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The Feature Space Mapping (FSM) network is based on multidimensional sepa-
rable localized or delocalized functions centered around data clusters. The net-
work learns by memorizing the noisy training data in the input (feature) space
and classifies new data by searching for the nearby memory traces. Preliminary
results for several classification problems are given.

1. INTRODUCTION

The development of the Feature Space Mapping (FSM) system has been motivated by
our conviction that neurodynamical models of the brain are very difficult, it is not clear how
to model larger groups of neurons in a realistic way and simple neural networks are not well
suited for cognitive modeling. Mind arises from a complex dynamics of the modular and hier-
archical brain structures. Approximations to this dynamics lead to a set of concepts [1] help-
ful in description of the mind, such as the concepts of mind events taking place in feature
spaces, called at the highest level of hierarchy “conceptual spaces” or “mind spaces”.
Among many other aspects mind models should be capable of recognition, classification
and reasoning. Cognitive modeling may not always be faithful to neurobiology, but tries to
preserve essential functions simplifying the underlying structures and dynamics.
Neurofuzzy networks are natural implementations of such models.

In this paper we present one particular realization of general cognitive modeling ideas [1]
and apply the resulting neurofuzzy network to classification problems. We will assume that
the incoming signals I(t) are subject to preprocessing (accomplished in the brain by various
topographic maps and population coding mechanisms) that defines features of internal rep-
resentations Xi(t) suitable for classification. A coordinate system based on these features
{Xi} defines a multidimensional feature space. Since these features may be of different types
(for example, coming from different sensory modalities) partial classifications are performed
in local feature spaces while the final classification is performed in the space that is higher in
the hierarchy, called here “the mind space”. The system learns by creating and modifying
mind (or memory) objects in this space. They are described using mind (or memory) function
M(X) as the fuzzy areas in the mind space where the function has non-zero values. Local
maxima of the mind function are prototypical representations of the (fuzzy) training data.
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The questions to be solved are: how to select optimal functions representing the data, how
to introduce fuzziness of the data and how to adapt the resulting network.

2. NETWORK STRUCTURE AND ADAPTATION RULES

Feature detectors react to specific localized features of the incoming data, therefore ob-
jects in the mind space are modeled via localized functions rather then unbounded, sigmoi-
dal functions that are most frequently used in neural models. Gaussians are the most
common choice of localized functions, leading to the RBF type of networks [3] based on the
regularization theory. Unbounded functions are also sometimes useful. From the point of
view of efficiency and flexibility of the system good choice is provided by the bi-radial func-
tions [2]:

      (1)M(X; D, ∆∆) = Σ
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where σ is a typical sigmoidal function or its approximation, Dki −∆ki  position of its left
boundary and Dki+∆ki  its right boundary. The steepness of these boundaries may be deter-
mined by adaptive parameters Tki used in computation of sigmoids while the degree of local-
ization along dimension i by the parameter λi. Factorable products of sigmoidal functions (2)
are computed by single nodes of the FSM system. Factorability of the functions realized by
the network nodes is important for efficiency. Linear combinations of these functions are ca-
pable of describing arbitrary mind objects, localized (λi=1) as well as delocalized (λi≠1). For
maximum flexibility one could consider additional rotation and rescaling parameters R but
the number of internal adaptive parameters would then be rather large. Products of sigmoidal
pairs can approximate gaussian functions used in the Radial Basis Function (RBF) networks
[3] but our tests indicate that biradial functions are better choice in some difficult classifica-
tion problems [4]. 

