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Abstract. Self-Organizing Feature-Mapping (SOFM) algorithm is frequently
used for visualization of high-dimensional (input) data in a lower-dimensional
(target) space. This algorithm is based on adaptation of parameters in local
neighborhoods and therefore does not lead to the best global visualization of
the input space data clusters. SOFM is compared here with alternative methods
of global visualization of multidimensional data, such as the multidimensional
scaling (MDS) and Sammon non-linear mapping, methods based on minimiza-
tion of error function measuring topographical distortions. SOFM is inferior as
a visualization method but facilitates faster classification. A combination of
global methods with SOFM should be useful for visualization and
classification.

1. Introduction

The Self-Organizing Feature-Mapping (SOFM) algorithm introduced in 1981 by Ko-
honen [1] is usually presented as a particular type of artificial neural network. The net-
work is first trained on the high-dimensional samples in such a way that the weight
vectors of the array of neurons in the output layer tend to approximate the probability
density function of the high-dimensional data. This iterative learning process is unsu-
pervised, or self-organizing, since there is no intervention of a teacher correcting the
errors or providing information about clusters in the data space. Kohonen's intentions
in developing SOFM were the following “The SOM has not been meant for statistical
pattern recognition; it is a clustering, visualization, and abstraction method. Anybody
wishing to implement decision and classification processes should use LVQ (Learning
Vector Quantization) instead of SOM.” Nevertheless the method is used very often as
a classification method (cf. [2]) because of its unique ability to display multidimen-
sional data in two or three-dimensional maps. Human experts can analyze data in at
most three dimensions, therefore evaluation of high-dimensional data is possible only
if its dimensionality is reduced. SOFM facilitates classification by visual inspection,
enabling estimation of the relation of new inputs to the data clusters already learned. 

Statistical method known as the multidimensional scaling (MDS) technique has foun-
dations in the work of Torgerson [3] and in the Coombs theory of data [4]. Computer
programs and applications of MDS have been developed, among others, by Kruskal at
the Bell Laboratories, by Lingoes, Roskam and Borg, and by Shepard [5].  MDS was
used primarily to obtain a lower-dimensional representation of psychological data.
These data are obtained by subjective evaluation of similarities or dissimilarities be-
tween different items (perceived nearness of objects, preferences, feature intensity or
affinity), characterizing a small part of human psychological spaces. MDS techniques
were developed to provide a two or three-dimensional image of the observed data,



reducing their complexity and allowing their analysis by a human expert. Unfortu-
nately MDS methods are almost unknown outside the field of mathematical psychol-
ogy. A very similar nonlinear mapping method for visualization and data analysis has
been developed by Sammon [6] and by one of us [7]. 

After a brief presentation of the SOFM algorithm the global visualization algorithms,
MDS, Sammon mapping and quadratic measures are presented. These algorithms are
compared with Kohonen's approach for mapping of points on the sphere and corners
of hypercubes to a two-dimensional target space. The deficiencies of SOFM in visuali-
zation tasks and global methods in classification tasks are apparent. Finally a reliable
visualization and classification method using a combination of MDS and SOFM ideas
is recommended.

2. Self-organizing feature maps

We will assume here a two-dimensional array of nodes, equivalent to the two-
dimensional target space for visualization. Unfortunately analytical results in two or
more dimensions are hard to obtain. SOFM seems to preserve the topography of the
input data, i.e. if some of the high-dimensional data vectors are grouped in clusters
then their representations in the map are also grouped in clusters and the relative dis-
tances between nearby clusters are to some degree preserved. The SOFM network
takes as input a set of labeled sample vectors and gives as output an array of network
nodes with the input vector labels attached to these nodes.

