
ABSTRACT  
Model of categorization plausible from the neuro-

biological point of view is outlined. A link between neu-
ral systems and the theory of psychological spaces is pre-
sented, leading to a model of mind in which physics of 
mental events is determined by neural dynamics. This 
model is used to discuss psychological category learning 
experiments. 

 
 

1 INTRODUCTION. 

Categorization, or creation of mental categories, is 
one of the most important cognitive processes. It is also 
one of the most difficult processes to understand if one 
tries to see it from the point of view of both psychology 
and neuroscience. Current research on category learning 
and concept formation frequently ignores constraints re-
sulting from the neural plausibility of postulated mecha-
nisms. Connectionist models are at best loosely inspired 
by the idea that neural processes are at the basis of cogni-
tion. An explanation given by a formal theory, even if it 
fits psychological data, may allow for predictions, but it 
does not give us more understanding of human cognition 
than a few-parameter fits allowing for prediction of sun 
eclipses gave the ancient astronomers. Correlation does 
not imply causation.  

Several models of categorization of perceptual 
tasks have been compared by Cohen and Massaro [1], in-
cluding Fuzzy Logical Model of Perception (FLMP), 
Gaussian Multidimensional Scaling Model (GMM), The-
ory of Signal Detection (TSD), Feedforward Connection-
ist Model (FCM) and Interactive Activation and Competi-
tion Model (IAC). All these models predict probabilities 
of responses in a prototypical two and four-response 
situations in an almost equivalent way. The main purpose 
of this contribution is to outline a path from neuroscience 
to psychology and base the ad hoc categorization models 
on more solid foundations. 

 

2 BRAIN AND INFORMATION PROCESSING. 

There is growing theoretical and experimental evi-
dence [2] that the original idea of local reverberations in 
groups of cortical neurons coding the internal representa-
tions of categories, put forth by psychologist Donald 
Hebb already in 1949, is essentially correct. Local circuits 
seem to be involved in perception and in memory proc-
esses. Analysis of integration of information from the 
visual receptive fields in terms of modules composed of 
dense local cortical circuitry [3] allows for explanation of 
a broad range of experimental data on orientation, direc-
tion selectivity and supersaturation. It would be most sur-
prising if the brain mechanisms operating at the percep-
tual level were not used at higher levels of information 
processing. Neocortex has highly modular organization. 
Neurons are arranged in six layers and grouped in macro-
columns containing in turn microcolumns (110 neuron in 
association cortex). Successful models of memory, such 
as the tracelink model of Murre [4], make good use of 
this modular structure. Probably each episodic memory is 
coded in a number of memory traces that are simultane-
ously activated and their activity dominates the global 
dynamics of the brain, reinstating similar neural state as 
during the actual episode. 

A fruitful hypothesis relating psychological con-
cepts to brain activity is based on the following reason-
ing. There is good experimental evidence, coming from 
the recordings of the single-neuron activity in the infero-
temporal cortex of monkeys performing delayed match-
to-sample tasks (cf. [2]), showing that the activity of a 
neural cell assembly (NCA - presumably a microcolumn 
within a macrocolumn) has attractor dynamics. Several 
stable patterns of local reverberations may form, each 
coding a specific perceptual or cognitive representation. 
Via axon collaterals of pyramidal cells extending at dis-
tances of several millimeters, each NCAs excites other 
NCAs coding related representations. From the mathe-
matical point of view the structure of local activations is 
determined by attractors in the dynamics of neural cell as-
semblies. Such networks should be properly described as 
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a collection of mode-locking spiking neurons. Simple 
models of competitive networks with spiking neurons 
have been created to explain such psychological proc-
esses as attention (cf. [5]). Realistic simulations of the 
dynamics of microcolumns, giving results comparable 
with experiment, should soon be possible, although have 
not been done yet. Recently Amit and Brunel [6] have 
solved the problem of spontaneous activity and stability 
of the background dynamics of networks of spiking neu-
rons. Solution of this basic problem requires modular 
structure of the network, including inhibitory interneu-
rons within NCAs. Learning creates local attractors with-
out destabilizing the background dynamics. Predictions 
from such models are directly compared with neuro-
physiological experiments.  

