAL PROCESSING LETTERS, 7: 211-219, 1998 6

REFERENCES

[1] R. Andrews, J. Diederich, A.B. Tickle, A Survey and Critique of Tech-

niques for Extracting Rules from Trained Artificial Neural Networks,

Knowledge-Based Systems vol. 8, pp. 373-389, 1995.

[2] D.J. MacKay, A practical Bayesian framework for backpropagation

networks, Neural Computations Vol. 4, pp. 448-472, 1992.

[3] J-S. R. Jang, C.T. Sun, Functional Equivalence Between Radial Basis

Function Neural Networks and Fuzzy Inference Systems, IEEE Trans.

on Neural Networks, vol. 4, pp. 156-158, 1993.

[4] M. Berthold, K. Huber, Building Precise Classifiers with Automatic rule

Extraction, in: Proc. of the IEEE ICNN, Perth, Vol. 3, pp. 1263-1268,

1995.

[5] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a universal

adaptive system, Computer Physics Communications, vol. 87, pp. 341–

371, 1995.

[6] C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases,

http://www.ics.uci.edu/pub/machine-learning-databases.

[7] S. Thrun et al., The MONK’s Problems. A Performance Comparison

of Different Learning Algorithms. Carnegi Mellon University Technical

Report CMU-CS-91-197, 1991

[8] M. Ishikawa, Rule extraction by successive regularization, in: Proc. of

the 1996 IEEE ICNN, Washington, June 1996, pp. 1139–1143.

