
�

Extraction of crisp logical rules using
constrained backpropagation networks

W�lodzis�law Duch� Rafa�l Adamczak and Krzysztof Gr�abczewski

Department of Computer Methods� Nicholas Copernicus University� Grudzi�adzka ��

���	

 Toru�n� Poland� E�mail duch�raad�kgrabcze�phys�uni�torun�pl

Abstract

The problem of extraction of crisp logical rules from neural networks trained with backpropagation algorithm is solved
by transforming these networks into simpler networks performing logical functions� Two constraints are included in the cost
function� regularization term inducing weight decay and additional term forcing the remaining weights to ��� Networks
with minimal number of connections are created� leading to a small number of crisp logical rules� A constructive algorithm
is proposed� in which rules are generated consecutively by adding more nodes to the network� Rules that are most general�
covering many training examples� are created �rst� followed by more speci�c rules� covering a few cases only� Generation of
new rules is stopped when their application on the test dataset does not increase the number of correctly classi�ed cases�
Our constructive algorithm applied to the Iris classi�cation problem generates two rules with three antecedents giving ���	

accuracy� A single rule for the mushroom problem leads to �����
 accuracy while three additional rules allow for perfect
classi�cation� The rules found for the three monk problems classify all the examples correctly�

I� Introduction

Extraction of logical rules from the data is an important problem that has so far eluded satisfactory
solution �for a recent review see ����� There are many reasons why logical rules should be preferred over
other methods of classi�cation	 provided that the complexity of the set of rules will not be too large
and their accuracy will be su
ciently high� In some medical applications simple rules proved to be more
accurate and were able to generalize better than many machine and neural learning algorithms ���� Results
presented in this paper give further support to the superiority of logical rules over other classi�cation
methods�
Adaptive systems MW 	 such as the multi�layered perceptrons �MLPs�	 are useful classi�ers that adjust

internal parameters W performing vector mappings from the input to the output space Y �p� MW �X�p���
Although they may achieve high accuracy of classi�cation the knowledge acquired by such neural systems
is represented in a set of numerical parameters and architectures of networks in an incomprehensible way�
Many methods to analyze trained neural networks	 extract logical rules and select classi�cation features
have been devised in the past� Most important rule extraction methods have been reviewed and compared
experimentally quite recently ���	 therefore we will not discuss them here� These methods focus on analysis
of parameters �weights� of trained networks	 trying to achieve high �delity of performance	 i�e� obtaining
identical classi�cation results by extracted logical rules in comparison to the original networks�
Non�standard form of rules	 such as M �of�N �M out of N antecedents should be true� or decision trees

���	 are sometimes useful but in this paper we will consider only standard rules based on crisp logic� Our
approach is quite straightforward� to extract rules from a trained neural network one should transform
it smoothly into something resembling a logical network� We will discuss two approaches here� First	
in which logical rules are extracted from MLP networks by gradually imposing constraints on the cost
function	 changing MLPs into logical networks� In the second approach one builds a logical network
performing desired classi�cations� The �rst approach starts from larger network and simpli�es it	 while
the second approach starts from a single neuron and constructs the network using the training data� These
algorithms are presented in the next section� Performance of the constructive algorithm is illustrated on
the three benchmark problems in the third section� The paper is �nished with a short summary�

II� The algorithm

Logical rules require symbolic inputs �linguistic variables�� The problem of optimal selection of input
features is very important and may be solved in an adaptive way by analysis of the nodes developed
by the FSM or other density networks ���� Crisp decision regions are obtained in an adaptive way by
using as the neuron processing function a pure product form of sigmoidal functions

∏
i ��xi � bi��� �

��xi � b�i��	 product of di�erences
∏

i���xi � bi� � ��xi � b�i�� or a �ltered combination of di�erences
� �

∑
i���xi � bi�� ��xi � b�i��� B�	 slowly increasing the gain of the sigmoidal functions ��x� during

learning� In this process fuzzy rules are transformed into crisp logical rules	 i�e� complex decision regions