Let N be the dimension of the n sample vectors , where each�(�) ∈ ℜ�� � = ������

sample vector X(t) is identified by a label. The two-dimensional output layer contains
a rectangular mesh of  k = 1, ..., xdim × ydim nodes, each serving as a codebook vector
Wk of dimension N. The training of the weight (codebook) vectors of the map's nodes
is realized by the following algorithm [1]:

For a given number of iterations do:

1. Pick up randomly one sample vector X(t)

2. Find the nearest weight vector Wc:  ||X-Wc|| = minj || X-Wj||

3. Update the weights Wi according to the rule:

Wi(t+1) =Wi(t) + hci(t) [X(t) -Wi(t)] 

    where hci(t) is the neighborhood function that is usually of the gaussian type:

hci(t) =α(t) exp( −||Wc-Wi|| / 2σ2(t) ) or of a local “bubble” type [1].

Weights of neurons laying in the neighborhood hci(t) of the winning neuron are moved
closer to X(t). The learning rate α(t)∈[0,1] decreases monotonically with time, σ(t)
determining the radius of the neighborhood also decreases monotonically.  After many
iterations and slow reduction of α(t) and σ(t) until the neighborhood covers only a sin-
gle node the map is formed: neurons with weights that are close in the parameter space
W are also close on the mesh and can be labeled with names (classes) of input clus-
ters. A lot of work has been done in recent years on improving the convergence prop-
erties of  the SOFM algorithm using statistical methods and information-theoretic
models, but the main problem with the lack of quantitative measures to determine



when „a good map” is formed seems to be unresolved. This problem is addressed di-
rectly by the methods presented in the section below.

3. Multidimensional scaling 

MDS techniques emerged from the need to visualize in a one, two- or three-
dimensional spaces high dimensional objects described by some measure of their simi-
larities or dissimilarities. The problem is to find coordinates of points representing
these multdimensional objects in a low-dimensional target space in such a way that the
low-dimensional interpoint distances would correspond to the similarities of the origi-
nal objects. MDS takes as input a symmetric matrix of the similarities or dissimilari-
ties between objects, whereas SOFM needs absolute coordinates of these objects in
the high-dimensional space. Note that for the MDS input space does not even need to
be a metric space. If a given observation concerns n objects there are n(n-1)/2 dis-
tances between these objects.  SOFM algorithm in the same case needs n×N input val-
ues, where N is the dimension of the input vectors. Coordinates are also sufficient to
compute distances for MDS but the reverse is not true. If the number of objects
n<2N+1 SOFM algorithm requires more information than MDS.

Let δij be the observed similarities between objects Xi, i = 1,2 .. n, equivalent to dis-
tances δij = ||Xi-Xj|| in metric spaces. Let Yi be the low dimensional target space point
representing the input object Xi and let dij be the distance between Yi and Yj. We have
to place the points {Yi, i = 1, .., n} in the target space in such a way that the distances
dij are as close as possible to the original distances δij. Kruskal proposed [5] the stress
coefficient S(δij,dij) while other authors [5] advocated the alienation coefficient
A(δij,dij) as the measure of topographical agreement between the input and the target
space. Sammon [6] has proposed an error function E(δij,dij)

In all cases the goal is achieved by iterative minimization of one of these coefficients
as follows: compute δij and define a starting configuration for the points Yi randomly
or by a principal components analysis. 

While the criterion function significantly decreases, do:

1.  Compute the distances dij.

2.  Compute the value of the criterion functions S, A or E.
3.  Find a new configuration of points Yi by a minimization procedure, such as rank-

image permutation procedure or monotone regression transformation procedure.
Looking for quantitative measures of the preservation of topography between the
high-dimensional input and low-dimensional target spaces in the SOFM algorithm
Duch [7] has introduced the stress-like measure D1(δij,dij) =S(δij,dij) and its quadratic
version written here in an unnormalized form, explicitly dependent on the absolute co-
ordinates in the target space rather than on the distances dij:
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where yi
(l) are components of Yi vectors in the k-dimensional target space. The reduc-

tion in the number of the degrees of freedom going from N dimensions to k dimen-
sions is  taken into account by setting all components of Y0=0 and k-1 components of
Y1 to zero (fixing origin and rotation of the coordinate system in the target space). For
this  measure we may obtain the best representation by solving the following set of  
non-linear equations [7] instead of minimization:

Unfortunately it is as hard to solve this system of nonlinear equations as it is to mini-
mize the stress function.