LEARNING or creation and modification of objects in the local feature spaces and the fi-
nal mind space proceeds using a constructive algorithm similar to the Resource Allocating
Network (RAN) [5] introduced for function interpolation with the RBF type of networks [3].
A training vector X (including class label) that leads to the “unknown data” response and is
sufficiently far from the limits of the nearest object of a proper class extending between Dk

and Dk+∆∆ k requires a new node with DN+1= = X −∆−∆ min/2, where ∆∆ min is the initial small spread
of the function, related to the resolution of the data. If the data is not sufficiently far from
the nearest mind object of the same class as X the object is modified by moving its bounda-
ries in the direction of X. If the data X is misclassified the boundaries of the object it was as-
signed to are slightly shifted away from X, the nearest object of the proper class is found
and shifted towards X. Changes are small to avoid disastrous consequences of errors in the
training data. Initially the admissible errors and minimal distances are set to a rather large
values to locate the main data clusters and in the next step higher resolution representation
is created. 

Although mathematical treatment based on the complexity optimized data clustering [6],
such as the entropy-constrained clustering, may lead to a more accurate representation of



the data in the feature spaces it is also computationally more demanding. We plan to explore
such methods at a later stage of FSM development, together with network pruning tech-
niques based on the spontaneous memory decay. Another direction that will be explored is
the use of maximum likelihood estimates instead of the simple quadratic error minimization.
The conditional probability p(Y/X) of obtaining the desired answer Y for input X is 

(3)p(Y/X) = Σ
i

c i p(Y X, si )

where ci are confidence factors estimated by the network for each node and p(Y/X,si) are
conditional probabilities of obtaining the desired answer Y for input X when the node si is
selected. In many cases the associative Gaussian mixture model for these probabilities may
be assumed

(4)p(Y X, si ) = 1
(2π)n/2

e− 1
2 Y−si (X) 2

and maximization of conditional likelihood performed in respect to the adaptive parame-
ters of the nodes s and the weights W. For binary classification Bernoulli mixture model in-
stead of Gaussian mixture may is better [7].

RECOGNITION. The weighted sum (1) computing the value of the M function is realized
by the output node (Fig. 1). In contrast to most classification systems with separate outputs
for each class FSM network has only three outputs: the value of the M function, the gradi-
ent of the M function and the alphanumerical output for the results of classification. Inputs
X include not only values of all input features but also class index since class labels are rep-
resented in the same way as other features, as an additional dimension in the feature space.
The confidence factors for each of the internal nodes are computed as:

(5)pk =
[Wk s(X;Dk; ∆∆ k)]2

Σ j [Wj s(X;D j; ∆∆ j)]
2
; Σ
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Fig. 1.  Single Feature Space Mapping network module. 



i.e. they are equal to the value of renormalized contribution of the node. Another choice is
given by the softmax transformation:

(6)pk =
exp [Wk s(X;Dk; ∆∆ k)]

Σ j exp [Wj s(X; D j; ∆∆ j)]
; Σ

k
pk = 1

After the recognition process is completed each node with the confidence factor larger than
a fixed threshold writes the value of its confidence factor together with the message identi-
fying the node (including the class this node is handling). Gradient method is used to find
local maxima of the M function nearest to the input vector X (in contrast to the backpropa-
gation techniques we are interested only in local maxima). The input vector is changed along
the gradient in a few large steps leading to Xmax corresponding to a local maximum of the M
function. Calculation of gradients is done analytically at the same cost as calculation of the
M function. Confidence factors should be adjusted for the value of the M(X). 

For queries X with large value of M(X) the system is reliable and the vector Xmax at the lo-
cal maximum is not too different from the input vector X. For small values of M(X) local maxi-
mum may be far from the input vector and the answer may not be reliable. If the gradient is
very small but the value of the M function is non-zero parameters ∆ ∆ controlling the fuzzi-
ness of the representation of data are temporarily increased (with suitable shift of the D cen-
ters). This step is analogous to overgeneralization of the knowledge used sometimes in the
initial steps of the reasoning or classification. If the value of the M function is close to zero
the system responds with “unknown data” answer but may be forced to make a guess using
the overgeneralization mechanism. This mechanism does not work if the mind objects lie in
the space orthogonal to the input data, for example, if the system is trained with X1 =0 only,
all factors s1(X1 ;) may be removed from the node processing functions or the system will
make s1(X1 ;) factors sharply concentrated around zero. Instead of increasing fuzziness it is
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Fig. 2.  Two recognition and one reasoning module of the FSM system. Recognition
modules specialize in classification of different type of data and contribute to the final clas-
sification performed by the reasoning module. 



safer to find the nearest Dk −∆∆ ki and Dk+∆∆ k boundaries to determine objects that are nearest
neighbors of X.