To make a step towards psychology possible attrac-
tor states of neurodynamics should be identified, basins of 
attractors outlined and transition probabilities between 
different attractors found. In the olfactory system it was 
experimentally found [7] that the dynamics is chaotic and 
reaches attractor only when an external input is given as a 
cue. The same may be expected for the dynamics of 
NCAs. Specific external input provides a proper combi-
nation of features that activates a category coded by the 
NCA. From the neurodynamical point of view external 
input puts the system in a basin of one of the local attrac-
tors. Such neural networks map input vectors X (cues) 
into fuzzy prototypes. Although the exemplar theory of 
categorization is usually presented as an alternative to the 
prototype theory [8] neurodynamics lies at the basis of 
both theories. Since neural dynamics in biological net-
works is noisy (spontaneous background cortex activity 
and other sources) several similar exemplars become so 
fuzzy that a single prototype is formed. To see it clearly a 
complementary description via feature spaces is intro-
duced. 

       
3 ENCODING CATEGORIES IN FEATURE    
        SPACES. 

A classic category learning task experiment has 
been performed by Shepard et.al. in 1961 and replicated 
by Nosofsky et.al. [9]. Subject were tested on six types of 
classification problems for which results were determined 
by logical rules. For example, categories of Type II prob-
lems had the XOR structure (i.e. XOR combination of 
two features determines which category to select) that 
may be described by the following dynamical system: 
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This system has 5 attractors (0,0,0), (-1,-1,-1), 

(1,1,-1); (-1,1,1), (1,-1,1); the first attractor is of the sad-
dle point type and defines a separatrix for the basins of 
the other four. Such dynamical system may be realized by 
different neural networks. In this example, as well as in 
the remaining five types of classification problems [9], it 
is easy to follow the path from neural dynamics to the be-
havior of experimental subjects during classification task. 
Starting from examples of patterns serving as point attrac-
tors it is always possible to construct a formal dynamics 
and realize it in the form of a set of frequency locking 
nonlinear oscillators [10]. 

 
 
 
 
 
 
 
 
 
 
 
 

 

It is convenient to describe such classification 
problems in a feature space. In case of Shepard experi-
ments it contains axis for shape, color and size. Feature 
spaces, called also psychological spaces, are quite popular 
among psychologists. Our goal is to show how neural dy-
namics is connected to processes in the feature spaces. 
Neural dynamics models physical processes at the level of 
brain events while feature spaces model mental processes 
providing precise language to speak about the mind 
events. Psychological models of categorization should be 
justified as approximations to real neural dynamics. At-
tractors activated by specific inputs Xinp divide the input 
space into areas corresponding to basins of different at-
tractors. For example, a cortical microcolumn may learn 
to solve the A.XOR.B problem establishing attractors 

Fig. 1. Trajectories showing the basins of five attractors 
for the Type II classification problem of Shepard et.al.  



presented in Fig. 1. In the input space (feature space) the 
four vertices of the cube will represent the shortest tran-
sients of the phase space trajectories and the basins of at-
tractors will belong to the neighborhood of these vertices. 
Introducing the density of feature space objects M(S) 
proportional to the length of transients of the neural dy-
namics (the time it takes to reach an attractor from a given 
initial conditions S0) neural dynamics defined by activity 
of a large number of neurons may be approximated by 
simple gradient dynamics in the feature space [11].  

Categorization based on prototypes is characterized 
by large basins of attractors, corresponding to large and 
fuzzy objects in feature spaces. A prototype is not simply 
a point with average features for a given set of examples, 
but a complex fuzzy object in the feature space. If catego-
rization is based on exemplars basins of attractors corre-
sponding to these exemplars should be small and the fea-
ture space objects well localized. Noise in neural system 
will destroy weak local attractors, changing a set of local-
ized objects representing exemplars to a fuzzy prototype 
with some internal structure. A reasonable approximation 
(called further the FSM approximation) to the neural dy-
namics represented in the feature space is: 
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where β is a step size constant, memory function 

M(S;t) represents time-dependent (due to learning) object 
density in the feature space and η is a noise term repre-
senting spontaneous spiking activity. The denominator 
contains a function g(x) equal to zero for small x and tak-
ing large values around local maxima of the memory 
function, slowing down the state vector dynamics near 
memorized categories. In effect the time it takes to go 
from object A to B may be different than the time it takes 
to go from B to A. If the cue Xinp is sufficiently similar to 
a memorized object (corresponding to an attractor in neu-
ral dynamics) the state vector following the gradient of 
M(S;t) will stay within this object. If not, the noise term 
will bring the state vector S(t) close to one of the memo-
rized objects and the probability of different responses 
will depend on the local topography of the feature space. 
This dynamics should model probability and the timing of 
different answers when specific cues Xinp are given. It 
would be ideal to fix the form of the g(x) function com-
paring the gradient dynamics to the neurodynamics being 
modeled.    