4. Comparison of SOFM and MDS maps

Minimization in MDS is usually done via gradient procedure. Since we are looking for
a global minimum we have used simulated annealing method for minimization.  We
have applied SOFM and MDS algorithms to a number of cases in which the quality of
maps could be assessed easily. Due to the lack of space only two cases will be pre-
sented: mapping 3D points from the sphere with radius 1, the 26 points taken are the 2
poles and points at the intersection of 3 parallels with 8 meridians regularly spaced by
an angle of 45 degrees, and mapping the corners of hypercubes from 3, 4 and 5 dimen-
sions to the two-dimensional target space. Configurations of points obtained from
SOFM and MDS are compared in figures below.

In figures 1-4 all points that are adjacent to each other in the input space are connected
by lines. In a good map all these lines should be short but SOFM tries to use all neu-
rons and places many codebook vectors at the borders, missing the best configuration
even in the 3D case. Perhaps with infinitely slow learning it would be possible to
avoid “freezing” wrong configurations but in our simulations even 10000 iterations
were not sufficient to obtain a global minimum of the stress function.

A common measure of topographical distortions D defined [7] by:

D = Σi<j (δ ij − α.dij)
2 Σi<j dij

2 , with α = Σi<j δ ij.dij Σ i<j dij
2
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The two-dimensional representations of the 26 points on the sphere obtained by mini-
mization of S, E, A, and by SOFM (left to right) with a 20 x 20 neurons map. 



The two-dimensional representations of the 8 points of the 3D  cube ob-
tained by SOFM (left) with a 20 x 20 neuron map, a training  of 10000 cy-
cles, a final quantization error of 0.001 and stress 0.321, MDS (right) has the
final stress value 0.246 after 22 iterations.
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The two-dimensional representations of the 16 points of the 4D hypercube ob-
tained by SOFM (left) with a 20 x 20 neurons map, a  training of 10000 cy-
cles, quantization error of 0.001, stress value 0.327, MDS (right) has the final
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The two-dimensional representations of the 32 points of the 5D hypercube ob-
tained by SOFM (left) with a 20 x 20 neurons map, a  training of 10000 cycles,
the stress value of 0.353 and by MDS (right) with a final stress of 0.333 after 18
iterations.
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applied to these 4 cases gives 0.0636 for stress minimization, 0.0652 for  Sammon's
mapping, 0.0674 for alienation coefficient minimization and 0.0891 for SOFM.

5. Conclusions

Theoretical considerations as well as computational experience shows that MDS and
other approaches based on minimization of global coefficients lead to a better visuali-
zation of multidimensional data than SOFM. Global visualization methods provide
well-defined measures of the quality of Kohonen and other such maps. Computational
demands of the two approaches in the learning or mapping phase are similar. Since
SOFM doesn't give good maps and is not recommended as a classification method the
question arises: what is it good for? Modifications of SOFM are useful in biologicaly-
oriented models of cortical maps [8]. 

It is also possible to modify the original Kohonen SOFM algorithm to take into ac-
count the minimization of stress measure together with minimization of quantization
error (Duch and Naud, in preparation). Such maps may be useful for classification. A
new data added to MDS input requires costly minimization, therefore our recommen-
dation is to use a combination of MDS and SOFM. At first minimization of stress-like
coefficient is performed for the training data. Then the coordinate mesh in the target
space is introduced. The codebook vectors in each node of this mesh are obtained by
topological interpolation [9] from MDS results. This method should be useful not only
in visualization and classification but also in approximation problems (Duch and
Naud, work in progress).
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