�

are transformed into simpler	 hypercuboidal decision regions ���	 ���� We will not discuss this problem
here� Logical �linguistic� input variables sk for continuous input data components xi may be obtained by
dividing the data in distinct �for crisp logic� sets� IF �xi � Xi�j� THEN �sk T�� For example	 sk s

may designate the fact that the feature sk is small	 and sk �s that it is not small� Each quantized
feature s will have two or more values represented by a vector Vs� ������������� for the �rst value	
Vs� ������������� for the second value etc�
Interpretation of the activation of the MLP network nodes is not easy ���� To facilitate such an in�

terpretation a smooth transition from MLP to a logical�type of network performing similar functions is
advocated� This is achieved by� a� increasing the slope of sigmoidal functions to obtain crisp decision
regions� b� simplifying the network structure by inducing the weight decay through a penalty term� c�
enforcing the integer weight values � and ��	 interpreted as � irrelevant input	 �� positive and ��
 negative evidence� These objectives are achieved by modifying the error function�

E�W �
�

�

∑
p

∑
k

(
Y
�p�
k �MW

(
X�p�

)
k

)�
�
��

�

∑
i�j

W �
ij �

��

�

∑
i�j

W �
ij�Wij � ����Wij � ��� ���

Two additional terms are added to the standard mean square error� The �rst term	 scaled by ��
hyperparameter	 encourages weight decay	 leading to skeletonization of the network and elimination of
irrelevant features� The second term	 scaled by ��	 forces the remaining weights to approach ��	 facilitating
easy logical interpretation of the network function� In the backpropagation training algorithm these new
terms lead to the additional change of weights� ��Wij � ��Wij�W �

ij � ����W �
ij � ��� This approach may

also be justi�ed from the Bayesian point of view ���� The cost function speci�es our prior knowledge
about the probability distribution P �W jM � of the weights in our modelM � Since we model a network for
classi�cation tasks and expect crisp logical decision the prior probability of the weight values is�

P �W jM � Z�����e��E�W jM� �

⎛
⎝∏

ij

e���W
�

ij

⎞
⎠

⎛
⎝∏

ij

e���W
�

ij �Wij�����Wij���
�

⎞
⎠ ���

where the parameters � play similar role for probabilities as the parameters � for the cost function�
Prior knowledge about the problem may also be inserted directly into the network structure	 de�ning
initial conditions modi�ed further in view of the incoming data� Since the �nal network structure becomes
quite simple insertion of partially correct rules to be re�ned by the learning process is quite straightforward�
Although the constraints ��� do not change the MLP exactly into a logical network they are su
cient

to facilitate logical interpretation of the �nal network function� MLPs are trained with these constraints
and the slopes of sigmoidal functions are gradually increased to obtain sharp decision boundaries� The
weights and thresholds of the resulting networks are analyzed and logical rules written down� Rules Rk

implemented by trained networks are obtained in the form of logical conditions by considering contributions
of inputs for each linguistic variable s	 represented by a vector Vs� Contribution of variable s to the
activation is equal to the dot product Vs �Ws of the subset Ws of the weight vector corresponding to Vs�
A combination of linguistic variables activating the hidden neuron above the threshold is a logical rule in
the form� R �s� � �s� � ���� sk��
In the constructive version of our approach training proceeds separately for each output class� One

hidden neuron per class is created and training proceeds until the total cost function reaches minimum�
The weights and the threshold obtained are then analyzed and the �rst group of logical rules is found	
covering the most common input�output relations� The input data that are correctly handled by the �rst
group of neurons will not contribute to the error function	 therefore the weights of these neurons are
kept frozen during further training� This is equivalent to training one neuron at a time on the remaining
data� Each time after minimum of the total cost function is achieved the weight vectors are analyzed
and corresponding rules found� This procedure is repeated until all data are correctly classi�ed	 weights
analyzed and a set of rules R� � R���� � Rn is found	 identifying the �rst class� The output neuron for
a given class is connected to the hidden neurons created for that class � in simple cases only one neuron
may be su
cient to learn all instances	 becoming an output neuron rather than a hidden neuron� Output
neurons perform summation of the incoming signals� The same procedure is repeated for the remaining
classes�

�

Each time only one neuron per class is trained	 therefore the training is very fast� Since the �rst neuron
for a given class is trained on all data for that class the rules it learns are most general	 covering largest
number of instances� Therefore the rules obtained by this algorithm are ordered	 starting with rules that
are used most often and ending with rules that handle only a few cases� The �nal solution may be presented
as a set of rules or as a network of nodes performing logical functions�

III� Three examples

A� Iris data

In the �rst example the classical Iris dataset was used �all datasets were taken from the UCI machine
learning repository ����� The data has ��� vectors evenly distributed in three classes	 called iris�setosa	
iris�versicolor and iris�virginica� Each vector has four features� sepal length x� and width x�	 and petal
length x� and width x� �all in cm�� Analysis of the histograms of the individual features for each class
provided the linguistic variables� For example	 Iris�virginica class is more frequent for the value of x� above
��� and Iris�versicolor are more frequent below this value� Since the number of vectors per class is rather
small discretization based on smoothed histograms was made �Fig� ��� This discretization leads to the
following table for linguistic variables�

TABLE I

Linguistic variables obtained by analysis of histograms�

s m l

x� ��������� �����	�
� �	�
�����

x� �������� �������� ��������

x� �
������ ��������� ������	���

x� ���
���	� ���	�
��� �
������

After such discretization two iris�versicolor vectors become identical to some iris�virginica vectors and
therefore cannot be classi�ed correctly� These vectors were removed from the training sequence� Instead
of four continuous inputs a network with �� binary inputs equal to �� �features present or absent� is
constructed� For example	 the medium value of a single feature is coded by ���������� vector� For the
Iris dataset a single neuron per one class was su
cient to train the network	 therefore the �nal network
structure �Fig� �� has �� input nodes and � output nodes �hidden nodes are only needed when more than
one neuron is necessary to cover all rules for a given class�� The constraint hyperparameters were increased
from � ����� at the beginning of the training to � ����� ��� near the end	 with stronger enforcement
of weight decay than integer weights� On average the network needed about ���� epochs for convergence�
The �nal weights are taken to be exactly �� or � while the �nal value of the slopes of sigmoids reaches
���� The following weights and thresholds were obtained �only the signs of the weights are written��

Iris�setosa� ������� ������ �� �� �� �� �� �� � �
Iris�versicolor� ������� ������ ������ ������ � �
Iris�virginica� ������� ������ ������ ������ � �

Interpretation of these weights and the resulting network function �Fig �� is very simple� Only two
features	 x� and x� are relevant and a single rule per class is found�

IF �x� s � x� s� THEN iris�setosa

IF �x� m � x� m� THEN iris�versicolor ���

IF �x� l� � �x� l� THEN iris�virginica

These rules allow for correct classi�cation of ��� vectors	 achieving ����� of accuracy� Replacing the
iris�versicolor rule with the condition ELSE	 and noting that for the iris�setosa rule one may remove one
antecedent without changing classi�cation results one gets just two rules with three antecedents�
IF �x� s� iris�setosa	 IF �x� l � x� l� iris�virginica	 ELSE iris�versicolor�

�

4 5 6 7 8
0

5

10

15

20

2 3 4 5
0

5

10

15

20

0 2 4 6 8
0

5

10

15

20

25

30

0 1 2 3
0

10

20

30

40

Fig� �� Histograms of the four Iris features� The x�� x� features lower pictures� allow for better discrimination than the
�rst two features�

Decreasing constraint parameters allows to replace one rule by four rules	 with a total of three attributes
and �� antecedents	 necessary to classify correctly a single additional vector	 a clear indication that over�
�tting occurs� Increasing constraint hyperparameters further selects only one attribute	 petal length x�	
and leaves two rules giving only ����� accuracy �� errors�� iris�setosa if x� � ���	 iris�virginica if x� 	 ���	
else iris�versicolor� This is the simplest description of the Iris dataset that we know of�

m
s

l

m
s

l

m
s

l

m
s

l

X

X

X

X

1

2

3

4

l1

l2

l3

input
linguistic
variables

hidden
layer output

Setosa
50 cases,
all correct

Versicolor,
47 cases,
all correct

Virginica
53 cases
3 wrong

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

x setosa o versicolor + virginica

Fig� �� Final structure of the network for the Iris problem and the decision borders in the space of the two relevant features
x� and x��

B� Classi�cation of mushrooms

In the mushroom problem ���	 ��� the database consists of ���� vectors	 each with �� discrete attributes	
with ����� of the cases representing edible and the rest nonedible �mostly poisonous� mushrooms� A
single neuron is capable of learning all the training samples �the problem is linearly separable�	 but the
resulting network has many nonzero weights and is di
cult to analyze from the logical point of view� One
could use the subset algorithm for weight analysis ���	 but the search tree grows exponentially with the
number of �nonredundant� attributes describing objects	 and for �� attributes with up to �� values each
this is simply not feasible� Using constructive algorithm with the cost function Eq� � our algorithm has

�

discovered systematically the following disjunctive rules for poisonous mushrooms�

R�� odor��almond�anise�none�	 ��� poisonous cases missed	 accuracy ������
R�� spore�print�colorgreen	 �� cases missed	 accuracy ������
R�� gill�sizenarrow�stalk�surface�below�ringscaly� odornone� �stalk�surface�above�ringsilky �

populationclustered�	 � cases missed	 accuracy ������
R�� populationclustered�habitatleaves�cap�colorwhite� gill�spacing�close�	 all poisonous cases were
correctly classi�ed�
The �rst two rules are realized by one neuron� For large value of the weight�decay parameter only

one rule with odor attribute is obtained	 while for smaller hyperparameter values a second attribute
�spore�print�color� is left� Adding a second neuron and training it on the remaining cases generates
two additional rules	 R� handling �� cases and R� handling only � cases� The following single rule has
been obtained for edible mushrooms	 giving �� errors	 or ������ accuracy on the whole dataset� edi�
ble IF odor�almond�anise�none�� spore�print�color�green This rule uses only two features and four
antecedents� We have also tried to derive rules using only ��� of cases for training	 achieving identical
results� This is the simplest systematic logical description of the mushroom dataset that we know of	
although some of these rules have probably been also found by RULEX and TREX algorithms ����
Analysis of the graph representing possible contributions of the relevant attributes to the activation of

neurons was done by a program written in C��� This program is useful for complicated weight analysis
when the number of relevant attributes becomes large and paper�and�pencil analysis becomes too tedious�
The accuracy of all the rules was checked automatically by a program written in Prolog� The mushroom
problem illustrates also the capability of our algorithm to extract the dominant rules �rst and achieve ����
accuracy� This is done by decreasing the constraint hyperparameters	 leading to more speci�c additional
rules� Of course there is no need to obtain perfect classi�cation on the training set� once the accuracy of
classi�cation on the test set starts to decrease the new rules handle only noise in the data�

C� The three monk problems

In each of the three monk problems one should determine whether an object described by six features
is a monk or not ���� The data for the Monk � problem is corrupted by adding �� noise� �Being a monk�
is de�ned by the following formulae in the three problems�
Monk �� head shape body shape � jacket color red

Monk �� exactly two of the six features have their �rst values
Monk �� � �body shape octagon � jacket color blue� � �holding sward � jacket color green�
Monk � problem� Two neurons were needed to learn all the training vectors identifying monks and

select correct features� Unfortunately these neurons learned also to classify wrongly � other vectors as
monks� The patterns which are not recognized properly should be treated as exceptions to the rules
extracted from the network� To rectify this we have to extend the hidden layer adding neurons with a
negative contribution to the output node� After the whole process is �nished we have two separate sets of
rules	 one comprising information on positive examples	 and the other describing exceptions� We will use
the word �rules� to mean the rules of the �rst set	 and the word �exceptions� for the members of the second
set� To classify a pattern correctly	 the �rst condition one ought to check is whether it is an exception�
The basic classi�cation rules are applied to determine if the pattern belongs to a given class only if it does
not belong to exceptions� For the Monks � problem one additional neuron handling exceptions has been
generated	 giving a total of � rules and one exception and classifying the data without any errors�
Monk � problem� The de�nition of this problem is very simple	 but �� logical rules are needed to

describe it fully� Training in this case has generated �� neurons	 � of them handling rules and � handling
exceptions to these rules� The four neurons added to the network in the �nal training stage are responsible
for correct classi�cation of just �ve examples� This shows how the neurons specialize in recognizing patterns
which do not resemble other patterns� We extracted �� rules and � exceptions from the resulting network�
The number of atomic formulae which compose them is ����
Monk � problem� In this problem two neurons handling rules and two neurons handling exceptions

were generated� Although the training data for this problem has been corrupted it is still possible to obtain
���� accuracy ���� Two neurons gave three rules	 and the other two generated four exceptions� The whole
logical system for this case contains �� atomic formulae�
Some statistics concerning all the stages of the algorithm for the problems presented in this section