People learn relative frequencies (base rates) of 
categories and use this knowledge for classification. This 
is known as the base rate effect. Frequently repeated 

stimuli create deep basins of attractors (large densities of 
feature space objects). The size of these basins depends 
on the inherent noise and variability of the stimuli. Such 
effects are relatively simple to model. The inverse base 
rate effect [12] shows that in some cases predictions con-
trary to the base rates are made. Names of two diseases, C 
(for Common) and R (for Rare), are presented to partici-
pants, the first linked to symptoms I and PC, and the sec-
ond I and PR. Thus PC and PR are perfect predictors of 
the disease C and R. Associations (I,PC) → C are pre-
sented 3 times more often than (I,PR) → R. After a pe-
riod of learning participants are asked to predict which 
disease corresponds to a novel combination of symptoms. 
For a single symptom I most (about 80%) predict C, in 
agreement with the base rates. For combination of symp-
toms PC+I+PR most (60%) choose C, again with agree-
ment with the base rates (cf. Fig.2). However, 60% par-
ticipants associate the combination PR+PC with the dis-
ease R, contrary to the base rate expectations.  

For many years this effect has eluded explanation 
until Kruschke and Erickson [13] have introduced a 
model integrating six psychological principles of human 
category learning: error-driven association learning, rapid 
shift of attention, base rate learning, short term memory 
effects, strategic guessing and representations based on 
exemplars and their fragments. While strategic guessing 
in novel situations (assigning novel stimuli to still-to-be-
learned categories) is certainly a higher order cognitive 
process all other principles may be absorbed in construc-
tion of representations of categories rather than in proc-
esses acting on these representations.  
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The answers are determined by the sizes of the ba-
sins of attractors corresponding to shapes of objects in the 
feature space. The memory function describing these ob-

Fig. 2. Feature space for symptoms I, PC, PR. Combina-
tion PC+PR leads in about 60% responses to prediction 
of R and in 40% to prediction of C disease. 



jects may be fitted to obtain observed probabilities of an-
swers, as is usually done in psychological modeling [1]. 
The C basin is larger, extends between I and PC+I verti-
ces, forcing the R basin to be flatter and be closer to the 
PR+PC vertex than the C basin is, leading to the inverse 
base rate effect.  

Processes acting on representations in feature 
spaces define physics of mental events, with forces re-
flecting the underlying neural dynamics. In the absence of 
cues the state vector S(t) moves randomly in the feature 
space. Base rate effects influence the size of the basins of 
attractors (size of the feature space objects). Specifying 
value of a feature that frequently appears in combination 
with other features gives momentum to the state vector in 
the direction parallel to the axis of this feature, initiating a 
search for a value of unspecified features (for application 
of such searches see [14]).  

 
4 SUMMARY 

In principle it should be possible to understand 
categorization and other cognitive processes at the level 
of dynamics of spiking neural networks, but in practice 
approximations simplifying description of this dynamics 
are necessary. The popular feedforward neural networks 
do not offer a good approximation to real neural dynam-
ics. Their success in modeling psychological data are only 
due to their ability to approximate arbitrary vector map-
pings. At best they may capture some correlations, but not 
proper causation. Psychological models of categorization 
have been developed in the past 40 years and are already 
quite sophisticated. To show that these models contain 
some truth one should try to justify them as approxima-
tions to neural dynamics. Therefore it is interesting to 
note that the FLMP, GMM and TSD categorization mod-
els [1] may be derived as static approximations to the dy-
namic feature space model described here.  

Linking neural dynamics with psychological mod-
els using feature spaces leads to a complementary de-
scription of brain processes and mental events. The laws 
governing these mental events result from approximations 
to neural dynamics. Modified feature space models 
should be useful in analysis of data from many psycho-
logical experiments. Learning how to link simplest neural 
dynamics with feature space representations is just one 
small step, but many more challenges remain. Hopefully 
this approach may offer not only good fits to the observa-
tions, but also interesting interpretation of mental events. 
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