REASONING. So far the system described performed only classification tasks and the
mind space was identical to a simple feature space. For complex categorization or classifica-
tion tasks this may be insufficient and the ability to reason and draw conclusions from vari-
ous sources of information is desired. For example, for classification of chemical molecules
chemists use several types of spectroscopic data as well as information about the color of
chemical substances, molecular weight or solvability. In FSM approach each of these differ-
ent sources of information is analyzed by a separate module, with explicit representation of
the training data in local feature spaces and final classification performed using the reason-
ing module. Each of these modules performs preliminary classification giving one or more re-
sults with some confidence levels. The reasoning module integrates all these results in the
mind space and makes final classification. It has almost the same structure as other modules,
except for taking into account the confidence factors in reasoning based on fuzzy evidential
logic. It may be treated as a fuzzy logic version of the blackboard architecture used in artifi-
cial intelligence expert systems such as CRYSALIS system for crystallographical data analy-
sis [8]. Network implementation of a typical expert system production rules: 

if (FACT 1. and. FACT2. or. FACT3...) than (FACT4) (7)
or more general fuzzy rules 

IF 
x1 ∈ X1

(1) ∧ .. xN ∈ XN
(1)

 ∨ 
x1 ∈ X1

(2) ∧ .. xN ∈ XN
(2) 

 ..THEN (y1 ∈ Y1 ∧ .. ∧ yM ∈ YM)

is quite natural in the FSM system [2]. Each of the terms in parenthesis is realized by one of
the nodes and confidence factors are treated as additional dimensions in the mind space, i.e.
they appear as variables in each group. Search is done by gradient techniques or one-
dimensional searches focusing on single variable, with the depth of search equal to the
number of unknown features [2]. Finally it is useful to visualize relations among the multidi-
mensional mind objects. This is done using Kohonen feature maps and multidimensional
scaling techniques [9].

3. RESULTS. 

The FSM system is still under development so the results reported below should be con-
sidered as preliminary. All classifications reported here were based on a single module of
FSM (simple feature spaces). The two-spiral benchmark (two classes, 196 training points) is
quickly and accurately solved with less than 100 biradial nodes. Two standard data sets for
classification were obtained from ftp://ftp.ics.uci.edu/pub/machine-learning-databases. The
first is the well known Iris data set. Since during learning vectors were presented randomly
all trials were repeated ten times and the average accuracy of classification is reported.

The Iris data file is composed of 150 vectors distributed in three classes called iris-setosa,
iris-versicolor and iris-virginica. Each vector has 4 features: sepal length and width and petal
length and width (all in cm). This data set was divided into training and test vectors. An av-
erage percent of correct classifications was 90.5%.  The ionosphere data has 200 training
and 150 test vectors, each vector with 34 attributes. Vectors are divided in two classes: good
and bad. We have obtained 92.5% accuracy during recognition. This result is slightly better



than obtained by the nearest neighbor method and by the non-linear perceptron, similar too
RBF but worse than 96% accuracy obtained by backpropagation network, indicating that it
is worthwhile to try also the delocalized biradial functions with λi≠1.

The data for classification of galaxies were obtained from the authors [10]. This is a large
data set (more than 5000 galaxies). The network was trained on 1700 ESO-LV galaxies, and
tested on the remaining 3517 galaxies. Each vector had 32 features (for details see [10]).  The
training set was divided in two classes: Early_type and Late_type galaxies. Backpropagation
algorithm gave for this data file 90% agreement with human experts classifying galaxies [10].
We have obtained similar accuracy at the 88% level (with much faster training times), again
indicating that it is worthwhile to use delocalized functions with  λi≠1. 
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