	

is shown in Table II� The �rst column speci�es problem and gives the �nal numbers of generated rules
and exceptions	 the second enumerates particular stages of network expansion	 the third gives the number
of neurons trained simultaneously and the fourth informs whether the aim was searching for rules or
exceptions �rules are printed in bold and exceptions in italic�� The �fth column contains the numbers of
instances classi�ed properly thanks to rules generated at a given stage� The last column seems to con�rm
that the method learns the most common rules �rst�

TABLE II

Statistics for the three Monk�s problems�

Problem Stage No� Neurons Rules�Exc� Examples

monks � � � rules ��

� rules � � exceptions �

� exceptions � � exceptions �

monks � � � rules ��

�� rules � � exceptions �

� exceptions � � rules ��

� � exceptions �

� � rules ��

� � exceptions �

	 � rules �

monks � � � rules �	

� rules � � exceptions �

� exceptions � � rules �

IV� Summary

We have presented here a new approach to logical rule extraction based on the standard backpropagation
technique with modi�ed error function� Crisp logical rules are found automatically by analyzing networks
trained with constraints that change MLPs into networks processing logical functions� Two versions of
this approach have been presented	 one aimed at simpli�cation of typical MLPs and the other aimed at
incremental construction of networks performing logical functions� The method of successive regulariza�
tions introduced by Ishikawa ���� has several features in common with our �rst approach and is capable
of producing similar results� In this paper only the second	 constructive method was disscussed in details
since it requires less experimentation with various network structures� The constructive method has found
the simplest logical description for the Iris and the mushroom test problems and shows a great promise as
a general method for automatic rule extraction�

Acknowledgments

Support by the Polish Committee for Scienti�c Research	 grant �T��F �����	 is gratefully acknowledged�
W�D� is also grateful to the Heiwa NakajimaFoundation	 Japan	 for support	 and to prof� Masumi Ishikawa
for his hospitality at the Kyushu Institute of Technology�

References

��� R� Andrews� J� Diederich� A�B� Tickle� �A Survey and Critique of Techniques for ExtractingRules fromTrained Arti�cial
Neural Networks�� Knowledge�Based Systems � ����� �	�����

��� S�M� Weiss� I� Kapouleas� �An empirical comparison of pattern recognition� neural nets and machine learning classi��
cation methods�� in� J�W� Shavlik and T�G� Dietterich� Readings in Machine Learning� Morgan Kau�man Publ� CA
����

��� M�W� Craven� J� W� Shavlik� Extracting Tree�Structured Representations of Trained Networks� Adv� in Neural Info�
Processing � ����� �����

��� W� Duch� G�H�F� Diercksen� �Feature Space Mapping as a universal adaptive system�� Computer Physics Communica�
tions	 �	 ����� �����	�

��� W� Duch and N� Jankowski� �Bi�radial transfer functions�� in Proc� second conference on neural networks and their
applications� Orle Gniazdo� Poland� vol� I� pp� ������	� �����

��� W� Duch� R� Adamczak� K� Gr�abczewski� Constrained backpropagation for feature selection and extraction of logical
rules� Proc� of
Colloquiua in AI�� �L�od�z� Poland ����� p� xxx

�	� J�M� �Zurada� �Introduction to Arti�cial Neural Systems�� West Publishing Company� St Paul� �����
��� D�J� MacKay� �A practical Bayesian framework for backpropagation networks�� Neural Computations � ����� �����	�
��� C�J� Mertz� P�M� Murphy� UCI repository of machine learning databases� http���www�ics�uci�edu�pub�machine�learning�

databases�
���� M� Ishikawa� �Rule extraction by succesive regularization�� in� Proc� of the ���� IEEE ICNN� Washington� June �����

pp� ����������

