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Abstract

Three neural-based methods for extraction of logical rules from data are presented. These methods facilitate con-
version of graded response neural networks into networks performing logical functions. MLP2LN method tries to
convert a standard MLP into a network performing logical operations. C-MLP2LN is a constructive algorithm cre-
ating such MLP networks. Logical interpretation is assured by adding constraints to the cost function, forcing the
weights to±1 or 0. Skeletal networks emerge ensuring that a minimal number of logical rules are found. In both
methods rules covering many training examples are generated before more specific rules covering exceptions. The
third method, FSM2LN, is based on the probability density estimation. Results of application of these methods to
the hypothyroid and hepar datasets are presented.

I. Introduction

LOGICAL rules should be preferred over other methods of classification, provided that the
complexity of the set of rules will not be too large and their accuracy will be sufficiently

high. This is especially true in medical applications, where understanding which features
contribute to classification and which are irrelevant is of extreme importance. Rules allow
for detailed control over complexity of the classification model. Surprisingly, simple logical
rules proved to be more accurate and were able to generalize better than many machine and
neural learning algorithms [1]. Many methods of logical rule extraction are based on neural
networks (for a recent review and extensive references see [2]).

Recently we have introduced several new methods of logical rule extraction and feature
selection based on density estimation networks and multi-layered perceptrons (MLPs). Al-
though we concentrate on crisp logical rules these methods can easily find also fuzzy rules.
In contrast with the existing neural rule extraction algorithms based on analysis of small
connection weights, analysis of sensitivity to changes in input or analysis of the total net-
work function [2] our goal is to create a simplified network with nodes performing logical
functions. This goal is achieved either by constraining the multi-layered perceptron (MLP)
network that has already been trained, or by constructing the network during training, adding
new neurons and immediately simplifying their connections. Third possibility is based on
density estimation. Cuboidal density regions are easily interpreted as crisp logic rules, there-
fore one should select appropriate transfer functions and either convert smooth complicated
densities into cuboids or create cuboidal densities directly. These three algorithms are briefly
described in the next section. Two applications to the medical data analysis are presented in
the third section. The paper is finished with a short discussion.



II. Three rule extraction algorithms
Preliminary: linguistic variables. Logical rules require symbolic inputs (linguistic vari-

ables). If the input data componentsxi are real numbers finding optimal linguistic variables
is a part of the classification problem. Density estimation networks provide linguistic vari-
ables from analysis of response of network nodes. The inputs from features giving strong
response along the whole range of data are irrelevant and should be removed. The range of
values taken by continuous inputs may also be partitioned into distinct (for crisp logic) sets by
analysis of class-membership histograms. The initial linguistic variable boundary points are
optimized after the rules are found and the whole rule extraction process is repeated with new
linguistic variables. MLPs may find linguistic variables using a combination of two neurons,
called here anL-unit, performing for each continuous input a “window-type” function:

s∗(x; b, b′) = σ(x − b)(1 − σ(x − b′)); s+(x; b, b′) = σ(x − b) − σ(x − b′) (1)

where the gain of the sigmoidal functionsσ(x) reaches a very high value during learning,
changings(x; b, b′) into a step-like logical function. This function has two biases which may
be treated as boundaries defining linguistic variable(l = true) ≡ (x ∈ [b, b ′]) [3].

MLP2LN method. Logical rules giving classification results corresponding to the trained,
multi-layered network, are required. MLP network is modified by retraining it while the
slopes of sigmoidal functions are gradually increased and the weights simplified. Integer
weight values are enforced: 0 for irrelevant inputs,+1 for features that must be present and
−1 for features that must be absent. This is achieved by modifying the error function:
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whereE0(W ) is the standard quadratic error measure, the second term withλ 1 leads to
a large number of zero weights, i.e. elimination of irrelevant features, and the third term
vanishes for weights equal to 0 or±1. Similarly as in the case of weight pruning techniques
in the backpropagation algorithm these terms lead to the additional change of weights:

∆Wij = λ1Wij + λ2Wij(W 2
ij − 1)(3W 2

ij − 1) (3)

whereλ1 andλ2 scale the relative importance of auxiliary conditions. This form of error
function has two advantages: independent parameters control enforcing of 0 and±1 weights,
and an interpretation of this function from the Bayesian point of view [4] is straightforward.
It defines our prior knowledge about the probability distributionP (W |M) of the weights in
our modelM . A network trained on classification tasks should give crisp logical decision
“yes”, “no” or “irrelevant”, thereforea priori conditional probability [4] is:

P (W |M) = Z(α)−1e−αEa(W |M) ∝
∏

ij

e−αW 2
ij(Wij−1)2(Wij+1)2 (4)

To find logical rules giving classifications equivalent to those of a trained MLP network
new error function Eq. (2) with relatively large values of regularization parametersλ 1, λ2



is used for retraining. Typical MLP network has many irrelevant connections with small
weights and regularization terms initially increase the error. After retraining a skeletal net-
work emerges, with a few connections left. Such network is capable of rough classification
performing simple logical operations. This skeletal network is inserted into the original net-
work and its weights and biases are kept frozen. Modified MLP is now retrained again with
smaller regularization parameters. After several cycles of retraining and modification the
original network is changed into a simplified MLP performing logical operations that ap-
proximate original classifications.

C-MLP2LN method. In this approach a single hidden layer skeleton MLP is constructed.
One hidden neuron per output class is created and the modified error function minimized
during training on all data until convergence is reached. The remaining non-zero weights
and the thresholds obtained are then analyzed and the first group of logical rules is found,
covering the most common input-output relations. The input data correctly handled by the
first group of neurons do not contribute to the error, therefore the weights of these neurons
are kept frozen during further training. A second group of neurons is added and trained on
the remaining data. This process is repeated until a set of rulesR1 ∨ R2... ∨ Rn capable
of satisfactory classification is found, or until the number of cases correctly classified by a
given new neuron drops below certain minimum. Neurons handling only few specific training
cases model noise rather than regularities in the data, and thus should be deleted. The output
neuron for each class is connected to the hidden neurons created for that class, performing a
simple summation of the incoming signals. Logical rules are sometimes simpler if, in a small
number of cases, wrong classifications by a newly added neuron is allowed. These cases are
treated as exceptions to the rules. The set of extracted logical rules has thena hierarchical
order. Rules handling exceptional cases, placed at the top of hierarchy, are applied first.

Extraction of rules from skeleton network with small number of integer connections is
quite simple. For each neuron non-zero inputs define levels of a search tree, and values of
linguistic variables define possible branches of this tree. To each node of the search tree a
contribution to the activation of neuron is assigned. Since at each level maximum activation
that lower levels may contribute is known, nodes that do not lead to activations larger than
threshold are quickly deleted. Rules obtained by both MLP2LN algorithms are ordered,
starting with the rules that are used most often and ending with the rules that handle only a
few cases. Quality of a set of rules is checked using test data – an optimal balance between
the number of rules and the generalization error is usually obtained when only the rules that
classify larger number of cases are retained. The final solution may be presented as a set of
rules or as a network of nodes performing logical functions, with hidden neurons realizing
the rules and the hidden-output neuron weights all set to±1.

FSM2LN method. It is well known that RBF networks with Gaussian functions are equiv-
alent to the fuzzy logic systems with Gaussian membership functions [5]. To obtain crisp
logic one can either use rectangular basis functions [6] or use transfer functions that may
be smoothly changed into functions with cuboidal contour surfaces, for example products of
L-units defined in Eq. (1). Such functions are separable, but not radial, therefore we use the
Feature Space Mapping (FSM) density estimation constructive network [7] instead of RBF.
The slopes of sigmoidal functions are gradually increased during the training process, allow-
ing for smooth transition from fuzzy to crisp rules. Feature selection is performed by adding
a penalty term for small dispersions to the error function:



E(V ) = E0(V ) + λ
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whereV represents all adaptive parameters, such as positions and dispersionsσ i = |bi−b′i|
of localized units, and the sum runs over all active inputs for the node that is most active upon
presentation of a given training vector. The penalty term encourages dispersions to grow – if
σi includes the whole range of input data the connection tox i is deleted. After the training
each node has class label and represents a cuboid in relevant dimensions of the input subspace,
easily interpreted as logical conditions for a given class. An alternative approach is to test
how much the nodes may expand without changing the classification error.

III. Results for the hypothyroid and hepar datasets
The hypothyroid dataset was created from real medical tests screening for hypothyroid

problems [8]. Since most people were healthy 92.5% of cases belong to the normal group,
and 8% of cases belonging to the primary hypothyroid or compensated hypothyroid group.
21 medical tests were made in most cases, with 6 continuous and 15 binary values, and about
10% of values missing. A total of 3772 cases are given for training (results from one year)
and 3428 cases for testing (results from the next year). Thus from the classification point of
view this is a 3 class problem with 22 attributes.

Many neural classifiers have been tried on this data, giving accuracies up to 98.5% on
the test set. Schiffman et.al. [9] optimized about 15 MLPs trained with different variants
of backpropagation and cascade correlation algorithms. In addition tedious genetic optimiza-
tions have been performed on many MLP network architectures. The best results of this study
[9] are included in Table I, together with the results obtained using k-NN, decision trees and
statistical classification techniques [1].

We have created an MLP network using C-MLP2LN approach. Since there are 3 classes
only two outputs are needed, the third class (normal) is treated as “else” or not the first two. It
was relatively easy to find the important features:FTI, TSH, T3 values,on thyrox-
ine andthyroid surgery. For the first class one neuron was created, giving 3 rules,
but one of these rules classifies only one vector, in addition erroneously. This is quite com-
mon situation and therefore rules obtained after the weight analysis should be simplified and
checked directly on the data. Initially 4 rules are found, classifying correctly 98.4% of the
training cases and 98.0% of the test cases. Linguistic variables were optimized and all condi-
tions checked to find out if they could be dropped without the change of classification error on
the test data. Optimization of linguistic variables is easily done by changing the cutoff values
until the classification error is minimized. Rule extraction process (network retraining and
optimization) is repeated with new linguistic variables, until this iterative process converges.
After this iterative optimization the final rules are:
R11: TSH≥ 0.029∧ FTI < 0.063
R12: TSH∈ [0.0061,0.029)∧ FTI <0.063∧ T3 < 0.02
E21: thyroid surgery = yes∧ TSH∈ [0.0061,0.029)
R21: on thyroxine = no∧ TSH> 0.0061∧ FTI ∈ [0.0644,0.018)

The E21 rule is an exception to the rule R21, which means that it is checked first and if it is
true other rules are not checked. With these rules we get 99.68% accuracy on the training set



and 99.07% accuracy on the test set. These results are similar to those found using heuristic
version of PVM method by Weiss and Kapouleas [1]. The differences among PVM, CART
and MLP2LN are rather small, but other methods, such as well-optimized MLP or cascade
correlation classifiers, give significantly worse results.

FSM2LN for this dataset generated 24 rules, but these rules used more features and were
not so accurate (98% on the test set) as MLP2LN rules.

TABLE I

Classification results for various classifiers applied to the thyroid dataset.

Method Training set accuracy % Test set accuracy %
BP+conjugate gradient 94.6 93.8
Best Backpropagation 99.1 97.6
RPROP 99.6 98.0
Quickprop 99.6 98.3
BP+ genetic optimization 99.4 98.4
Local adaptation rates 99.6 98.5
Cascade correlation 100.0 98.5
k-NN 100.0 95.3
Bayes rule 97.0 96.1
PVM 99.8 99.3
CART (decision tree) 99.8 99.4
FSM2LN rules 99.6 98.0
MLP2LN rules 99.7 99.1

The Hepar dataset was collected by dr. H. Wasyluk and co-workers from the Postgraduate
Medical Center in Warsaw, and contains 570 cases described by 119 values of medical tests
and other features. These vectors are divided into 16 classes corresponding to different types
of liver disease. The data has not yet been analyzed previously. Small number of cases
belonging to several classes (only 2 in class 16, or 5 in classes 3 and 9, etc.) does not
allow for reliable classification of all data. Moreover, the data is not divided into the training
and the test set and since some classes do not have enough samples it is hard to make such
partitioning.

Analysis of histograms in one and two dimensions does not yield any hints for good lin-
guistic variables. Therefore we have used FSM2LN approach to find out the relevant features.
Selecting a target of 96% accuracy the number of neurons (representing rules) created after
training was 170, most of them covering only a few data vectors. Lowering the target ac-
curacy to 90% leads to elimination of only 10 neurons - this shows that complexity of data
representation by FSM is appropriate. Rectangular basis functions were used to create FSM
clusters and 73 out of 119 features were found relevant.

It is dangerous to select test vectors from Hepar data by random sampling since some of
the classes may end up with very few representatives in the training set. To test generalization
of the FSM network vectors belonging to five largest classes (more than 50 vectors in each
class), comprising 2/3 of all data (a total of 370 vectors), were selected. 50% of these vectors
were used for training and the rest for testing. Assuming the target of 94% accuracy on
the training part best results of classification on the test set were only 58%, with lower test



results for other target accuracies. Much lower classification accuracies are obtained if the
whole data is divided in half or if 20% of all data is randomly selected as a test set.

We have tried to find general trends in the data using MLP2LN, but the number of rules
generated in this way was quite large. The most general rule, describing correctly 30 cases
(one erroneously), is: IF (F5 ON and F29 OFF and F81∈ [669,3982]) THEN Class 13

IV. Summary
New methods for extraction of logical rules with the help of neural classifiers have been

presented and applied to two medical datasets. These methods have many advantages. Crisp
and fuzzy rules may be obtained, rules are ordered from the most common to more spe-
cialized, hierarchy of rules and exceptions is established, overfitting is avoided by dropping
more specialized rules and the accuracy is frequently better than given by other (neural and
statistical) approaches. Rules obtained by MLP2LN methods require careful analysis and
sometimes additional optimization of linguistic variables. Hierarchy of rules and exceptions
gives natural flexibility to the rules derived in our approach, uncommon in other approaches.
One concept that is worth more attention is the stability of rules (and other classification sys-
tems). Rules are brittle if a small change in the input data leads to a different set of rules or
to large errors. The choice of linguistic variables is most important for stability of rules. This
is true in the density networks as well as in MLPs. In FSM2LN the penalty Eq. (5) used to
eliminate input features is also useful to stabilize the rules. In MLP2LN linguistic variables
are optimized using extracted rules and the rule extraction process is iteratively repeated with
new, optimized variables.

Results obtained for the hypothyroid dataset are better than those obtained from sophis-
ticated neural and other classifiers and similar to the PVM rules [1] (computationally quite
demanding and feasible only if there are a few dominating features) and CART decision tree,
which is not so easy to interpret. Results for the Hepar dataset are inconclusive. We would
be surprised if a compact representation of this data exists. Probably the tests performed do
not contain enough information to allow for reliable classification in this case.
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